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Abstract

SQOPT is a set of Fortran subroutines for minimizing a convex quadratic function
subject to both equality and inequality constraints. (SQOPT may also be used for
linear programming and for finding a feasible point for a set of linear equalities and
inequalities.) The method of SQOPT is of the two-phase, active-set type, and is related
to the method used in the package QPOPT (Gill, Murray and Saunders [4]). SQOPT
is most efficient if there are few superbasic variables (degrees of freedom) compared to
the number of variables. A problem will have few degrees of freedom if only some of the
variables appear in the quadratic term, or if the number of active constraints (including
simple bounds) is nearly as large as the number of variables. However, unlike previous
versions of SQOPT, there are no limits on the number of superbasic variables.

SQOPT is primarily intended for (but is not restricted to) large linear and quadratic
problems with sparse constraint matrices. A quadratic term 1

2
xTHx in the objective

function is represented by a user subroutine that returns the product Hx for a given
vector x.

SQOPT is part of the SNOPT package for large-scale nonlinearly constrained op-
timization. SQOPT uses stable numerical methods throughout and includes a reliable
basis package (for maintaining sparse LU factors of the basis matrix), a practical anti-
degeneracy procedure, optional automatic scaling of the constraints, and elastic bounds
on any number of constraints and variables.

The source code for SQOPT is re-entrant and is suitable for any machine with a
Fortran compiler or the f2c translator. SQOPT may be called from a driver program
(typically in Fortran, C, or MATLAB). SQOPT can also be used as a stand-alone pack-
age, reading data in the MPS format used by commercial mathematical programming
systems.
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1. Introduction

SQOPT is a collection of Fortran 77 subroutines for solving the large-scale linear or quadratic
programming problem, which is assumed to be stated in the form

LCQP minimize
x

q(x)

subject to l ≤
(

x
Ax

)
≤ u,

where l and u are constant lower and upper bounds, A is a sparse matrix, and q(x) is a
linear or quadratic objective function that may be specified in a variety of ways, depending
upon the problem being solved. An optional parameter maximize may be used to specify a
problem in which q is maximized instead of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows
full generality in specifying various types of constraint. In particular, the jth constraint
may be defined as an equality by setting lj = uj . If certain bounds are not present, the
associated elements of l or u may be set to special values that are treated as −∞ or +∞.

The possible forms for the function q(x) are summarized in Table 1. The most general
form for q(x) is

q(x) = f +
n∑

j=1

cjxj + 1
2

n∑
i=1

n∑
j=1

xiHijxj = f + cTx + 1
2xTHx,

where f is a constant, c is a constant n vector, and H is a constant symmetric n × n
matrix called the Hessian, with elements {Hij}. In this form, q is a quadratic function of
x, and Problem LCQP is known as a quadratic program (QP). SQOPT is suitable for all
convex quadratic programs. The defining feature of a convex QP is that H must be positive
semidefinite—i.e., it must satisfy xTHx ≥ 0 for all x. If SQOPT encounters a negative xTHx
for some x, it will terminate with the error indicator INFO = 53.

Table 1: Choices for the objective function q(x).

Problem type Objective function q Hessian matrix H

Quadratic Programming (QP) f + cTx + 1
2xTHx Symmetric positive semidefinite

Linear Programming (LP) f + cTx H = 0
Feasible Point (FP) Not Applicable f = 0, c = 0, H = 0

If H = 0, then q(x) = f + cTx and the problem is known as a linear program (LP).
In this case, rather than defining an H with zero elements, you can define H to have no
columns (see the parameter ncolH for subroutine sqOpt).

If H = 0, f = 0, and c = 0, there is no objective function and the problem is a feasible
point problem (FP), which is equivalent to finding a point that satisfies the constraints on x.
In the situation where no feasible point exists, several options are available for finding a point
that minimizes the constraint violations (see the optional parameter Elastic option).

SQOPT is suitable for large LPs and QPs in which the matrix A is sparse—i.e., when
there are sufficiently many zero elements in A to justify storing them implicitly. The matrix
A is input to SQOPT by means of the parameters Acol(*), indA(*), and locA(*) (see
Section 3.1). This allows the user to specify the pattern of nonzero elements in A.



4 SQOPT 7 User’s Guide

SQOPT exploits structure or sparsity in H by requiring H to be defined implicitly in
a subroutine that computes the product Hx for any given vector x. In many cases, the
product Hx can be computed very efficiently for any given dense vector x. For example, H
may be a sparse matrix or a sum of matrices of low rank. The sample program provided
with SQOPT includes such a subroutine.

There is considerable flexibility allowed in the definition of q(x) in Table 1. The vector c
defining the linear term cTx can be input in three ways: as a sparse row of A; as an explicit
dense vector c; or as both a sparse row and an explicit vector (in which case, cTx will be
the sum of two linear terms). When stored in A, c is row iObj of A and is known as the
objective row. The objective row must always be a free row of A in the sense that its lower
and upper bounds must be −∞ and +∞. Storing c as part of A is recommended if c is a
sparse vector. Storing c as an explicit vector is recommended for a sequence of problems
with differing objectives (see parameters cObj and lencObj of subroutine sqOpt).

1.1. Implementation

SQOPT is implemented as a set of callable Fortran subroutines. The source code is compat-
ible with all known Fortran 77, 90, and 95 compilers, and can be converted to C code by
the f2c translator [1] included with the distribution.

All routines in SQOPT are intended to be re-entrant (as long as the compiler allocates
local variables dynamically). Hence they may be used in a parallel or multi-threaded envi-
ronment. They may also be called recursively.

1.2. Files

SQOPT reads or creates the following files:

SPECS file. A list of run-time options, input by sqSpec.

PRINT file. A detailed iteration log, error messages, and optionally the printed solution.

SUMMARY file. A brief iteration log, error messages, and the final solution status.
Intended for screen output in an interactive environment.

SOLUTION file. A separate copy of the printed solution.

BASIS files. To allow restarts.

You must define unit numbers for the SPECS, PRINT, and SUMMARY files by specifying
appropriate parameters for sqInit and sqSpec. For a more detailed description of the files
that can be created by SQOPT, see section 6.

1.3. Overview of the package

SQOPT is normally accessed via a sequence of subroutine calls. For example, sqOpt may be
invoked by the statements

call sqInit( iPrint, iSumm, ... )
call sqSpec( iSpecs, ... )
call sqOpt ( Start, qpHx, m, ...)

where sqSpec reads a file of run-time options (if any). Also, individual run-time options
may be “hard-wired” by calls to sqSet, sqSeti, and sqSetr.

Subroutine sqInit must be called before any other SQOPT routine. It defines the PRINT

and SUMMARY files, prints a title on both files, and sets all user options to be undefined.
(SQOPT will later check the options and set undefined ones to default values.)
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1.4. Getting started

For a given value of n, suppose that we wish to find the n-vector x that is closest in Euclidean
norm to a given vector x0. The complication is that not only must x lie in the set

S =
{
x :

n∑
j=1

xj = 1, x ≥ 0,
}
,

but also its components must be nonincreasing : xj ≤ xj+1. This problem may be written
as a quadratic program

minimize
x1,x2

1
2

∑n
j=1 (xj − (x0)j)2

subject to xj − xj+1 ≤ 0, j = 1, 2, . . . , n− 1,∑n
j=1 xj = 1, x ≥ 0.

(1.1)

The objective function to be minimized can be written in the form

1
2 (x− x0)T (x− x0) = 1

2xT
0x0 − xT

0 x + 1
2xTx,

which is the quadratic f + cTx + 1
2xTHx with f = 1

2xT
0x0, c = −x0, and H = I.

The constraints xj ≤ xj+1 are written in the form −∞ ≤ xj − xj+1 ≤ 0. These n − 1
constraints, together with the restriction that the variables must sum to one, define n so-
called “range constraints” of the form lA ≤ Ax ≤ uA. When n = 3,

lA =

−∞−∞
1

 , A =

−1 1 0
0 −1 1
1 1 1

 , and uA =

0
0
1

 .

These quantities define the general constraints of the problem. Similarly the nonnegativity
constraints on the components of x may be written as n simple bounds lx ≤ x ≤ ux, where

lx =

0
0
0

 and ux =

+∞
+∞
+∞

 .

Internally sqOpt converts the general constraints to equalities by introducing a set of slack
variables s = (s1, s2, . . . , sm)T . For example, the first linear constraint −∞ ≤ x1 − x2 ≤ 0
is replaced by x1 − x2 − s1 = 0 together with the bounded slack −∞ ≤ s1 ≤ 0. Problem
LCQP can therefore be rewritten in the following equivalent form:

minimize
x,s

q(x) subject to Ax− s = 0, l ≤
(

x
s

)
≤ u.

The slack variables s are subject to the same bounds as the components of Ax. They allow
us to think of the bounds on x and Ax as bounds on the combined vector (x, s).

Now we must provide sqOpt the following information:

1. A subroutine qpHx that computes Hx, the product of H with a vector x. For this
simple example, H is the identity matrix and the qpHx output vector Hx is defined
using the simple assignments:

Hx(1) = x(1)
Hx(2) = x(2)
Hx(3) = x(3)
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2. The objective row cObj and constant term Objadd. These quantities define f and c for
the problem. For Example (1.1) above, cObj is the constant vector −x0, and ObjAdd
is the quantity 1

2xT
0x0.

(SQOPT minimizes the quadratic cTx + 1
2xTHx and adds the constant f for printing

purposes only.)

3. The lower and upper bounds l and u on (x, s). These vectors are input as arrays bl
and bu, each of length at least n + m. The first n elements of bl and bu hold the
bounds lx and ux:

infBnd = 1.0d+20
bl(1) = 0.0
bl(2) = 0.0
bl(3) = 0.0

bu(1) = infBnd
bu(2) = infBnd
bu(3) = infBnd

where infBnd represents “infinity”. It must be at least as large as the Infinite
Bound size (default value 1020).

Elements n + 1 through n + m of bl and bu hold the bounds lA and uA:

bl(n+1) = -infBnd
bl(n+2) = -infBnd
bl(n+3) = 1.0

bu(n+1) = 0.0
bu(n+2) = 0.0
bu(n+3) = 1.0

Note that the third row, which simply sums the variables, must have equal bounds to
make it an “equality” row.

4. The nonzero elements of the matrix A. These are stored by columns in the array Acol.
The corresponding row numbers are stored in the parallel array indA. In our example,
the matrix A has two nonzeros in each column, with

Acol = { -1.0 1.0 1.0 -1.0 1.0 1.0 1.0 }
indA = { 1 3 1 2 3 2 3 }

One other integer array locA is needed to indicate where each column of A starts. In
this case we have

locA = { 1 3 6 8 }

Note that although A has 3 columns, locA has 4 elements. The element locA(n+1)
is set to the number of nonzeros plus 1. Then for all j we may determine the number
of nonzeros in the jth column using the expression locA(j + 1)− locA(j).

This scheme is easy to generalize to problems with arbitrary column dimension. The
following code fragment defines the constraint data structure for Problem (1.1) with
n variables and m = n general constraints:
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one = 1.0d+0
neA = 0 ! Counts the nonzeros in A

do j = 1, n
locA( j) = neA + 1 ! Points to the start of column j
if (j .gt. 1) then

neA = neA + 1
indA(neA) = j - 1
Acol(neA) = -one

endif
if (j .lt. n) then

neA = neA + 1
indA(neA) = j
Acol(neA) = one

end if
neA = neA + 1
indA(neA) = m
Acol(neA) = one

end do

locA(n+1) = neA + 1

As a matter of good programming practice, we recommend the use of the counter neA
to reference the elements of Acol and indA. It allows the code to be updated easily if
new constraints or variables are added to the problem.
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2. A brief description of quadratic programming

The method used in SQOPT follows Gill and Murray [3] and is described in [7]. Here
we summarize the main features of the method and introduce some terminology used in
the description of subroutine sqOpt and its arguments. Where possible, explicit reference
is made to items listed in the printed output, and to the names of the relevant optional
parameters.

2.1. Formulation of the problem

As mentioned in Section 1.4, Problem LCQP can be written in the equivalent form

minimize
x,s

q(x) subject to Ax− s = 0, l ≤
(

x
s

)
≤ u,

where s is the vector of slack variables. The bounds on s are the bounds on Ax.
SQOPT solves LP or QP problems using an active-set method. This is an iterative

procedure with two phases. Phase 1 (sometimes called the feasibility phase) minimizes the
sum of infeasibilities to find a feasible point (one that satisfies all constraints). Phase 2 (the
optimality phase) minimizes the objective q(x) by constructing a sequence of iterates that
are all feasible. The computations in both phases are performed by the same subroutines,
with the change of phase being characterized by the objective changing from the sum of
infeasibilities (the printed quantity sInf) to the quadratic objective (the printed quantity
Objective).

Phase 1 solves a linear program of the form

Phase 1: minimize
x,s,v,w

n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤
(

x
s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

using a sequence of points (x, s) that satisfy Ax − s = 0. This is equivalent to minimizing
the sum of the constraint violations. If the constraints are feasible (i.e., at least one feasible
point exists), a point will eventually be found at which both v and w are zero. The associated
value of (x, s) satisfies the constraints in the original problem and is used as the starting
point for the phase 2 iterations for minimizing q(x).

2.2. Active-set methods

A constraint is said to be active or binding at x if the associated component of either x or
Ax is equal to one of its upper or lower bounds. Since an active constraint in Ax has its
associated slack variable at a bound, we can neatly describe the status of both simple and
general upper and lower bounds in terms of the status of the variables (x, s). A variable is
said to be nonbasic if it is temporarily fixed at its upper or lower bound. It follows that
regarding a general constraint as being active is equivalent to thinking of its associated slack
as being nonbasic.

In an active-set method each iterate is feasible, which implies that the constraints Ax−
s = 0 may be (conceptually) partitioned as BxB + SxS + NxN = 0, where xN comprises
the nonbasic components of (x, s) and the basis matrix B is square and nonsingular. The
elements of xB and xS are called the basic and superbasic variables respectively; together
with xN they form a permutation of the elements of x and s. At a QP solution, the basic
and superbasic variables will lie on or somewhere between their bounds, while the nonbasic
variables will be equal to one of their upper or lower bounds.
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At a nonoptimal feasible point (x, s) we seek a search direction p such that (x, s) + p
is feasible for the same set of constraints yet gives an improved value of the QP objective
(or sum of infeasibilities). If the new point is to be feasible it must hold that pN = 0
and BpB + SpS + NpN = 0, where pB, pS and pN are the basic, superbasic and nonbasic
components of p. These relations imply that once pS is specified, pB is uniquely determined
from the system BpB = −SpS. It follows that the superbasic variables may be regarded as
independent variables that are free to move in any desired direction, and that the values of
the basic variables ensure (x, s)+p satisfies Ax−s = 0. The number of superbasic variables
(nS say) therefore indicates the number of degrees of freedom remaining after the constraints
have been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In
particular, nS need not be more than one for FP and LP problems.

The dependence of p on pS may be expressed compactly as p = ZpS, where Z is the
so-called null-space basis

Z = P

−B−1S
I
0

 (2.1)

with P the permutation that arranges the columns of
(
A −I

)
in the order

(
B S N

)
.

The minimization of q(x) with respect to pS now involves an unconstrained quadratic func-
tion with Hessian ZTHZ and constant vector ZTg, where g is the gradient of the objective.
If ZTHZ is nonsingular, pS is computed from the equations,

ZTHZpS = −ZTg. (2.2)

The matrix ZTHZ is known as the reduced Hessian and ZTg is the reduced gradient. The
matrix Z is used only as an operator, i.e., it is never computed explicitly. Products of the
form Zv and ZTg are obtained by solving with B or BT. In particular, the sparse-matrix
package LUSOL [5] is used to maintain the LU factors of the basis matrix B as the BSN
partition changes.

The right-hand side vector ZTg can be written compactly in terms of the vector π of dual
variables associated with the m equality constraints Ax− s = 0. Each variable in (x, s) has
an associated reduced gradient dj (also known as a reduced cost). The reduced gradients for
the variables x are the quantities gx−AT π, where gx is the x part of the objective gradient.
The reduced gradients for the slacks s are the dual variables π. The vector ZTg is then
dS = gS − STπ, the vector of reduced gradients for the superbasic variables.

The optimality conditions for problem LCQP may also be written in terms of the vector
of reduced costs. The current point is optimal if dj ≥ 0 for all nonbasic variables at their
lower bounds, dj ≤ 0 for all nonbasic variables at their upper bounds, and dj = 0 for all
superbasic variables. In practice, an approximate QP solution is found by slightly relaxing
these conditions on dj (see the Optimality tolerance described in section 4.6).

If dS = 0, no improvement can be made with the current BSN partition, and a nonbasic
variable with non-optimal reduced cost is selected to be added to S. The iteration is then
repeated with nS increased by one. At all stages, if the step (x, s) + p would cause a basic
or superbasic variable to violate one of its bounds, a shorter step (x, s) + αp is taken, one
of the variables is made nonbasic, and nS is decreased by one.

The process of computing and testing reduced gradients is known as pricing (a term first
introduced in the context of the simplex method for linear programming). To price the jth
variable means that its reduced gradient is computed as dj = gj − aT

j π, where aj is the jth
column of ( A − I ). (In the PRINT file output, the nonbasic variable selected after pricing,
along with its reduced gradient dj , are printed in the columns marked +SBS and dj.) If
A has significantly more columns than rows (i.e., n � m), pricing can be computationally
expensive. In this case, a strategy known as partial pricing can be used to compute and
test only a subset of the dj ’s.
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The vector dB of basic components of d is zero by construction. The final value of ‖dS‖1
is listed as norm rg after the EXIT message in the SUMMARY and PRINT files, and the final
vectors π, g, and d are labeled Dual Activity, Obj Gradient, and Reduced Gradnt in the
PRINT and SOLUTION files.

At each iteration, an upper-triangular matrix R is available such that RTR = ZTHZ.
Normally, R is computed from ZTHZ at the start of phase 2 and is then updated as the
basic and nonbasic sets change. For efficiency the dimension of R should not be excessive
(say, nS ≤ 1000). This is guaranteed if the number of nonlinear variables is “moderate”.

If the QP contains linear variables, H is positive semi-definite and R may be singular
with at least one zero diagonal. In this case, an inertia-controlling active-set strategy is used
to ensure that only the last diagonal of R can be zero. (See [7] for discussion of a similar
strategy for indefinite quadratic programming.)

2.3. Treatment of constraint infeasibilities

If the constraints are infeasible (i.e., v 6= 0 or w 6= 0 at the end of phase 1), no solution
exists for Problem LCQP and the user has the option of either terminating or continuing in
so-called elastic mode (see the discussion of the optional parameter Elastic option). In
elastic mode, a “relaxed” or “perturbed” problem is solved in which q(x) is minimized while
allowing some of the bounds to become “elastic”—i.e., to change from their specified values.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is
free to violate one or both of its original upper or lower bounds. The user is able to assign
which bounds will become elastic if elastic mode is ever started—see the parameter hElast
of subroutine sqOpt.

To make the relaxed problem meaningful, SQOPT minimizes q(x) while (in some sense)
finding the “smallest” violation of the elastic variables. In the situation where all the
variables are elastic, the relaxed problem has the form

Phase2(γ): minimize
x,s,v,w

q(x) + γ
n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤
(

x
s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter known as the elastic weight, and q(x) + γ
∑

j(vj + wj)
is called the composite objective. In the more general situation where only a subset of the
bounds are elastic, the v’s and w’s for the non-elastic bounds are fixed at zero.

The elastic weight can be chosen to make the composite objective behave like either
the original objective q(x) or the sum of infeasibilities. If γ = 0, SQOPT will attempt to
minimize q(x) subject to the (true) upper and lower bounds on the nonelastic variables
(and declare the problem infeasible if the nonelastic variables cannot be made feasible).
At the other extreme, choosing γ sufficiently large, will have the effect of minimizing the
sum of the violations of the elastic variables subject to the original constraints on the
non-elastic variables. Choosing a large value of the elastic weight is useful for defining a
“least-infeasible” point for an infeasible problem.

In phase 1 and elastic mode, all calculations involving v and w are done implicitly in the
sense that an elastic variable xj is allowed to violate its lower bound (say) and an explicit
value of v can be recovered as vj = lj − xj .

2.4. Degeneracy and the feasibility tolerance

For numerical reasons, SQOPT allows the variables (x, s) to stray outside their bounds
by as much as a specified Feasibility tolerance δ (default value 10−6). The EXPAND
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procedure of Gill et al.[6] takes advantage of δ to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no guarantee
of preventing cycling, the probability is very small (see Hall and McKinnon [8]).

The main feature of EXPAND is that over a period of K iterations (where K is the
specified Expand frequency), a “working” feasibility tolerance increases from 1

2δ to δ in
steps of 1

2δ/K. At certain stages, the following “resetting procedure” is used to remove
small constraint infeasibilities. First, all nonbasic variables are moved exactly onto their
bounds. A count is kept of the number of non-trivial adjustments made. If the count is
nonzero, the basic variables are recomputed. Finally, the working feasibility tolerance is
reinitialized to 1

2δ.
If a problem requires more than K iterations, the resetting procedure is invoked and a

new cycle of iterations is started. (The decision to resume phase 1 or phase 2 is based on
comparing any infeasibilities with δ.)

The resetting procedure is also invoked when SQOPT reaches an apparently optimal,
infeasible, or unbounded solution, unless this situation has already occurred twice. If any
non-trivial adjustments are made, iterations are continued.

The EXPAND procedure allows a positive step to be taken at every iteration, and also
provides a potential choice of constraint to be added to the working set. All constraints
at a distance α (α ≤ αN) along p from the current point are then viewed as acceptable
candidates for inclusion in the working set. The constraint whose normal makes the biggest
angle with the search direction is added to the working set. This strategy helps keep the
the basis matrix B well-conditioned.

2.5. Basis repair

If the basis matrix is not chosen carefully, the condition of the null-space matrix Z (2.1)
could be arbitrarily high. (The quantity Cond Hz printed in the SUMMARY output is a
condition estimator for ZTHZ.) To guard against this, SQOPT implements a “basis repair”
feature in the following way. LUSOL is used to compute the rectangular factorization(

BT

ST

)
= LU, (2.3)

returning just the permutation P that makes PLPT unit lower triangular. The stability
tolerance is set to require |Lij | ≤ 2, and the permutation is used to define P in (2.1). It can
be shown that ‖Z‖ is likely to be little more than 2. Since the smallest singular value of Z
is at least 1, it means that Z should be well-conditioned regardless of the condition of the
constraints.

This feature is applied at the beginning of the optimality phase if S has one or more
columns.
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3. Subroutines associated with sqOpt

The SQOPT package is accessed via the following routines:

sqInit (Section 3.3) must be called before any other SQOPT routines.

sqSpec (Section 4.3) may be called to input a SPECS file (a list of run-time options).

sqSet, sqSeti, sqSetr (Section 4.4) may be called to specify a single option.

sqGet, sqGetc, sqGeti, sqGetr (Section 4.5) may be called to obtain an option’s current
value.

qpHx (Section 3.2) is supplied by the user to define the matrix-vector product Hx for
given vectors x. For FP and LP, you can either provide your own “empty” qpHx or
use the dummy routine nullHx provided with the SQOPT distribution.

sqOpt (Section 3.1) is the main solver.

sqMem (Section 3.4) computes the size of the workspace arrays cw, iw, rw required for
given problem dimensions. Intended for Fortran 90 and C drivers that reallocate
workspace if necessary.

The user routine qpHx has a fixed parameter list but may have any convenient name. It is
passed to sqOpt as a parameter.

The SQOPT routines are intended to be re-entrant (as long as the Fortran compiler
allocates local variables dynamically). Hence they may be used in a parallel or multi-
threaded environment. They may also be called recursively.

In the subroutine descriptions below, note that double precision declarations are suit-
able for most machines as shown, but some machines use real.
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3.1. Subroutine sqOpt

Problem QP is solved by a call to subroutine sqOpt, whose parameters are defined here.

subroutine sqOpt
& ( Start, qpHx, m,
& n, neA, nName, lencObj, ncolH,
& iObj, ObjAdd, Prob,
& Acol, indA, locA, bl, bu, cObj, Names,
& hElast, hs, x, pi, rc,
& INFO, mincw, miniw, minrw,
& nS, nInf, sInf, Obj,
& cu, lencu, iu, leniu, ru, lenru,
& cw, lencw, iw, leniw, rw, lenrw )

external
& qpHx
integer
& iObj, INFO, lencObj, lencu, leniu, lenru, lencw, leniw,
& lenrw, m, mincw, miniw, minrw, n, neA, nName, ncolH, nS,
& nInf, hElast(n+m), hs(n+m), indA(neA), iu(leniu), iw(leniw),
& locA(n+1)
double precision
& Obj, ObjAdd, sInf, Acol(neA), bl(n+m), bu(n+m), cObj(*),
& pi(m), rc(n+m), x(n+m), ru(lenru), rw(lenrw)
character*(*)
& Start
character
& Prob*8, Names(nName)*8, cu(lencu)*8, cw(lencw)*8

On entry:

Start is a character string that specifies how a starting basis (and certain other items)
are to be obtained.

’Cold’ requests that the CRASH procedure be used to choose an initial
basis, unless a basis file is provided via Old Basis, INSERT or LOAD
in the SPECS file.

’Basis file’ is the same as Start = ’Cold’ but is more meaningful when a basis
file is given.

’Warm’ means that a basis is already defined via the argument hs (probably
from an earlier call).

’Hot’ or ’Hot FHS’ means SQOPT should start with all three types of
information available from an earlier call. Just one type may be
requested as follows:

Start Information held in work arrays
’Hot F’ Factors of the basis (LU)
’Hot H’ Factors of the reduced Hessian (Cholesky)
’Hot S’ Scale factors for the constraints and variables

Any combination of F, H, S may be specified, such as ’Hot FS’.
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m is m, the number of general inequalities (m > 0). This is the number of rows in the
constraint matrix A.

Note that A must have at least one row. If your problem has no constraints, or
only upper and lower bounds on the variables, then you must include a dummy row
with sufficiently wide upper and lower bounds. See the discussion of the parameters
Acol, indA and locA below.

n is the number of variables, excluding slacks (n > 0). This is the number of columns
in A.

neA is the number of nonzero entries in A (neA > 0).

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n + m and all names must be provided.

lencObj is the number of elements in the constant objective vector c (lencObj ≥ 0).

ncolH is the number of leading nonzero columns of the QP Hessian (ncolH ≥ 0).

If ncolH = 0, there is no quadratic term, and the problem is an FP or LP problem.
In this case you must provide a dummy subroutine qpHx or use the subroutine
nullHx provided in the SQOPT distribution.

If ncolH > 0, you must provide your own version of qpHx to compute the matrix-
vector product Hx.

iObj says which row (if any) of A is a free row containing a linear objective vector c
(0 ≤ iObj ≤ m). If there is no such vector, iObj = 0.

ObjAdd is the constant f added to the objective for printing purposes. Typically ObjAdd is
zero.

Prob is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output BASIS files. A blank name may be used.

Acol(neA), indA(neA), locA(n+1) define the nonzero elements of the constraint matrix
A. The nonzeros are stored column-wise. A pair of values (Acol(k),indA(k)) con-
tains a matrix element and its corresponding row index, and the array locA(*) is a
set of pointers to the beginning of each column of A within Acol(*) and indA(*).
Thus for j = 1 :n, the entries of column j are held in Acol(k : l) and their corre-
sponding row indices are in indA(k : l), where k = locA(j) and l = locA(j + 1)− 1,

1. It is essential that locA(1) = 1 and locA(n + 1) = neA + 1.

2. The row indices indA(k) for a column may be in any order.

3. If lencObj > 0, the first lencObj columns of Acol and indA belong to variables
corresponding to the constant objective term c.

4. If the problem has a quadratic objective, the first ncolH columns of Acol and
indA belong to variables corresponding to the nonzero block of the QP Hessian.
Subroutine qpHx knows about these variables.

5. If your problem has no constraints, or just bounds on the variables, you may
include a dummy “free” row with a single (zero) element by setting Acol(1) =
0.0, indA(1) = 1, locA(1) = 1, and locA(j) = 2 for j = 2 :n + 1. This
row is made “free” by setting its bounds to be bl(n + 1) = −infBnd and
bu(n + 1) = infBnd, where infBnd is typically 1.0e+20 (see next paragraph).
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bl(n+m) contains the lower bounds on the variables and slacks (x, s).

The first n entries of bl, bu, hs and x refer to the variables x. The last m entries
refer to the slacks s.

To specify a non-existent lower bound (lj = −∞), set bl(j) ≤ −infBnd, where
infBnd is the Infinite Bound, whose default value is 1020.

To fix the jth variable (say xj = β, where |β| < infBnd), set bl(j) = bu(j) = β.

To make the ith constraint an equality constraint (say si = β, where |β| < infBnd),
set bl(n + i) = bu(n + i) = β.

bu(n+m) contains the upper bounds on (x, s). To specify a non-existent upper bound (uj =
∞), set bu(j) ≥ infBnd. For the data to be meaningful, it is required that bl(j) ≤
bu(j) for all j.

cObj(lencObj) sometimes contains the explicit objective vector c (if any). If the problem
is of type FP, or if lencObj = 0, then cObj is not referenced. (In that case, cObj
may be dimensioned (1), or it could be any convenient array.)

Names(nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, then Names is not used. The printed solution will use generic names for
the columns and row. Otherwise, nName = n + m and Names(j) should contain the
8-character name of the jth variable (j = 1 : n + m). If j = n + i, the jth variable
is the ith row.

hElast(n+m) sometimes defines which variables are to be treated as being elastic in elastic
mode. The values hElast(j) = 0, 1, 2, 3 have the following meaning:

hElast(j) Status in elastic mode
0 variable j is non-elastic and cannot be infeasible
1 variable j may violate its lower bound
2 variable j may violate its upper bound
3 variable j may violate either of its bounds

hElast need not be assigned if Elastic mode = 0.

hs(n+m) sometimes contains a set of initial states for each variable x, or for each variable
and slack (x, s). See the following discussion of the argument x.

x(n+m) sometimes contains a set of initial values for x or (x, s).

1. If a basis file of some sort is to be input (start = ’Cold’ or ’Basis file’
and an OLD BASIS, INSERT, or LOAD file is specified in the SPECS file), then
hs and x need not be set.

2. Otherwise, hs(1 :n) and x(1 :n) must be defined for a Cold start. If nothing
special is known about the problem, or there is no wish to provide special
information, you may set hs(j) = 0, x(j) = 0.0 for j = 1 :n. All variables will
be eligible for the initial basis.
Less trivially, to say that the optimal value of variable j will probably be
equal to one of its bounds, set hs(j) = 4 and x(j) = bl(j) or hs(j) = 5 and
x(j) = bu(j) as appropriate.
SQOPT then uses a CRASH procedure to select variables for the initial ba-
sis. The corresponding basis matrix will be triangular (ignoring certain small
entries in each column). The values hs(j) = 0, 1, 2, 3, 4, 5 have the following
meaning:
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hs(j) State of variable j during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference
{2, 4, 5} Ignored

After CRASH, columns for which hs(j) = 2 are made superbasic. Other entries
not selected for the basis are made nonbasic at the value x(j) if bl(j) ≤ x(j) ≤
bu(j), or at the value bl(j) or bu(j) closest to x(j). See the description of hs
below (on exit).

3. For Warm and Hot starts, all of hs(1 :n + m) must be 0, 1, 2 or 3 (perhaps
from some previous call) and all of x(1 :n + m) must have values. Use Warm
rather than Cold if you wish to input the initial state of the slack variables.

nS need not be specified for Cold starts, but should retain its value from a previous
call when a Warm or Hot start is used.

qpHx is the name of the subroutine that defines the product of H with a given vector
x when the problem is a quadratic program. This is the only way that SQOPT

accesses the matrix H in the objective function. For a detailed description of qpHx,
see Section 3.2.

For problems of type FP and LP, qpHx is never called by sqOpt. You may provide
your own empty qpHx, or use the dummy routine nullHx provided with the SQOPT

distribution.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer, and real arrays of user work-
space. They may be used to pass data or workspace to your function routine qpHx
(which has the same parameters). They are not touched by sqOpt.

If qpHx doesn’t reference these parameters, you may use any arrays of the appropri-
ate type, such as cw, iw, rw (see next paragraph). You should use the latter arrays
if qpHx needs to access sqOpt’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer, and real arrays of workspace
for sqOpt. The integers lencw, leniw, lenrw must all be at least 500. In general,
lencw = 500 is appropriate but leniw and lenrw should be as large as possible
because it is uncertain how much storage will be needed for the basis factors. As an
estimate, leniw should be about 10(m + n) or larger, and lenrw should be about
20(m + n) or larger.

Appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500. If Print level is positive, the required amounts of workspace are
printed before sqOpt terminates with INFO = 82, 83, or 84. The values are returned
in mincw, miniw, and minrw.

On exit:

hs gives the state of the final x. The elements of hs have the following meaning:

hs(j) State of variable j Usual value of x(j)
0 nonbasic bl(j)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(j)
3 basic ditto

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance (default value 10−6). Note that if scaling is specified, the
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Feasibility tolerance applies to the variables of the scaled problem. In this
case, the variables of the original problem may be as much as 0.1 outside their
bounds, but this is unlikely unless the problem is very badly scaled. Check the
“Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Feasibility tolerance, and there may be some nonbasics for which x(j)
lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

x(n+m) contains the final variables and slacks (x, s).

pi(m) contains the dual variables π—a set of Lagrange multipliers (shadow prices) for the
general constraints.

rc(n+m) is a vector of reduced costs, g −
„

AT

−I

«
π. If x is feasible, g is the gradient of the

objective. (The last m entries are g are zero, so the last m entries of rc are π.)
Otherwise, g is the gradient of the Phase-1 objective.

INFO reports the result of the call to sqOpt. Here is a summary of possible values. Further
details are in Section 5.4.

Finished successfully

1 optimality conditions satisfied

2 feasible point found

4 weak QP minimizer

The problem appears to be infeasible

11 infeasible linear constraints

12 infeasible linear equalities

14 infeasibilities minimized

The problem appears to be unbounded

21 unbounded objective

Resource limit error

31 iteration limit reached

33 the superbasics limit is too small

Terminated after numerical difficulties

42 singular basis

43 cannot satisfy the general constraints

44 ill-conditioned null-space basis

Error in the user-supplied functions

53 the QP Hessian is indefinite

User requested termination

73 terminated during call to qpHx

74 terminated from monitor routine
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Insufficient storage allocated

81 work arrays must have at least 500 elements

82 not enough character storage

83 not enough integer storage

84 not enough real storage

Input arguments out of range

91 invalid input argument

92 basis file dimensions do not match this problem

System error

141 wrong number of basic variables

142 error in basis package

mincw, miniw, minrw say how much character, integer and real storage is needed to solve
the problem. If sqOpt terminates because of insufficient storage (INFO = 82, 83, or
84), these values may be used to define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. sqOpt may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. sqOpt
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better, since it is not certain how much storage the basis factorization
needs.)

nS is the final number of superbasics.

nInf is the number of infeasibilities.

sInf is the sum of infeasibilities.

Obj is the final value of the explicit quadratic term. If nInf = 0, Obj is the explicit
quadratic term (if any) defined from cObj and qpHx. If nInf > 0 and cObj is
defined, Obj is the explicit linear term. Otherwise, Obj is zero.

Note that Obj does not include contributions from the constant term ObjAdd or the
objective row, if there is one. The final value of the objective being optimized is
ObjAdd + x(n+iObj) + Obj, where iObj is the index of the objective row in A.
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3.2. Subroutine qpHx

For QP problems, you must provide a subroutine that defines products of the form Hx for
given vectors x. This is the way sqOpt accesses the matrix H in the objective function.
Your subroutine is input to sqOpt via the parameter qpHx, which must be declared external
within the routine that calls sqOpt.

For FP and LP problems, qpHx is never called by sqOpt, and hence you can either
provide your own dummy qpHx or use the “empty” routine nullHx provided in the sqOpt
distribution.

subroutine qpHx
& ( ncolH, x, Hx, Status,
& cu, lencu, iu, leniu, ru, lenru )

integer
& lencu, leniu, lenru, ncolH, Status, iu(leniu)
double precision
& x(ncolH), Hx(ncolH), ru(lenru)
character
& cu(lencu)*8

On entry:

ncolH is the same as sqOpt’s input parameter (0 ≤ ncolH ≤ n). It must not be altered
within qpHx. Similarly for the parameters iu, leniu, ru, lenru.

If some of the variables enter the objective function linearly, then H will have some
zero rows and columns. In this case, it is most efficient to order the variables so
that the nonlinear variables appear first. For example, if x = (y, z) and only y
enters the objective quadratically, then

Hx =
(

H1 0
0 0

) (
y
z

)
=

(
H1y
0

)
.

In this case, ncolH should be the dimension of y and qpHx should compute H1y.

x contains a vector x such that the product Hx should be returned in Hx. If ncolH < n,
then “x” will be the vector y above.

Status allows you to save computation time if certain data must be read or calculated only
once.

If Status = 0, there is nothing special about the current call to qpHx.

If Status = 1, sqOpt is calling your subroutine for the first time. Some data may
need to be input or computed and saved in local or common storage.

If Status ≥ 2, sqOpt is calling your subroutine for the last time. You may wish to
perform some additional computation on the final solution.

In general, the last call is made with Status = 2 + INFO/10, where INFO indicates
the status of the final solution (see Section 5.4). In particular, if Status = 2,
the current x is optimal ; if Status = 3, the problem appears to be infeasible;
if Status = 4, the problem appears to be unbounded; and if Status = 5, the
iterations limit was reached.
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cu(lencu),iu(leniu), ru(lenru) are character, integer, and real arrays that can be used
to pass user-defined auxiliary information into qpHx. The arrays are not touched
by sqOpt and can be used to retain information between calls of qpHx.

In certain applications, the objective may depend on the values of certain internal
sqOpt variables stored in the arrays cw, iw, rw. In this case, sqOpt should be called
with cw, iw, rw as actual arguments for cu, iu, ru, thereby making cw, iw, rw
accessible to qpHx.

If you require user workspace in this situation, elements 501:maxcw, 501:maxrw,
501:maxiw of cw, rw, iw are set aside for this purpose. (See the definition of
the optional parameters User character workspace, User real workspace, and
User integer workspace in Section 4.6.)

If you do not require workspace to be passed into qpHx, the sqOpt work arrays cw,
iw, rw can be used for cu, iu, ru.

On exit:

Hx should contain the product Hx for the vector stored in x. If ncolH < n, it is really
the product H1y mentioned above.
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3.3. Subroutine sqInit

Subroutine sqInit must be called before any other sqOpt routine. It defines the PRINT

and SUMMARY files, prints a title on both files, and sets all user options to be undefined.
(Each sqOpt interface will later check the options and set undefined ones to default values.)

subroutine sqInit
& ( iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw )

integer
& iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)
character
& cw(lencw)*8
double precision
& rw(lenrw)

On entry:

iPrint defines a unit number for the PRINT file. Typically iPrint = 9.

On some systems, the file may need to be opened before sqInit is called.
If iPrint ≤ 0, there will be no PRINT file output.

iSumm defines a unit number for the SUMMARY file. Typically iSumm = 6.
(In an interactive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before sqInit is called.
If iSumm ≤ 0, there will be no SUMMARY file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to other
sqOpt routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined.



22 SQOPT 7 User’s Guide

3.4. Subroutine sqMem

This routine estimates the size of the workspace arrays cw, iw, rw required to solve an
optimization problem of given dimensions. sqMem is not strictly needed in f77 because all
workspace must be defined explicitly in the driver program at compile time. It is available
for users wishing to allocate storage dynamically in f90 or C.

The actual storage required also depends on the values of Reduced Hessian dimension
and Superbasics limit. If these options have not been set, default values are assumed.
Ideally the correct values should be set before the call to sqMem.

subroutine sqMem
& ( INFO, m, n, neA, lencObj, ncolH,
& mincw, miniw, minrw,
& cw, lencw, iw, leniw, rw, lenrw )
integer
& INFO, m, n, neA, lencObj, ncolH, mincw, miniw, minrw,
& lencw, leniw, lenrw, iw(leniw)
double precision
& rw(lenrw)
character
& cw(lencw)*8

The arguments m, n, neA, lencObj, ncolH define the problem being solved and are
identical to the arguments used in the call to sqOpt (see Section 3.1). For a sequence of
problems, sqMem may be called once with overestimates of these quantities.

On entry:

lencw, leniw, lenrw must be of length at least 500.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for sqMem.

On exit:

INFO reports the result of the call to sqMem. Here is a summary of possible values. Further
details are given in Section 5.4.

Finished successfully
104 memory requirements estimated
Insufficient storage allocated
81 work arrays must have at least 500 elements

mincw, miniw, minrw estimate how much character, integer and real storage is needed to
solve the problem.

To use sqMem, the first step is to allocate the work arrays. These may be temporary
arrays tmpcw, tmpiw, tmprw (say) or the sqOpt arrays cw, iw, rw, which will be reallocated
after the storage limits are known. Here we illustrate the use of sqMem using the same arrays
for sqMem and sqOpt. Note that the sqMem arrays are used to store the optional parameters,
and so any temporary arrays must be copied into the final cw, iw, rw arrays in order to
retain the options.

The work arrays must have length at least 500, so we define
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ltmpcw = 500
ltmpiw = 500
ltmprw = 500

As with all sqOpt routines, sqInit must be called to initialize the optional parameters to
their default values:

call sqInit
& ( iPrint, iSumm, cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

This installs ltmpcw, ltmpiw, ltmprw as the default internal upper limits on the sqOpt
workspace (see the description of Total real workspace in Section 4.6). They are used to
compute the boundaries of any user-defined workspace in cw, iw, or rw.

The next step is to call sqMem to obtain mincw, miniw, minrw as estimates of the storage
needed by sqOpt:

call sqMem
& ( INFO, m, n, neA, lencObj, ncolH,
& mincw, miniw, minrw,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

The output values of mincw, miniw, minrw may now be used to define the lengths of the
sqOpt work arrays:

lencw = mincw
leniw = miniw
lenrw = minrw

These values may be used in f90 or C to allocate the final work arrays for the problem.
One last step is needed before sqOpt is called. The current upper limits ltmpcw, ltmpiw,

ltmprw must be replaced by the estimates mincw, miniw, minrw. This can be done using
the option setting routine sqSeti as follows:

Errors = 0 ! Counts any errors while setting options
iPrt = 0 ! Suppress print output
iSum = 0 ! Suppress summary output
call sqSeti
& ( ’Total character workspace’, lencw, iPrt, iSum, Errors,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )
call sqSeti
& ( ’Total integer workspace’, leniw, iPrt, iSum, Errors,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )
call sqSeti
& ( ’Total real workspace’, lenrw, iPrt, iSum, Errors,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw )

An alternative way is to call sqInit again with arguments lencw, leniw, lenrw:

call sqInit
& ( iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw )

However, this has the twin effects of resetting all options to their default values and reprint-
ing the sqOpt banner (unless iPrint = 0 and iSumm = 0 are set for the PRINT and
SUMMARY files).
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4. Optional parameters

The performance of sqOpt is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. (The defaults are
given in the next section.) For special situations it is possible to specify non-standard values
for some or all of the options. This options may be defined in a file called a SPECS file,
or may be defined in the calling program using a call to one of the option-setting routines
sqSet, sqSeti and sqSetr (see Section 4.4). At any stage of the computation, the current
value of an optional parameter may be examined by calling one of the routines sqGet,
sqGeti and sqGetr (see Section 4.5).

4.1. The SPECS file

The specs file contains a list of option definitions, using data in the following general form:

Begin SQOPT options
Iterations limit 500
Feasibility tolerance 1.0e-7
Scale all variables

End SQOPT options

We call such data a SPECS file because it specifies various options. The file starts with the
keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*), which may appear anywhere on a line. All subsequent characters on the line
are ignored.

Although most options take default values, some of them must be specified; for example,
the number of nonlinear variables if there are any.

It may be useful to include a comment on the first (Begin) line of the file. This line is
echoed to the SUMMARY file, and appears on the screen in an interactive environment.

Most of the options described in the next section should be left at their default values for
any given model. If experimentation is necessary, we recommend changing just one option
at a time.

4.2. SPECS file checklist and defaults

The following example SPECS file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(ε ≈ 2.22 × 10−16). Similar values would apply to any machine having about 15 decimal
digits of precision.
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BEGIN checklist of SPECS file parameters and their default values

* Printing

Print level 1 * 1-line iteration log
Print file 15 *

Summary file 6 * typically the screen
Print frequency 1 * iterations log on PRINT file
Summary frequency 1 * iterations log on SUMMARY file
Solution Yes * on the PRINT file

* Suppress options listing * default: options are listed
System information No * prints more system information

* Problem specification

Minimize * (opposite of Maximize)
* Feasible point * (alternative to Max or Min)

Infinite Bound size 1.0e+20 *

* Convergence Tolerances

Feasibility tolerance 1.0e-6 * for satisfying the simple bounds
Optimality tolerance 1.0e-6 * target value for reduced gradients

* Scaling

Scale option 2 * All constraints and variables
Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

Pivot tolerance 3.7e-11 * ε
2
3

* LP/QP problems

QPSolver Cholesky * default
Crash option 0 * all slack initial basis
Iterations limit 10000 * or m if that is more
Partial price 1 * 10 for large LPs
Superbasics limit ncolH + 1
Reduced Hessian dimension 1000 * or Superbasics limit if that is less
Unbounded step size 1.0e+18 *

Unbounded objective 1.0e+15 *

* Infeasible problems

Elastic weight 100 * used only during elastic mode
Elastic mode 1 * use elastic mode when infeasible
Elastic Objective 2 * infinite weight on the elastics

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure
Factorization frequency 100 *

Save frequency 100 * save basis map

* LU options

LU factor tolerance 10.0 * limits size of multipliers in L
LU update tolerance 10.0 * the same during updates
LU singularity tolerance 3.2e-11 *

LU partial pivoting * default pivot strategy
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LU rook pivoting * use rook pivoting for the LU
LU complete pivoting * use complete pivoting for the LU

* BASIS files

OLD BASIS file 0 * input basis map
NEW BASIS file 0 * output basis map
BACKUP BASIS file 0 * output basis map
INSERT file 0 * input in industry format
PUNCH file 0 * output INSERT data
LOAD file 0 * input names and values
DUMP file 0 * output LOAD data
SOLUTION file 0 * different from printed solution

* Partitions of cw, iw, rw

Total character workspace lencw *

Total integer workspace leniw *

Total real workspace lenrw *

User character workspace 500 *

User integer workspace 500 *

User real workspace 500 *

* Miscellaneous

Debug level 0 * for developers

Timing level 3 * prints cpu times

End of SPECS file checklist
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4.3. Subroutine sqSpec

Subroutine sqSpec may be called to input a SPECS file (to specify options for a subsequent
call of sqOpt).

subroutine sqSpec
& ( iSpecs, INFO, cw, lencw, iw, leniw, rw, lenrw )
integer
& iSpecs, INFO, lencw, leniw, lenrw, iw(leniw)
double precision
& rw(lenrw)
character
& cw(lencw)*8

On entry:

iSpecs is a unit number for the SPECS file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before sqSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

INFO reports the result of the call to sqSpec. Here is a summary of possible values.
Further details are given in Section 5.4.

finished successfully

101 OPTIONS file read

errors while reading OPTIONS file

131 no OPTIONS file specified

132 End-of-file encountered while reading OPTIONS file The OPTIONS file may
be empty, or lines containing the keywords Skip or Endrun may imply that
all problems should be ignored (see Section 4.1).

133 End-of-file encountered while looking for OPTIONS file. sqOptencountered
end-of-file or an Endrun line before finding a OPTIONS file. The OPTIONS

file may not be properly assigned. Its unit number is defined at run time
as an argument of subroutine sqInit.

134 Endrun found before any valid options

> 134 there were i = INFO− 134 errors while reading the OPTIONS file
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4.4. Subroutines sqSet, sqSeti, sqSetr

These routines specify an option that might otherwise be defined in one line of a SPECS file.

subroutine sqSet
& ( buffer, iPrint, iSumm, Errors,
& cw, lencw, iw, leniw, rw, lenrw )
subroutine sqSeti
& ( buffer, ivalue, iPrint, iSumm, Errors,
& cw, lencw, iw, leniw, rw, lenrw )
subroutine sqSetr
& ( buffer, rvalue, iPrint, iSumm, Errors,
& cw, lencw, iw, leniw, rw, lenrw )

character*(*)
& buffer
integer
& Errors, ivalue, iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)
double precision
& rvalue, rw(lenrw)
character
& cw(lencw)*8

On entry:

buffer is a string to be decoded. Use sqSet if the string contains all relevant data. For
example, if the value 1000 is known at compile time, say

call sqSet ( ’Iterations 1000’, iPrint, iSumm, Errors, ... )

Restriction: len(buffer) ≤ 72 (sqSet) or ≤ 55 (sqSeti and sqSetr).

ivalue is an integer value associated with the keyword in buffer. Use sqSeti if it is
convenient to define the value at run time. For example, the following allows the
iterations limit to be computed:

itnlim = 1000
if (m .gt. 500) itnlim = 8000
call sqSeti( ’Iterations’, itnlim, iPrint, iSumm, Errors, ... )

rvalue is a real value associated with the keyword in buffer. The following illustrates how
the LU stability tolerance could be defined at run time:

factol = 100.0d+0
if ( illcon ) factol = 5.0d+0
call sqSetr( ’LU factor tol’, factol, iPrint, iSumm, Errors, ...)

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-setting routines.
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On exit:

cw(lencw), iw(leniw), rw(lenrw) hold the specified option.

Errors is the number of errors encountered so far.
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4.5. Subroutines sqGet, sqGetc, sqGeti, sqGetr

These routines obtain the current value of a single option or indicate if an option has been
set.

integer function sqGet
& ( buffer, Errors, cw, lencw, iw, leniw, rw, lenrw )
subroutine sqGetc
& ( buffer, cvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )
subroutine sqGeti
& ( buffer, ivalue, Errors, cw, lencw, iw, leniw, rw, lenrw )
subroutine sqGetr
& ( buffer, rvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

character*(*)
& buffer
integer
& Errors, ivalue, lencw, leniw, lenrw, iw(leniw)
character
& cvalue*8, cw(lencw)*8
double precision
& rvalue, rw(lenrw)

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-getting routines.

On exit:

sqGet is 1 if the option contained in buffer has been set, otherwise 0. Use sqGet to find if
a particular optional parameter has been set. For example: if

i = sqGet( ’QPSolver Cholesky’, Errors, ... )

then i will be 1 if sqOpt is using a Cholesky-based QP solver.

cvalue is a string associated with the keyword in buffer. Use sqGetc to obtain the names
associated with an MPS file. For example, for the name of the bounds section use

call sqGetc( ’Bounds’, MyBounds, Errors, ... )

ivalue is an integer value associated with the keyword in buffer. Example:

call sqGeti( ’Iterations limit’, itnlim, Errors, ... )

rvalue is a real value associated with the keyword in buffer. Example:

call sqGetr( ’LU factor tol’, factol, Errors, ... )

Errors is the number of errors encountered so far.

cw(lencw), iw(leniw), rw(lenrw) contain the required option value.
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4.6. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and
a description of their effect.

Backup Basis file i Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a NEW

BASIS file is being saved every 100 iterations, and that sqOpt is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the basis file will be corrupted and the
run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS file and a BACKUP BASIS file may be specified.
The following would be suitable for the above example:

OLD BASIS file 11 (or 0)
BACKUP BASIS file 11
NEW BASIS file 12
Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a usable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but
there is no need for a further BACKUP BASIS. In the above example, if an optimum solution
is found at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will
correspond to iteration 2050, but the last basis saved on file 11 will be the one for iteration
2000.

Check frequency k Default = 60

Every kth iteration after the most recent basis factorization, a numerical test is made to see
if the current solution x satisfies the general constraints. The constraints are of the form
Ax− s = 0, where s is the set of slack variables. To perform the numerical test, the residual
vector r = s−Ax is computed. If the largest component of r is judged to be too large, the
current basis is refactorized and the basic variables are recomputed to satisfy the general
constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Crash option i Default = 0
Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix ( A − I ). The Crash option i determines which
rows and columns of A are eligible initially, and how many times CRASH is called. Columns
of −I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the
matrix A.
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2 CRASH is called once, looking for a triangular basis in linear rows.

3 CRASH is called twice. The two calls treat linear equalities and linear inequalities
separately.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If amax is the largest element in column j, other nonzeros aij

in the column are ignored if |aij | ≤ amax × r. (To be meaningful, r should be in the range
0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor
tolerance; i.e., a tridiagonal matrix with entries −1, 4, −1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance r for some value of r > 1/4.

Dump File i Default = 0

If i > 0, the last solution obtained will be output to the file with unit number i in the format
described in Section 6.3. The file will usually have been output previously as a LOAD file.

Elastic mode i Default = 1

This parameter determines if (and when) elastic mode is to be started. Three elastic modes
are available as follows:

i Meaning

0 Elastic mode is never invoked. sqOpt will terminate as soon as infeasibility is detected.
There may be other points with significantly smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default).
If the constraints are infeasible, continue in elastic mode with the composite objective
determined by the values of Elastic objective and Elastic weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize
the composite objective function directly without first performing phase-1 iterations.

The success of this option will depend critically on your choice of Elastic weight. If
Elastic weight is sufficiently large and the constraints are feasible, the minimizer of
the composite objective and the solution of the original problem are identical. How-
ever, if the Elastic weight is not sufficiently large, the minimizer of the composite
function may be infeasible, even though a feasible point for the constraints may exist.
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Elastic objective i Default = 2

This option determines the form of the composite objective. Three types of composite
objectives are available.

i Meaning

0 Include only the true objective q(x) in the composite objective. This option sets γ = 0
in the composite objective and will allow sqOpt to ignore the elastic bounds and find
a solution that minimzes q subject to the nonelastic constraints. This option is useful
if there are some “soft” constraints that you would like to ignore if the constraints are
infeasible.

1 Use a composite objective defined with γ determined by the value of Elastic weight.
This value is intended to be used in conjunction with Elastic mode = 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted
by γ = 1. This choice minimizes the violations of the elastic variable at the expense
of possibly increasing the true objective. This option can be used to find a point
that minimizes the sum of the violations of a subset of constraints determined by the
parameter hElast.

Elastic weight γ Default = 1.0

This keyword determines the initial weight γ associated with the composite objective in
problem Phase2(γ) on Page 10.

• At each iteration of elastic mode, the composite objective is defined to be

minimize σ q(x) + γ (sum of infeasibilities),

where σ = 1 for Minimize, σ = −1 for Maximize, and q is the current objective value.

• Note that the effect of γ is not disabled once a feasible iterate is obtained.

Expand frequency i Default = 10000

This option is part of the EXPAND anti-cycling procedure [6] designed to make progress
even on highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose that the Feasibility tolerance is
δ. Over a period of i iterations, the tolerance actually used by sqOpt increases from 1

2δ to
δ (in steps of 1

2δ/i).
Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most

of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

Factorization Frequency k Default = 100 (LP) or 50 (QP)

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The
default k is reasonable for typical problems. Higher values up to k = 100 (say) may
be more efficient on problems that are extremely sparse and well scaled.
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• When the objective function is quadratic, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. If necessary the basis
will be refactorized before the limit of k updates is reached.

Feasibility tolerance t Default = 1.0e-6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within
the absolute tolerance t. (This includes slack variables. Hence, the general constraints are
also satisfied to within t.)

• sqOpt attempts to find a feasible point for the non-elastic constraints before opti-
mizing the objective. If the sum of the infeasibilities of these constraints cannot be
reduced to zero, the problem is declared INFEASIBLE. If sInf is quite small, it may
be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the data
should be suspected.

• Note: if sInf is not small and you have not asked sqOpt to minimize the violations of
the elastic variables (i.e., you have not specified Elastic objective = 2, there may
be other points that have a significantly smaller sum of infeasibilities. sqOpt will not
attempt to find the solution that minimizes the sum unless Elastic objective = 2.

• If scale is used, feasibility is defined in terms of the scaled problem (since it is then
more likely to be meaningful).

Feasible point
see Minimize

Hessian dimension i Default = min{1000, nHcol + 1}
see Reduced Hessian dimension

Insert File f Default = 0

If f > 0, this references a file containing basis information in the format of Section 6.2.

• The file will usually have been output previously as a PUNCH file.

• The file will not be accessed if an OLD BASIS file is specified.

Infinite bound Size r Default = 1.0e+20

If r > 0, r defines the “infinite” bound infBnd in the definition of the problem constraints.
Any upper bound greater than or equal to infBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to −infBnd). If r ≤ 0, the default value is
used.

Iterations Limit k Default = 3 ∗ m
This is the maximum number of iterations of the simplex method or the QP reduced-gradient
algorithm allowed.
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• Itns is an alternative keyword.

• k = 0 is valid. Both feasibility and optimality are checked.

Load File f Default = 0

If f > 0, this references a file containing basis information in the format of Section 6.3.

• The file will usually have been output previously as a DUMP file.

• The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

Log Frequency k Default = 1
see Print Frequency

LU factor tolerance r1 Default = 100.0
LU update tolerance r2 Default = 10.0

These tolerances affect the stability and sparsity of the basis factorization B = LU during
refactorization and updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is
a product of matrices of the form (

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger
values favor sparsity. The default values usually strike a good compromise.

• For large and relatively dense problems, r1 = 10.0 or 5.0 (say) may give a useful
improvement in stability without impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce
r1 and/or r2 in order to achieve stability. For example, if the columns of A include a
submatrix of the form 

4 −1
−1 4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 4


,

one should set both r1 and r2 to values in the range 1.0 ≤ ri < 4.0.

LU Partial Pivoting Default
LU Rook Pivoting
LU Complete Pivoting

The LU factorization implements a Markowitz-type search for a pivot that locally minimizes
the fill-in subject to a threshhold pivoting stability criterion. The default option is to use
threshhold partial pivoting. The options LU rook pivoting and LU complete pivoting
are more expensive than partial pivoting but are more stable and better at revealing rank.
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LU density tolerance r1 Default = 0.6
LU singularity tolerance r2 Default = ε2/3 ≈ 3.2e-11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis are
altered appropriately. At any stage, if the density of the remaining matrix exceeds r1, the
Markowitz strategy for choosing pivots is terminated. The remaining matrix is factored by
a dense LU procedure. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When
the basis is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or
|Ujj | < r2 maxi |Uij |, the jth column of the basis is replaced by the corresponding slack
variable. (This is most likely to occur after a restart.)

Minimize Default
Maximize
Feasible point

This specifies the required direction of optimization. It applies to both linear and quadratic
terms in the objective.

The keyword Feasible point means “Ignore the objective function” while finding a
feasible point for the linear constraints. It can be used to check that the constraints are
feasible without altering the call to sqOpt.

New Basis File f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save
frequency.

• The first line of the file will contain the word PROCEEDING if the run is still in progress.

• If f > 0, a basis map will also be saved at the end of a run, with some other word
indicating the final solution status.

Old Basis File f Default = 0

If f > 0, the starting point will be obtained from this file in the format of Section 6.1.

• The file will usually have been output previously as a NEW BASIS file.

• The file will not be acceptable if the number of rows or columns in the problem has
been altered.

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients dj = gj − πT aj , where gj is the jth
component of the gradient, aj is the associated column of the constraint matrix ( A − I ),
and π is the set of dual variables.

• By construction, the reduced gradients for basic variables are always zero. The prob-
lem will be declared optimal if the reduced gradients for nonbasic variables at their
lower or upper bounds satisfy

dj/‖π‖ ≥ −t or dj/‖π‖ ≤ t

respectively, and if |dj |/‖π‖ ≤ t for superbasic variables.
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• In the above tests, ‖π‖ is a measure of the size of the dual variables. It is included to
make the tests independent of a scale factor on the objective function.

• The quantity ‖π‖ actually used is defined by

‖π‖ = max{σ/
√

m, 1}, where σ =
m∑

i=1

|πi|,

so that only large scale factors are allowed for.

• If the objective is scaled down to be very small, the optimality test reduces to com-
paring dj against 0.01t.

Partial Price i Default = 10 (LP) or 1 (QP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix ( A − I ) are searched.

• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to
i). If the previous pricing search was successful on Aj , Ij , the next search begins on
the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t
time periods.

Pivot Tolerance r Default = ε2/3 ≈ 3.7e-11

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they
would cause the basis to become almost singular.

• When x changes to x+αp for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding
element of p is called the pivot element.

• For linear problems, elements of p are ignored (and therefore cannot be pivot elements)
if they are smaller than the pivot tolerance r.

• It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the Feasibility tolerance (say t) provides some freedom to maximize
the pivot element and thereby improve numerical stability. Excessively small values
of t should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some freedom to
maximize the pivot element. Excessively large values of f should therefore not be
specified.
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Print frequency k Default = 1

One line of the iteration log will be printed every kth iteration. A value such as k = 10 is
suggested for those interested only in the final solution.

Print level k Default = 1

This controls the amount of printing produced by sqOpt as follows.

0 No output except error messages. To suppress all output, set Print file = 0.

≥ 1 The set of selected options (including workspace limits), problem statistics, summary
of the scaling procedure, information about the initial basis resulting from a CRASH or
a BASIS file. A single line of output each iteration (controlled by Print frequency),
and the exit condition with a summary of the final solution.

≥ 10 Basis factorization statistics.

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in
Section 6.2. For linear programs, this format is compatible with various commercial systems.

QPSolver Cholesky Default
QPSolver CG
QPSolver QN

Specifies the active-set algorithm used to solve the quadratic program in Phase 2. QPSolver
Cholesky holds the full Cholesky factor R of the reduced Hessian ZT HZ. As the QP
iterations proceed, the dimension of R changes with the number of superbasic variables. If
the number of superbasic variables needs to increase beyond the value of Reduced Hessian
dimension, the reduced Hessian cannot be stored and the solver switches to QPSolver CG.
The Cholesky solver is reactivated if the number of superbasics stabilizes at a value less
than Reduced Hessian dimension.

QPSolver QN solves the QP using a quasi-Newton method similar to that of MINOS. In
this case, R is the factor of a quasi-Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-
gradient method to solve all systems involving the reduced Hessian.

• The Cholesky QP solver is the most robust, but may require a significant amount of
computation if there are many superbasics (degrees of freedom).

• The quasi-Newton QP solver does not require computation of the exact R at the
start of phase 2. It may be appropriate when the number of superbasics is large but
relatively few iterations are needed to reach a solution (e.g., if sqOpt is called with a
Warm or Hot start).

• The conjugate-gradient QP solver is appropriate for problems with many degrees of
freedom (say, more than 1000 superbasics).

Reduced Hessian dimension i Default = min{1000, ncolH + 1}
same as Hessian dimension

This specifies that an r×r triangular matrix R is to be available for use by the Cholesky
QP solver (to define the reduced Hessian according to RT R = ZT HZ).
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Save frequency k Default = 100

If a NEW BASIS file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A BACKUP BASIS file will also be saved
if specified.

Scale option i Default = 2 (LP) or 1 (QP)
Scale tolerance r Default = 0.9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never
have very large elements (say, larger than 1000).

1 The constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close as possible to 1.0 (see Fourer [2]). This will
sometimes improve the performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A −I ) that are fixed or have
positive lower bounds or negative upper bounds.

Scale tolerance affects how many passes might be needed through the constraint ma-
trix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

ρj = max
i
|aij |/ min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number
of scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled
matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks
are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

Solution Yes
Solution No
Solution If Optimal, Infeasible, or Unbounded
Solution File f Default = 0

The first four options determine whether the final solution obtained is to be output to the
PRINT file. The FILE option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

• For the YES, IF OPTIMAL, and IF ERROR options, floating-point numbers are printed
in F16.5 format, and “infinite” bounds are denoted by the word NONE.

• For the FILE option, all numbers are printed in 1pe16.6 format, including “infinite”
bounds which will have magnitude 1.000000e+20.
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• To see more significant digits in the printed solution, it will sometimes be useful to
make f refer to the system PRINT file.

Summary file f Default = 6
Summary frequency k Default = 100

If f > 0, a brief log will be output to file f , including one line of information every kth
iteration. In an interactive environment, it is useful to direct this output to the terminal,
to allow a run to be monitored on-line. (If something looks wrong, the run can be manually
terminated.) Further details are given in Section 5.8.

Superbasics limit i Default = ncolH + 1

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the “number
of independent variables”.

Normally, i need not be greater than ncolH + 1, where ncolH is the number of leading
nonzero columns of H. For many problems, i may be considerably smaller than ncolH. This
will save storage if ncolH is very large.

Suppress Parameters

Normally sqOpt prints the SPECS file as it is being read, and then prints a complete list of
the available keywords and their final values. The Suppress Parameters option tells sqOpt
not to print the full list.

Total real workspace maxrw Default = lenrw
Total integer workspace maxiw Default = leniw
Total character workspace maxcw Default = lencw
User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine sqOpt to certain parts of its workspace arrays cw, iw,
rw. (The arrays are defined by the last six parameters of sqOpt.)

The Total ... options place an upper limit on sqOpt’s workspace. They may be useful
on machines with virtual memory. For example, some systems allow a very large array
rw(lenrw) to be declared at compile time with no overhead in saving the resulting object
code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict sqOpt to the lower end of rw in order to reduce paging activity slightly.
(However, sqOpt accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If sqOpt’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the non-
linear function routines will be free to use ru(maxrw + 1 : lenru) for their own purpose.
Similarly for the other work arrays.

The User ... options place a lower limit on sqOpt’s workspace (not counting the first
500 elements). Again, if sqOpt’s parameters ru, lenru happen to be the same as rw, lenrw,
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the function routines will be free to use ru(501 : maxru) for their own purpose. Similarly for
the other work arrays.

System Information No Default
System Information Yes

This option allows the knowledgeable user to print some additional information on the
progress of the major and minor iterations.

Timing level i Default = 3

i = 0 suppresses output of cpu times. (Intended for installations with dysfunctional timing
routines.)

Unbounded Step Size αmax Default = 1.0e+18

This parameter is intended to detect unboundedness in a quadratic problem. (It may or
may not achieve that purpose!) During a line search, q is evaluated at points of the form
x + αp, where x and p are fixed and α varies. if α exceeds αmax, iterations are terminated
with the exit message problem is unbounded.

Note that unboundedness in x is best avoided by placing finite upper and lower bounds
on the variables.
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5. Output

The following information is output to the PRINT file during the solution of each problem
referred to in the SPECS file.

• A listing of the relevant part of the SPECS file.

• A listing of the parameters that were or could have been set in the SPECS file.

• An estimate of the amount of working storage needed, compared to how much is
available.

• Some statistics about the problem.

• The amount of storage available for the LU factorization of the basis matrix.

• A summary of the scaling procedure, if Scale was specified.

• Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

• The iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last four items are described in the following sections. Further brief output may be
directed to the SUMMARY file, as discussed in Section 5.8.

5.1. The iteration log

If Print level > 0, one line of information is output to the PRINT file every kth iteration,
where k is the specified Print frequency (default k = 1). A heading is printed before
the first such line following a basis factorization. The heading contains the items described
below. In this description, a PRICE operation is defined to be the process by which one or
more nonbasic variables are selected to become superbasic (in addition to those already in
the superbasic set). The variable selected will be denoted by jq. If the problem is purely
linear, variable jq will usually become basic immediately (unless it should happen to reach
its opposite bound and return to the nonbasic set).

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments
of the constraint matrix ( A − I ).

Label Description

Itn The current iteration number.

pp The Partial Price indicator. The variable selected by the last PRICE operation
came from the ppth partition of A and −I. pp is set to zero when the basis is
refactored.

dj This is dj, the reduced cost (or reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, dj is dj = gj −πT aj for
j = jq, where gj is the gradient of the current objective function, π is the vector
of dual variables, and aj is the jth column of the constraint matrix (A − I ).

Note that dj is the norm of the reduced-gradient vector at the start of the iteration,
just after the PRICE operation.
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+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The superbasic variable chosen to become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

Step The step length α taken along the current search direction p. The variables x have
just been changed to x + αp. If a variable is made superbasic during the current
iteration (i.e., +SBS is positive), Step will be the step to the nearest bound. During
phase 2, the step can be greater than one only if the reduced Hessian is not positive
definite.

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = aq. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.

L The number of nonzeros representing the basis factor L. Immediately after a
basis factorization B = LU , this is lenL, the number of subdiagonal elements in
the columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factor-
ization, this is lenU, the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix. As columns of B are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate up or down;
in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to sqOpt should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L + U elements.

nInf The number of infeasibilities before the present iteration. This number will not
increase unless the iterations are in elastic mode.

Sinf,Objective If nInf > 0, this is sInf, the sum of infeasibilities before the present
iteration. (It will usually decrease at each nonzero Step, but if nInf decreases
by 2 or more, sInf may occasionally increase. However, in elastic mode, it will
decrease monotonically.)

Otherwise, it is the value of the current objective function after the present iter-
ation.

Note: If Elastic mode = 2, the heading is Composite Obj.

The following items are printed if the problem is a QP or if the superbasic set is non-empty
(i.e., if the current solution is nonbasic).

Label Description

Norm rg This quantity is rg, the norm of the reduced-gradient vector at the start of the
iteration. (It is the Euclidean norm of the vector with elements dj for variables j
in the superbasic set. During phase 2 this norm will be approximately zero after
a unit step.

nS The current number of superbasic variables.
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Cond Hz An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the reduced Hessian
RT R.

To guard against high values of cond Hz, attention should be given to the scaling
of the variables and the constraints.

5.2. Basis factorization statistics

If Print level ≥ 10, the following items are output to the PRINT file whenever the basis
B or the rectangular matrix BS = ( B S )T is factorized.

Note that BS may be factorized at just some of the iterations. It is immediately followed
by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS , where
PLPT and PUQ are lower and upper triangular matrices for some permutation matrices P
and Q. Stability is ensured as described under LU factor tolerance in Section 4.6.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Code Meaning

0 First LU factorization.

1 The number of updates reached the Factorization Frequency.

2 The nonzeros in the updated factors have increased significantly.

7 Not enough storage to update factors.

10 Row residuals too large (see the description of Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Itn The current minor iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

B BR BS or BT factorize The type of LU factorization.

B Periodic factorization of the basis B.

BR More careful rank-revealing factorization of B using threshold rook pivot-
ing. This occurs mainly at the start, if the first basis factors seem singular
or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current ( B S ).
Followed by a normal B factorize.

BT Same as BS except the current B is tried first and accepted if it appears to
be not much more ill-conditioned than after the previous BS factorize.

m The number of rows in B or BS.

n The number of columns in B or BS. Preceded by “=” or “>” respectively.
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Elems The number of nonzero elements in B or BS.

Amax The largest nonzero in B or BS.

Density The percentage nonzero density of B or BS.

Merit The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c− 1)(r− 1) where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of n such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL The number of nonzeros in L.

Cmpressns The number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to sqOpt
should be increased for efficiency.

Incres The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU The number of nonzeros in U .

Ltol The maximum subdiagonal element allowed in L. This is the specified LU
factor tolerance or a smaller value that is currently being used for greater
stability.

Umax The maximum nonzero element in U .

Ugrwth The ratio Umax/Amax, which ideally should not be substantially larger than 10.0
or 100.0. If it is orders of magnitude larger, it may be advisable to reduce the
LU factor tolerance to 5.0, 4.0, 3.0 or 2.0, say (but bigger than 1.0).

As long as Lmax is not large (say 10.0 or less), max{Amax, Umax} / DUmin gives
an estimate of the condition number of B. If this is extremely large, the basis
is nearly singular. Slacks are used to replace suspect columns of B and the
modified basis is refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax The actual maximum subdiagonal element in L (bounded by Ltol).

Akmax The largest nonzero generated at any stage of the LU factorization. (Values
much larger than Amax indicate instability.)

growth The ratio Akmax/Amax. Values much larger than 100 (say) indicate instability.

bump is the size of the “bump” or block to be factorized nontrivially after the trian-
gular rows and columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6. (The Markowitz pivot strategy searches fewer columns
at that stage.)

DUmax The largest diagonal of PUQ.
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DUmin The smallest diagonal of PUQ.

condU The ratio DUmax/DUmin, which estimates the condition number of U (and of B
if Ltol is less than 100, say).

5.3. Crash statistics

When Print Level ≥ 20 and Print file > 0, the following CRASH statistics (< 120
characters) are produced on the unit number specified by Print file whenever Start =
’Cold’ (see Section 4.6). They refer to the number of columns selected by the CRASH

procedure during each of several passes through A, whilst searching for a triangular basis
matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some
j ≤ n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

5.4. EXIT conditions

When sqOpt or one of its auxiliary routines terminates, a message is printed that summarizes
what happened during the run. The general form of the output message is:

SOLVER EXIT e -- exit condition

SOLVER INFO i -- informational message

where e is an integer that labels the particular exit condition, and i is one of several al-
ternative informational messages that elaborate on the exit condition. For example, solver
sqOpt may print the message:

SQOPT EXIT 20 -- the problem appears to be unbounded

SQOPT INFO 21 -- unbounded objective

Note that in this example, the exit condition gives a broad definition of what happened,
while the informational message is more specific about the cause of the termination.

The integer i associated with the informational message is the output value of the ar-
gument INFO. Note that the integer e associated with the exit condition may always be
recovered from INFO by stripping off the least significant decimal digit.

Possible exit conditions for sqOpt are:
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0 Finished successfully
10 The problem appears to be infeasible
20 The problem appears to be unbounded
30 Resource limit error
40 Terminated after numerical difficulties
50 Error in the user-supplied functions
60 Undefined user-supplied functions
70 User requested termination
80 Insufficient storage allocated
90 Input arguments out of range

100 Finished successfully (associated with sqOpt auxiliary routines)
110 Errors while processing MPS data
130 Errors while reading the OPTIONS file
140 System error

The exit conditions 0–20 arise when a solution exists (though it may not be optimal). A
BASIS file may be saved, and the solution will be output to the PRINT or SOLUTION files
if requested.

If exit conditions 80–100 occur during the first basis factorization, the primal and dual
variables x and pi will have their original input values. BASIS files will be saved if requested,
but certain values in the printed solution will not be meaningful.

5.5. Description of the EXIT messages

Next we describe each message and suggest possible courses of action.
EXIT -- 0 Finished successfully
INFO -- 1 optimality conditions satisfied
INFO -- 2 feasible point found
INFO -- 4 weak QP minimizer

These messages usually indicate a successful run. If requested, the BASIS files will have
been saved, and the solution will be printed and/or saved on the SOLUTION file.

For INFO 1 the final point seems to be a unique solution of LCQP. This means that
x is feasible (it satisfies the constraints to the accuracy requested by the Feasibility
tolerance), the reduced gradient is negligible, the reduced costs are optimal, and R is
nonsingular.

For INFO 4 the final point is a weak minimizer. (The objective value is a global optimum,
but it may be achieved by an infinite set of points x.) This exit will occur when (i) the
problem is feasible, (ii) the reduced gradient is negligible, (iii) the Lagrange multipliers are
optimal, and (iv) the reduced Hessian is singular or there are some very small multipliers.
This exit cannot occur if H is positive definite (i.e., q(x) is strictly convex).

One caution about “Optimality conditions satisfied”. Some of the variables or
slacks may lie outside their bounds more than desired, especially if scaling was requested.
Some information concerning the run can be obtained from the short summary given at the
end of the print and summary files. Here is an example from the problem sqmain2 in the
SQOPT distribution:

SQOPT EXIT 0 -- finished successfully

SQOPT INFO 1 -- optimality conditions satisfied

Problem name sqProb 1

No. of iterations 11 Objective value -2.0436650381E+06

No. of Hessian products 15 Objective row 0.0000000000E+00

Quadratic objective -2.0436650381E+06

No. of superbasics 1 No. of basic nonlinears 2
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No. of degenerate steps 0 Percentage 0.00

Max x (scaled) 3 2.2E-01 Max pi (scaled) 6 3.1E+07

Max x 3 6.2E+02 Max pi 7 9.6E+03

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 5 1.0E-08

Max Primal infeas 0 0.0E+00 Max Dual infeas 9 3.1E-12

Max Primal infeas refers to the largest bound infeasibility and which variable is in-
volved. If it is too large, consider restarting with a smaller Feasibility tolerance (say
10 times smaller) and perhaps Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal
value. Broadly speaking, if

Max Dual infeas/Max pi = 10−d,

then the objective function would probably change in the dth significant digit if optimization
could be continued. If d seems too large, consider restarting with a smaller Optimality
tolerance.

EXIT -- 10 The problem appears to be infeasible
INFO -- 11 infeasible linear constraints
INFO -- 12 infeasible linear equalities
INFO -- 14 infeasibilities minimized
This exit occurs if sqOpt is unable to find a point that satisfies the constraints.

The output messages are based on a relatively reliable indicator of infeasibility. Feasi-
bility is measured with respect to the upper and lower bounds on the variables and slacks.
Among all the points satisfying the general constraints Ax − s = 0, there is apparently
no point that satisfies the bounds on x and s. Violations as small as the Feasibility
tolerance are ignored, but at least one component of x or s violates a bound by more than
the tolerance.

For the cases INFO 11 and 12, the sum of infeasibilities will usually not have been
minimized when sqOpt recognizes that the constraints are infeasible and exits. There may
exist other points that have a significantly lower sum of infeasibilities.

If the problem is infeasible and the option Elastic mode is nonzero, then sqOpt will
optimize the original QP objective and the sum of the infeasibilities—suitably weighted
using the Elastic weight parameter. In elastic mode, some of the bounds on the rows and
columns are “elastic”—i.e., they are allowed to violate their specified bounds. Variables
subject to elastic bounds are known as elastic variables. An elastic variable is free to violate
one or both of its original upper or lower bounds. If the problem has no feasible solution,
sqOpt will tend to determine a “good” infeasible point if the elastic weight is sufficiently
large. (If the elastic weight were infinite, sqOpt would locally minimize the constraint
violations subject to the nonelastic constraints and bounds.)

EXIT -- 20 The problem appears to be unbounded
INFO -- 21 unbounded objective
Unboundedness is detected by the simplex method when a nonbasic variable can be increased
or decreased by an arbitrary amount without causing a basic variable to violate a bound. A
message prior to the EXIT message will give the index of the nonbasic variable. Consider
adding an upper or lower bound to the variable. Also, examine the constraints that have
nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.



5. Output 49

EXIT -- 30 Resource limit error
INFO -- 31 iteration limit reached
INFO -- 33 the superbasics limit is too small
The Iterations limit was exceeded before the required solution could be found. Check
the iteration log to be sure that progress was being made. If so, restart the run using a
basis file that was saved (or should have been saved!) at the end of the run.

If the superbasics limit is too small, then the problem appears to be more nonlinear
than anticipated. The current set of basic and superbasic variables have been optimized
as much as possible and a PRICE operation is necessary to continue, but there are already
Superbasics limit superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind
the storage needed for the reduced Hessian. (The Reducd Hessian dimension h will also
increase to s unless specified otherwise, and the associated storage will be about 1

2s2 words.)
In extreme cases you may have to set h < s to conserve storage, but beware that the rate
of convergence will probably fall off severely.

EXIT -- 40 Terminated after numerical difficulties
INFO -- 42 singular basis
INFO -- 43 cannot satisfy the general constraints
INFO -- 44 ill-conditioned null-space basis
Termination because of a singular basis is highly unlikely to occur. The first factorization
attempt will have found the basis to be structurally or numerically singular. (Some diagonals
of the triangular matrix U were respectively zero or smaller than a certain tolerance.)
The associated variables are replaced by slacks and the modified basis is refactorized, but
singularity persists. This must mean that the problem is badly scaled, or the LU factor
tolerance is too much larger than 1.0.

If the general constraints cannot be satisfied, an LU factorization of the basis has just
been obtained and used to recompute the basic variables xB, given the present values of the
superbasic and nonbasic variables. A step of “iterative refinement” has also been applied to
increase the accuracy of xB. However, a row check has revealed that the resulting solution
does not satisfy the current constraints Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some
linear constraints and variables, try Scale option 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a sys-
tematic growth may occur in the factor U . Consult the description of Umax, Umin and
Growth in Section 5.2, and set the LU factor tolerance to 2.0 (or possibly even smaller,
but not less than 1.0).

EXIT -- 50 Error in the user-supplied functions
INFO -- 54 the QP Hessian is indefinite

An indefinite matrix was detected during the computation of the reduced Hessian factor
R such that RT R = ZT HZ. This may be caused by the matrix H being indefinite, i.e.,
there may exist a vector y such that yT Hy < 0. In this case, the QP problem is not convex
and cannot be solved using this version of sqOpt. You should check that qpHx is coded
correctly and that all relevant components of Hx are assigned their correct values.

If qphx is coded correctly with H symmetric positive semidefinite, then the problem
may be ill-conditioning of the reduced Hessian caused by ill-conditioning in either H or Z.
Ill-conditioning in Z may be alleviated by reducing the values of the optional parameters
LU factor tolerance and LU update tolerance (see Page 35).
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EXIT -- 80 Insufficient storage allocated

INFO -- 81 work arrays must have at least 500 elements

INFO -- 82 not enough character storage

INFO -- 83 not enough integer storage

INFO -- 84 not enough real storage

SNOPT cannot start to solve a problem unless the char, int and real work arrays are at least
500 elements.

If the main character, integer or real storage arrays cw(*), iw(*) and rw(*) are not large
enough for the current problem, the routine declaring cw(*), iw and rw should be recompiled
with a larger dimensions for those arrays. The new values should also be assigned to lencw,
leniw and lenrw. An estimate of the additional storage required is given in messages
preceding the exit.

If rw(*) is not large enough, be sure that the Hessian dimension is not unreasonably
large.

EXIT -- 90 Input arguments out of range

INFO -- 91 invalid input argument

INFO -- 92 basis file dimensions do not match this problem

This exit occurs if some data associated with the problem is out of range. If INFO = 91,
at least one input argument of sqOpt is invalid. The PRINT and SUMMARY files provide
more detail about which argument(s) must be modified.

If INFO = 92 an OLD BASIS file could not be loaded properly. (In this situation, New
BASIS files cannot be saved, and there is no solution to print.) On the first line of the
OLD BASIS file, the dimensions labeled m and n are different from those associated with the
problem that has just been defined. You have probably loaded a file that belongs to another
problem.

The basis file state vector will not match the current problem if, for some reason, the
OLD BASIS file is incompatible with the present problem, or is not consistent within itself.
The number of basic entries in the state vector (i.e., the number of 3’s in the map) is not
the same as m on the first line, or some of the 2’s in the map did not have a corresponding
“j xj” entry following the map.

EXIT -- 140 System error

INFO -- 141 wrong number of basic variables

INFO -- 142 error in basis package

These messages arise if either an OLD BASIS file could not be loaded properly, or some
fatal system error has occurred. New BASIS files cannot be saved, and there is no solution
to print. The problem is abandoned.

An inconsistency in the number of basic variables should never happen. It may indicate
that the wrong sqOpt source files have been compiled, or arguments of incorrect type have
been used in the calling sequence.

Check that all integer variables and arrays are declared integer in your calling program,
and that all “real” variables and arrays are declared consistently. (They should be double
precision on most machines.)

If there is an error in basis package, a preceding message will describe the error in more
detail. One such message says that the current basis has more than one element in row i
and column j. This could be caused by a corresponding error in the input values of the
arrays indA, Acol and locA.
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5.6. Solution output

At the end of a run, the final solution will be output to the PRINT file in accordance with
the Solution keyword. Some header information appears first to identify the problem and
the final state of the optimization procedure. A ROWS section and a COLUMNS section
then follow, giving one line of information for each row and column. The format used is
similar to that seen in commercial systems, though there is no rigid industry standard.

The ROWS section

The general constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the
form

α ≤ aTx ≤ β.

Internally, the constraints take the form Ax − s = 0, where s is the set of slack variables
(which happen to satisfy the bounds l ≤ s ≤ u). For the ith constraint it is the slack
variable si that is directly available, and it is sometimes convenient to refer to its state. To
reduce clutter, a “·” is printed for any numerical value that is exactly zero.

Label Description

Number The value n + i. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The lower and upper limit are the same, α = β.

BS The constraint is not binding. si is basic.

SBS The constraint is not binding. si is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
away from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could
encounter a bound immediately. In either case, the values of dual variables
might also change.

D Degenerate. The slack is basic or superbasic, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The slack is basic or superbasic and it is currently violating one of
its bounds by more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic or superbasic. If the Optimality
tolerance were tightened by a factor of 10 (e.g., if it were reduced from 10−5

to 10−6), the solution would not be declared optimal because the reduced
gradient for the slack would not be considered negligible. (If a loose tolerance
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has been used, or if the run was terminated before optimality, this key might
be helpful in deciding whether or not to restart the run.)
Note: If Scale is specified, the tests for assigning the A, D, I, N keys are made
on the scaled problem, since the keys are then more likely to be correct.

Activity The row value; i.e., the value of aTx.

Slack activity The amount by which the row differs from its nearest bound. (For free
rows, it is taken to be minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector π always satisfies BTπ = gB ,
where B is the current basis matrix and gB contains the associated gradients for
the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” x. For convenience we let the jth component of
x be the variable xj and assume that it satisfies the bounds α ≤ xj ≤ β. A “·” is printed
for any numerical value that is exactly zero.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the
iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic and currently zero, even though it is free to take any value. (Its
bounds are α = −∞, β = +∞. Such variables are normally basic.)

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of xj . The possible keys are A, D, I and N. They have the same
meaning as described above (for the ROWS section of the solution), but the words
“the slack” should be replaced by “xj”.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the linear and quadratic objective function q(x) +
cTx. (We define gj = 0 if the current solution is infeasible.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .
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Reduced gradnt The reduced gradient dj = gj − πT aj , where aj is the jth column of the
constraint matrix (or the jth column of the Jacobian at the start of the final major
iteration).

M+J The value m + j.

An example of the printed solution is given in Section 5. Infinite Upper and Lower
limits are output as the word None. Other real values are output with format f16.5. The
maximum record length is 111 characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes q(x) and the other
maximizes −q(x), their solutions will be the same but the signs of the dual variables πi and
the reduced gradients dj will be reversed.

5.7. The SOLUTION file

If a positive SOLUTION file is specified, the information contained in a printed solution
may also be output to the relevant file (which may be the PRINT file if so desired). Infinite
Upper and Lower limits appear as ±1020 rather than None. Other real values are output
with format 1pe16.6. Again, the maximum record length is 111 characters, including what
would be the carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a self-contained program that
extracts and saves certain values as required for possible further computation. Typically
the first 14 records would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts
with a 1 and is otherwise blank. If this and the next 4 records are skipped, the COLUMNS

section can then be read under the same format. (There should be no need to use any
BACKSPACE statements.)

5.8. The SUMMARY file

If Summary file f is specified with f > 0, certain brief information will be output to file
f . When sqOpt is run interactively, file f will usually be the terminal. For batch jobs a
disk file should be used, to retain a concise log of each run if desired. (A SUMMARY file is
more easily perused than the associated PRINT file).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed.
It can therefore accumulate a log for every problem in the SPECS file, if each specifies
the same file. The maximum record length is 72 characters, including a carriage-control
character in column 1.

The following information is included:

1. The Begin line from the SPECS file.

2. The basis file loaded, if any.

3. The status of the solution after each basis factorization (whether feasible; the objective
value; the number of function calls so far).

4. The same information every kth iteration, where k is the specified Summary frequency
(default k = 100).

5. Warnings and error messages.

6. The exit condition and a summary of the final solution.
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Item 4 is preceded by a blank line, but item 5 is not.
All items are illustrated below, where we give the SUMMARY file for the example sqmain

in the SQOPT distribution. The problem is Example 1.1 (Page 5) with n = 30 and x0 =
( 1
2 , 1

2 , · · · , 1
2 )T . The number of general constraints is m = 30. The output was generated

with the option (Summary frequency = 1).
==============================

S Q O P T 7.2-1 (Jul 2005)

==============================

Begin sqmain (Example program for sqopt)

Nonlinear constraints 0 Linear constraints 30

Nonlinear variables 30 Linear variables 0

Jacobian variables 0 Objective variables 30

Total constraints 30 Total variables 30

Itn dj Step nInf sInf,Objective

0 1 1.40000000E+01

1 1.0E+00 1.0E+00 1 1.30000000E+01

2 1.0E+00 1.0E+00 1 1.20000000E+01

3 1.0E+00 1.0E+00 1 1.10000000E+01

4 1.0E+00 1.0E+00 1 1.00000000E+01

5 1.0E+00 1.0E+00 1 9.00000000E+00

6 1.0E+00 1.0E+00 1 8.00000000E+00

7 1.0E+00 1.0E+00 1 7.00000000E+00

8 1.0E+00 1.0E+00 1 6.00000000E+00

9 1.0E+00 1.0E+00 1 5.00000000E+00

Itn dj Step nInf sInf,Objective

10 1.0E+00 1.0E+00 1 4.00000000E+00

11 1.0E+00 1.0E+00 1 3.00000000E+00

12 1.0E+00 1.0E+00 1 2.00000000E+00

13 1.0E+00 1.0E+00 1 1.00000000E+00

This is problem sqmain. ncolH = 30

Itn 14: Feasible linear constraints

Itn dj Step nInf sInf,Objective Norm rg nS

14 3.75000000E+00

15 1.0E+00 9.8E-11 3.75000000E+00

16 -1.9E+01 9.8E-10 3.75000000E+00

17 -2.9E+01 1.0E+00 3.26666667E+00 2.9E-08 1

18 1.0E+00 3.26666667E+00 1

SQOPT EXIT 0 -- finished successfully

SQOPT INFO 1 -- optimality conditions satisfied

Problem name sqProb

No. of iterations 18 Objective value 3.2666666667E+00

No. of Hessian products 11 Objective row 0.0000000000E+00

Quadratic objective -4.8333333333E-01

No. of superbasics 1 No. of basic nonlinears 29

No. of degenerate steps 1 Percentage 5.56

Max x (scaled) 30 3.3E-02 Max pi (scaled) 30 4.7E-01

Max x 30 3.3E-02 Max pi 30 4.7E-01

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 0 0.0E+00

Max Primal infeas 0 0.0E+00 Max Dual infeas 0 0.0E+00

Finished sqmain.
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6. Basis files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order
to restart the run if necessary, or to provide a good starting point for some closely related
problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS

lines of the following form:

New Basis file 10
Backup file 11
Punch file 20
Dump file 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP BASIS files are saved in that order every kth iteration, where

k is the Save frequency.
NEW BASIS, PUNCH and DUMP files are saved at the end of a run, in that order. They

may be re-loaded at the start of a subsequent run by specifying SPECS lines of the following
form:

Old Basis file 10
Insert file 20
Load file 30

Only one such file will actually be loaded. If more than one positive file number is specified,
the order of precedence is as shown. If no BASIS files are specified, one of the Crash options
takes effect.

Figures 1–3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for PUNCH and
DUMP files.) The files shown correspond to the optimal solution for the economic-growth
model MANNE. (The problem has 10 nonlinear constraints, 10 linear constraints, and 30
variables.) Selected column numbers are included to define significant data fields.

6.1. NEW and OLD BASIS files

We sometimes call these files basis maps. They contain the most compact representation
of the state of each variable. They are intended for restarting the solution of a problem at
a point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used.)

As illustrated in Figure 1, the following information is recorded in a NEW BASIS file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (Optimal Soln, Infeasible, Unbounded, Excess Itns,
Error Condn, or Proceeding), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = m, the number
of rows in the constraint matrix, N = n, the number of columns in the constraint
matrix, and SB = the number of superbasic variables. Any undefined names will be
printed with a blank entry.

3. A set of (n+m−1)/80+1 lines indicating the state of the n column variables and the
m slack variables in that order. One character hs(j) is recorded for each j = 1 : n+m
as follows, written with format(80i1).
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hs(j) State of the jth variable

0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is nonbasic, it may be fixed (lower bound = upper bound), or free (infinite
bounds), or it may be strictly between its bounds. In such cases, hs(j) = 0. (Free
variables will almost always be basic.)

4. A set of lines of the form
j xj

written with format(i8, 1p, e24.14) and terminated by an entry with j = 0, where
j denotes the jth variable and xj is a real value. The jth variable is either the jth
column or the (j − n)th slack, if j > n. Typically, hs(j) = 2 (superbasic). When
nonlinear constraints are present, this list of superbasic variables is extended to include
all basic nonlinear variables. The Jacobian matrix can then be reconstructed exactly
for a restart. The list also includes nonbasic variables that lie strictly between their
bounds.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS file may be input at the beginning of a later
run as a NEW BASIS file. The following notes are relevant:

1. The first line is input and printed but otherwise not used.

2. The values labeled M and N on the second line must agree with m and n for the problem
that has just been defined. The value labeled SB is input and printed but is not used.

3. The next set of lines must contain exactly m values hs(j) = 3, denoting the basic
variables.

4. The list of j and xj values must include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables).

5. Further j and xj values may be included, in any order.

6. For any j in this list, if hs(j) = 3 (basic), the value xj will be recorded for nonlinear
variables, but the variable will remain basic.

7. If hs(j) 6= 3, variable j will be initialized at the value xj and its state will be reset
to 2 (superbasic). If the number of superbasic variables has already reached the
Superbasics limit, then variable j will be made nonbasic at its current value (even
if it is not equal to one of its bounds).

6.2. PUNCH and INSERT files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain
a useful advanced basis.
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sqProb 2 ITN 32 Optimal Soln NINF 0 OBJ 9.130712687760E-01

OBJ= RHS= RNG= BND= M= 31 N= 30 SB= 8

0333333330333333333333333333331111111131112121212121212121330

49 -1.42537551933494E-02

57 -3.01054650047995E-02

55 -2.61425375519345E-02

47 -1.02908277404919E-02

53 -2.21796100990641E-02

45 -6.32790028763443E-03

51 -1.82166826462067E-02

43 -2.36497283477702E-03

0

Figure 1: Format of NEW and OLD BASIS files for example sqmain2 in the SQOPT distri-
bution

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 2. Apart from the first and last line, each
entry has the following form:

Columns 2–3 5–12 15–22 25–36
Contents Key Name1 Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed
that the basis is initially set to be the full set of slack variables, and that column variables
are initially at their smallest bound in absolute magnitude, or zero for free variables.

Key Action to be taken during INSERT

XL Make variable Name1 basic and slack Name2 nonbasic at its lower bound.
XU Make variable Name1 basic and slack Name2 nonbasic at its upper bound.
LL Make variable Name1 nonbasic at its lower bound.
UL Make variable Name1 nonbasic at its upper bound.
SB Make variable Name1 superbasic at the specified Value.

Note that Name1 may be a column name or a row name, but on XL and XU lines, Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
if Name1 is a nonlinear variable then its Value is recorded for possible use in defining the
initial Jacobian matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU line, Name1
will be the first basic column and Name2 will be the first row whose slack is not basic.
(The slack could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables if the corresponding lower bound value
is zero.

3. Superbasic slacks are output last.

Notes on INSERT Data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.



58 SQOPT 7 User’s Guide

2. Preferably an INSERT file should be an unmodified PUNCH file from an earlier run
on the same problem. If some rows have been added to the problem, the INSERT file
need not be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Name1 is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Name1 if the Superbasics limit has been
reached. However, the associated Value will be retained.

6.3. DUMP and LOAD files

These files are similar to PUNCH and INSERT files, but they record solution information in
a manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last line, each entry has the form

Columns 2–3 5–12 25–36

Contents Key Name Value

as illustrated in Figure 3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,
Basic and Superbasic respectively.

Notes on DUMP data

1. A line is output for every variable, columns followed by slacks.

2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. BS causes Name to become basic.

3. SB causes Name to become superbasic at the specified Value.

4. LL or UL cause Name to be nonbasic at the specified Value.

5. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

6. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will be retained if Name is a Jacobian variable.

7. (Partial basis) Let m be the number of rows in the problem. If fewer than m variables
are specified to be basic, a tentative basis list will be constructed by adding the
requisite number of slacks, starting from the first row and taking those that were not
previously specified to be basic or superbasic. (If the resulting basis proves to be
singular, the basis factorization routine will replace a number of basic variables by
other slacks.)

8. (Too many basics) If m variables have already been specified as basic, any further BS
keys will be treated as though they were SB. This feature may be useful for combining
solutions to smaller problems.
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NAME sqProb 2 PUNCH/INSERT

XU x 2 r 1 5.11608E-19

XU x 3 r 2 5.11608E-19

XU x 4 r 3 5.11608E-19

XU x 5 r 4 5.11608E-19

XU x 6 r 5 5.11608E-19

XU x 7 r 6 5.11608E-19

XU x 8 r 7 5.11608E-19

XU x 9 r 8 5.11608E-19

XU x 11 r 10 -3.31931E-20

XU x 12 r 11 -3.31931E-20

XU x 13 r 12 -3.31931E-20

XL x 14 r 13 2.36497E-03

XU x 15 r 14 2.36497E-03

XL x 16 r 15 8.69287E-03

XU x 17 r 16 8.69287E-03

XL x 18 r 17 1.89837E-02

XU x 19 r 18 1.89837E-02

XL x 20 r 19 3.32375E-02

XU x 21 r 20 3.32375E-02

XL x 22 r 21 5.14541E-02

XU x 23 r 22 5.14541E-02

XL x 24 r 23 7.36337E-02

XU x 25 r 24 7.36337E-02

XL x 26 r 25 9.97763E-02

XU x 27 r 26 9.97763E-02

XL x 28 r 27 1.29882E-01

XU x 29 r 28 1.29882E-01

XL x 30 r 31 1.63950E-01

SB r 13 -2.36497E-03

SB r 15 -6.32790E-03

SB r 17 -1.02908E-02

SB r 19 -1.42538E-02

SB r 21 -1.82167E-02

SB r 23 -2.21796E-02

SB r 25 -2.61425E-02

SB r 27 -3.01055E-02

ENDATA

Figure 2: Format of PUNCH/INSERT files

NAME sqProb 2 DUMP/LOAD

LL x 1 0.00000E+00

BS x 2 5.11608E-19

BS x 3 5.11608E-19

BS x 4 5.11608E-19

BS x 5 5.11608E-19

BS x 6 5.11608E-19

BS x 7 5.11608E-19

BS x 8 5.11608E-19

BS x 9 5.11608E-19

LL x 10 0.00000E+00

BS x 11 -3.31931E-20

BS x 12 -3.31931E-20

BS x 13 -3.31931E-20

BS x 14 2.36497E-03

BS x 15 2.36497E-03

.. . . .

BS x 29 1.29882E-01

BS x 30 1.63950E-01

UL r 1 0.00000E+00

UL r 2 0.00000E+00

UL r 3 0.00000E+00

UL r 4 0.00000E+00

UL r 5 0.00000E+00

UL r 6 0.00000E+00

UL r 7 0.00000E+00

UL r 8 0.00000E+00

BS r 9 9.00555E-19

UL r 10 0.00000E+00

UL r 11 0.00000E+00

UL r 12 0.00000E+00

SB r 13 -2.36497E-03

UL r 14 0.00000E+00

SB r 15 -6.32790E-03

.. . . .

BS r 30 -1.63950E-01

LL r 31 1.00000E+00

ENDATA

Figure 3: Format of DUMP/LOAD files

6.4. Restarting modified problems

Sections 6.1–6.3 document three distinct starting methods (OLD BASIS, INSERT and LOAD

files), which may be preferable to any of the cold start (CRASH) options. The best choice
depends on the extent to which a problem has been modified, and whether it is more
convenient to specify variables by number or by name. The following notes offer some rules
of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is
specified to be nonbasic at an upper bound that happens to be +∞, it will be made nonbasic
at its lower bound. Conversely if its lower bound is −∞. If the variable is free (both bounds
infinite), it will be made nonbasic at value zero. No warning message will be issued.
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Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound
that is smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free
variables will again take the value zero.

Restarting with different bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been
altered. Any of the basis files may be used, but the starting point obtained depends on the
status of X at the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things
being equal). The value of X may lie outside its new set of bounds, but there will be minimal
loss of feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens
to be the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting
values for an arbitrary number of basic variables could be changed (since they will be recom-
puted from the nonbasic and superbasic variables). This may not be of great consequence,
but sometimes it may be worthwhile to retain the old solution precisely. To do this, one
must make X superbasic at the original bound value.

For example, if x is nonbasic at an upper bound of 5.0 (which has now been changed),
one should insert a line of the form

j 5.0

near the end of an OLD BASIS file, or the line

SB X 5.0

near the end of an INSERT or LOAD file. Note that the SPECS file must specify a Superbasics
limit at least as large as the number of variables involved, even for purely linear problems.

Sequences of problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points
for subsequent relaxed problems, as long the above precautions are taken.
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