
SOLVING REDUCED KKT SYSTEMS

IN BARRIER METHODS FOR

LINEAR AND QUADRATIC PROGRAMMING

Philip E. GILL∗, Walter MURRAY†,

Dulce B. PONCELEÓN‡ and Michael A. SAUNDERS†

Technical Report SOL 91-7§

July 1991

Abstract

In barrier methods for constrained optimization, the main work lies in solv-
ing large linear systems Kp = r, where K is symmetric and indefinite.

For linear programs, these KKT systems are usually reduced to smaller
positive-definite systems AH−1ATq = s, where H is a large principal submatrix
of K. These systems can be solved more efficiently, but AH−1AT is typically
more ill-conditioned than K.

In order to improve the numerical properties of barrier implementations, we
discuss the use of “reduced KKT systems”, whose dimension and condition lie
somewhere in between those of K and AH−1AT. The approach applies to linear
programs and to positive semidefinite quadratic programs whose Hessian H is
at least partially diagonal.

We have implemented reduced KKT systems in a primal-dual algorithm
for linear programming, based on the sparse indefinite solver MA27 from the
Harwell Subroutine Library. Some features of the algorithm are presented,
along with results on the netlib LP test set.

Keywords: linear programming, quadratic programming, indefinite systems,
KKT systems, barrier methods, interior-point methods.

1. Introduction

We discuss barrier methods for solving linear and quadratic programs expressed in
the standard form

minimize
x

cTx + 1

2
xTQx

subject to Ax = b, l ≤ x ≤ u,
(1.1)

where A is m× n (m ≤ n) and Q is symmetric positive semidefinite. The problem
is a linear program (LP) when Q = 0, and a quadratic program (QP) otherwise.

∗Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA.
†Systems Optimization Laboratory, Department of Operations Research, Stanford University,

Stanford, CA 94305-4022, USA.
‡Apple Computer, Inc., 20525 Mariani Ave, Cupertino, CA 95014, USA.
§The material contained in this report is based upon research supported by the National Science

Foundation Grant DDM-8715153 and the Office of Naval Research Grant N00014-90-J-1242.

2. A Primal-Dual QP Algorithm 2

We assume that an optimal solution (x∗, π∗) exists, where π∗ is a set of Lagrange
multipliers for the constraints Ax = b.

Implicit within most of the current barrier or interior-point algorithms is a so-
called KKT system of the form

K

(
∆x

−∆π

)
=

(
w

r

)
, K ≡

(
H AT

A

)
, (1.2)

in which H = Q + D where D is positive semidefinite and diagonal. The search
direction (∆x, ∆π) is used to update the current solution estimate (x, π). In some
cases it is obtained by solving the same KKT system with more than one right-hand
side. It is critical that such systems be solved quickly and reliably.

1.1. Reduced KKT Systems

If H is nonsingular and diagonal (as in the LP case), it is common to use it as a
block pivot and reduce (1.2) to a system involving AH−1AT. In general this is an
unstable process because H usually contains some very small diagonals. The main
advantages are that AH−1AT is much smaller than K and it is positive-definite.

Our aim is to discuss an intermediate strategy in which part of H is used as
a block pivot. The reduced systems obtained are considerably smaller than K,
and typically no more than twice as large as AH−1AT. The approach retains the
numerical reliability of factoring the full matrix K, with an efficiency that is closer
to that of using AH−1AT. It also provides a convenient way of dealing with free

variables and dense columns (i.e., variables with bounds −∞ ≤ xj ≤ ∞ and columns
of A that have many nonzeros).

In the QP case when Q is at least partly diagonal, reduced KKT systems can
still be formed efficiently.

The proposed use of reduced KKT systems is motivated by the sensitivity anal-
ysis in [Pon90] and by the investigation of preconditioners for KKT systems in
[GMPS90]. Note from both references that large diagonals in H give K a decep-
tively high condition number, but they do not cause sensitivity in the solution of
systems involving K. (Similarly, a system Dx = b with D = diag(1020, 1010, 1, 1, 1)
has a well-defined solution, even though cond(D) = 1020.)

In fact, large diagonals of H are desirable, since they are obvious candidates for
a block pivot. For example, if ‖A‖ ≈ 1, any diagonals Hjj significantly larger than
one could be included in the block pivot. The associated reduced system reflects the
true sensitivity of linear systems involving K.

2. A Primal-Dual QP Algorithm

For concreteness we describe the main parts of a primal-dual barrier algorithm for
LP and QP.1 After deriving the KKT systems to be solved, we are able to discuss
certain numerical issues.

1Related references for LP are [Meg86, KMY88, MMS89, LMS89, LMS90, Meh89, Meh90,
Meh91]. Some dealing explicitly with QP are [MAR88, MA89, AHRT90, CLMS90, JSS90, Pon90,
VC91].

2. A Primal-Dual QP Algorithm 3

In order to handle upper and lower bounds symmetrically, we slightly generalize
the approach of Lustig et al.[LMS89, LMS90] and restate problem (1.1) as follows:

minimize
x, s1, s2, p

cTx + 1

2
xTQx + 1

2
‖γx‖2 + 1

2
‖p‖2

subject to Ax + δp = b,
x− s1 = l,
x + s2 = u,

(2.1)

with s1, s2 ≥ 0. The scalars γ and δ are intended to be “small”. The dual variables
associated with the three sets of equality constraints will be denoted by π, z and
−y. At a solution, z and y are non-negative.

We assume that l < u, since fixed variables (lj = uj) can be absorbed into b. If
lj = −∞ or uj = +∞, we omit the corresponding equation in x−s1 = l or x+s2 = u.
(In particular, both equations are omitted for free variables.) Symmetric treatment
of the bounds via s1 and s2 allows a problem to be treated “as it stands”, without
converting the bounds to 0 ≤ x ≤ u (say). The latter practice is hazardous in the
case of “almost free variables”, whose bounds are not large enough to be treated as
infinite (e.g., −106 ≤ xj ≤ 106).

2.1. The Barrier Subproblem

For some scalar µ > 0, the associated barrier subproblem is to minimize

cTx + 1

2
xTQx + 1

2
‖γx‖2 + 1

2
‖p‖2 − µ

∑

j

ln(s1)j − µ
∑

j

ln(s2)j

subject to the same equality constraints. Optimality conditions for this subproblem
include the equation p = δπ. We can therefore eliminate p immediately. The
remaining optimality conditions may be stated as the following equations:

fµ(x, s1, s2, π, z, y) =




b−Ax− δ2π

l − x + s1

u− x− s2

c + Qx + γ2x−ATπ − z + y

µe− S1Ze

µe− S2Y e




≡




r

t1

t2

t

v1

v2




= 0,

(2.2)
where e is a column of ones and S1, S2, Z, Y are diagonal matrices composed from
s1, s2, z, y. Primal-dual methods maintain positive approximations to all of the
latter vectors.

2. A Primal-Dual QP Algorithm 4

2.2. The Newton Direction

The Newton equations for generating a search direction (∆x, ∆s1, ∆s2, ∆π, ∆z, ∆y)
are

A∆x + δ2∆π = r
∆x −∆s1 = t1
∆x + ∆s2 = t2

−(Q + γ2I)∆x + AT∆π + ∆z − ∆y = t
Z∆s1 + S1∆z = v1

Y ∆s2 + S2∆y = v2,

(2.3)

which may be solved by defining

H0 = Q + S−1

1
Z + S−1

2
Y,

w = S−1

1
(Zt1 + v1) + S−1

2
(Y t2 − v2)− t,

(2.4)

solving the KKT-like system

K

(
∆x

−∆π

)
=

(
w

r

)
, K ≡

(
H0 + γ2I AT

A −δ2I

)
, (2.5)

and finally solving the equations

∆s1 = ∆x− t1,
∆s2 = t2 −∆x,

S1∆z = v1 − Z∆s1,
S2∆y = v2 − Y ∆s2.

(2.6)

It is straightforward to show that any values of x and π give the same search
direction (∆s1, ∆s2, ∆z, ∆y).

2.3. Regularization

The above definition of K shows its dependence on γ and δ. Later we shall not need
H0 itself, but will work with H ≡ H0 + γ2I.

The perturbations involving γ and δ are included to “regularize” the problem.
The term 1

2
‖γx‖2 ensures that ‖x∗‖ is bounded, and the term δp allows Ax = b to

be satisfied in some least-squares sense if the original constraints have no feasible
solution. An important property is that both perturbations help preserve the non-
singularity of K. For example, if A does not have full row rank, K is singular unless
we choose δ > 0. Similarly, suppose some columns of A associated with free vari-
ables are linearly dependent; if the corresponding columns of H0 are also dependent
(e.g. if the problem is an LP), K is singular unless we choose γ > 0. (An alternative
means for preserving nonsingularity with free variables is given in [GMPS91].)

Since p = δπ at a solution, the regularization terms in the objective function are
effectively 1

2
‖γx‖2 + 1

2
‖δπ‖2, which has a satisfying symmetry and shows that both

x∗ and π∗ are bounded if γ and δ are nonzero.

2. A Primal-Dual QP Algorithm 5

Objective perturbations of the form 1

2
‖γx‖2 have been studied by Mangasarian et

al.[MM79, Man84], who show that the LP solution is not perturbed if γ is sufficiently
small. The approach has been successfully pursued in the interior-point context by
Setiono [Set90b].

An alternative form of regularization is the proximal-point method of Rockafellar
[Roc76], which involves an objective term of the form 1

2
‖γ(x − xk)‖2 and does not

perturb the problem as xk → x∗ even if γ is not particularly small. Again, this
approach has been successfully explored by Setiono [Set89, Set90a, Set90c].

2.4. A Predictor-Corrector Approach

A number of authors (e.g. [MAR88, KLSW89, JSS90]) have suggested alternatives
to the Newton direction. Most of these suggestions may be traced to the idea of
“extrapolation” first described by Fiacco and McCormick [FM68]. The algorithm
we have implemented is similar to that suggested by Mehotra [Meh89, Meh90].
Implementations based on his suggestion have been shown to be efficient in practice
(see [Meh89, Meh90, LMS90]).

The approach requires two solves of the Newton system (2.3) with different
vectors v1 and v2 in the right-hand side. A predictor step (∆x̂, ∆ŝ1, ∆ŝ2, ∆π̂, ∆ẑ, ∆ŷ)
is obtained by solving with v1 = −S1Ze and v2 = −S2Y e (i.e. µ = 0 in (2.2)). A
corrector direction is then computed using v1 = µe − S1Ze − ∆Ŝ1∆Ẑe and v2 =
µe− S2Y e−∆Ŝ2∆Ŷ e.

If the predictor step is “large” it seems possible that a poor corrector direction
will result. Therefore as a precaution we sometimes scale the predictor step down
before constructing the second v1 and v2. Let α̂x and α̂z be maximum steps along
the predictor direction that keep (s1, s2) and (z, y) non-negative, and let φ = 0.1.

If α̂x < φ, we consider that the predictor steps ∆ŝ1 and ∆ŝ2 are excessively large
and scale them down by the factor τ(2− τ), where τ = α̂x/φ.

Similarly if α̂z < φ, we scale ∆ẑ and ∆ŷ down by the factor τ(2 − τ), where
τ = α̂z/φ. (Note that 0 < τ(2− τ) < 1 in both cases.)

We have experimented with a few other values of φ but not observed any pro-
found effect. The value φ = 0 corresponds to accepting the predictor step as it
stands, and φ = 1 would “interfere” rather too often. The chosen value 0.1 gave
slightly better performance than 0, as measured by the number of times that the
corrector direction was accepted.

It can be demonstrated that the corrector direction is not necessarily a descent
direction for ‖fµ‖2. We are therefore prepared to fall back on the Newton direction
as described below. Different but analogous precautions are taken by Mehrotra
[Meh90].

2.5. Steplengths

Given a positive vector z and a search direction ∆z, we need a trial steplength αz

that keeps z + αz∆z positive. It is common practice to define such a steplength as

αz = σ min
∆zj<0

zj/|∆zj |,

2. A Primal-Dual QP Algorithm 6

where σ ∈ (0, 1). Such a steplength might be written as the function αz = α(z),
with ∆z and σ known from the context. In our case we need two such steplengths,

αx = α(s1, s2) and αz = α(z, y),

where we mean that αx keeps both s1 and s2 positive, and αz keeps both z and
y positive. Following [LMS90] we used σ = 0.99995 for the numerical results of
Section 7.

Given a descent direction, the usual procedure in a descent method is to take a
step along the direction that reduces some merit function. In our case it is not clear
that a suitable reduction in ‖fµ‖2 can be obtained using the same step α(s1, s2, z, y)
in all the variables. It has been observed in practice [LMS89, LMS90] that taking
different steps in the primal and dual variables leads to fewer iterations when solving
linear programs. One reason for this is clear. Suppose we are solving an LP with
δ = γ = 0. After a step αx in the primal variables and αz in the dual variables we
have

r ← (1− αx)r and t← (1− αz)t.

(We assume r 6= 0, t 6= 0, αx < 1 and αz < 1.) If we take the same step in the primal
and dual variables and wish to remain feasible to the same extent, the required step
is

α(s1, s2, z, y) = min(αx, αz),

and the total reduction in ‖r‖2 + ‖t‖2 will not be as great. After 20 or 30 iterations
the reduction attained by the two strategies may be significantly different.

2.6. The Linesearch

Gill et al.[GMPS91, Section 7.1] analyze a primal-dual barrier algorithm for linear
programming based on the Newton direction and separate steps in the primal and
dual variables. They show that the component of the Newton direction in the primal
variables is a descent direction for a merit function based on the primal barrier
function.2 It is proved prove that the iterates converge to a solution provided the
step taken in the primal variables reduces this merit function. (Such a step always
exists.) Moreover, from the nature of the merit function and the fact that the
Newton direction is a direction of sufficient descent, it is clear that almost any
nonzero step in the primal variables will suffice. The step in the dual variables is
almost arbitrary. The only requirement is that it be bounded and that z and y be
kept nonzero.

The merit function in our implementation is different from that advocated in
[GMPS91] but is similar in spirit. We require that ‖fµ‖2 be reduced. We anticipate
that a reduction in this function almost always implies a reduction in M(x, s1, s2, ρ).

Briefly, if a trial step along the corrector direction reduces ‖fµ‖2, the step is
taken and the iteration is complete. Otherwise, the Newton direction is computed

2For LP problems of the form (2.1) without regularization, the merit function would be
M(x, s1, s2, ρ) = cTx − µ

P

j
ln(s1)j − µ

P

j
ln(s2)j + ρ(‖b − Ax‖1 + ‖l − x + s1‖1 + ‖u − x − s2‖1).

3. Reduced KKT systems 7

and used to reduce ‖fµ‖2 (perhaps with the aid of a back-tracking linesearch).
Convergence is assured if K remains sufficiently nonsingular.

More precisely:

1. Separate steplengths αx = α(s1, s2) and αz = α(z, y) are computed for the
corrector direction. If these reduce the merit function ‖fµ‖2 by a sufficient
amount, they are accepted and the iteration is complete.

2. Otherwise, the Newton direction (2.3) is computed along with new steplengths
αx and αz. If the merit function is sufficiently reduced, the steps are taken
and the iteration is complete.

3. Otherwise, the steplengths are made equal (to the smaller of the two) and
the merit function is tested again. If necessary, the steplengths are repeatedly
halved until the merit function is suitably reduced.

4. If up to 5 halvings of the steplengths fail to reduce the merit function, we
assume that the search direction has insufficient accuracy. The linesearch
terminates with a request for stricter tolerances in factorizing the KKT system
(see Section 4). In practice, this is perhaps the most important function of
the linesearch.

2.7. Reducing the Barrier Parameter µ

The initial and minimum values of µ are to some extent user-specifed; see Section 6.
At intervening iterations, µ is reduced to (1 − αµ)µ, where αµ = min(αx, αz, σ).
Thus, µ decreases monotonically and more rapidly if larger steps are taken.

This choice of µ is simple and does not depend on the duality gap (which is
difficult to define for infeasible points). It appears to be satisfactory in practice.

3. Reduced KKT systems

If H = H0 +γ2I is nonsingular, (2.5) may be solved using the range-space equations

of optimization:

(AH−1AT + δ2I)∆π = r −AH−1w, H∆x = AT∆π + w. (3.1)

The main benefit is that AH−1AT + δ2I is much smaller than K and is positive
definite, so that well-established sparse Cholesky factorizations can be applied. Some
drawbacks are as follows:

1. AH−1AT + δ2I is normally more ill-conditioned than K.

2. Free variables complicate direct use of (3.1) by making H0 singular.

3. Relatively dense columns in A degrade the sparsity of AH−1AT + δ2I and its
factors.

3. Reduced KKT systems 8

In general, small diagonals of H prevent it from being a “good” block pivot from
a numerical point of view. That is, if Gaussian elimination were applied to K, not
all diagonals of H would be acceptable as pivots. To overcome this difficulty, we
note that in practice most of H is likely to be acceptable as a block pivot. Thus we
partition H and A as

H =

(
HN

HB

)
, A =

(
N B

)
,

where the diagonals of HN are a “reasonable” size compared to the nonzeros in the
corresponding columns of N . In general, a reordering of the variables is implied.
The column dimension of N may be anywhere from 0 to n (and similarly for B).
The KKT system (2.5) becomes




HN NT

HB BT

N B −δ2I







∆xN

∆xB

−∆π


 =




wN

wB

r


 , (3.2)

which may be solved via the reduced KKT system

KB

(
∆xB

−∆π

)
=

(
wB

r −NH−1
N wN

)
, KB ≡

(
HB BT

B −NH−1
N NT − δ2I

)
.

(3.3)
The final step is to solve the typically diagonal system HN∆xN = wN + NT∆π.

If HN happens to be all of H, KB = −AH−1AT − δ2I and the reduced KKT
system is equivalent to (3.1). Otherwise, KB is a symmetric indefinite matrix. Like
K it can be processed by a sparse indefinite solver such as MA27 [DR82, DR83]
(an implementation of the factorization described in [BP71, BK77]). The above
difficulties are resolved as follows:

1. KB need not be more ill-conditioned than K.

2. Free variables are always included in B.

3. Dense columns of A are also included in B. (They do not necessarily degrade
the sparsity of the KB factors.)

As with current Cholesky solvers, MA27 has an Analyze phase (to choose a row
and column ordering for KB and to set up a data structure for its factors) and a
Factor phase (to compute the factors themselves). Some disadvantages of working
with reduced KKT systems are:

1. Whenever the N–B partition is altered, a new Analyze is required. This is
usually less expensive than the Factor phase, often by an order of magnitude,
and we expect it to be needed only sometimes (typically the last few iterations).
However, it can be costly for certain structures in A.

2. To date, sparse indefinite factorization is more expensive than Cholesky fac-
torization when there is a large degree of indefiniteness (as in KKT systems).

3. Reduced KKT systems 9

3.1. Related Work

To keep H nonsingular in the presence of free variables, some authors have treated
each such variable as the difference between two nonnegative variables. Lustig,
et al.[LMS89, LMS90] report satisfactory performance on the netlib LP test set,
which contains a few relevant examples. To deal with problems involving many free
variables, others authors have introduced moving artificial bounds (e.g. [Marx89]
and Vanderbei [Van90a], who cites difficulties with the first approach).

Dense columns have been handled by using Cholesky factors of the sparse part
of AH−1AT to precondition the conjugate-gradient method (e.g. [GMSTW86]) or
to form a certain Schur complement [Marx89, LMS89]. A difficulty is that the
“sparse” Cholesky factor usually becomes even more ill-conditioned than the one
associated with all of AH−1AT. More recently, the approach of splitting or stretching

dense columns has been proposed and implemented with success [LMC89, Van90b].
The increased problem size is perhaps an inconvenience if not a difficulty. (See
also Grcar [Grc90], who recommends the term stretching and gives an extremely
thorough development and analysis of this new approach to solving sparse linear
equations.)

Further recent work on solving large indefinite systems (to avoid the difficul-
ties associated with AH−1AT) appears in [Tur90, Meh91, FM91, VC91]. Iterative
solution of the full KKT system is explored in [GMPS90].

3.2. Quadratic Programs

In general, the Hessian of a convex quadratic objective will have the form

Q =




0

D̄ ET

E Q̄


 , (3.4)

where D̄ is diagonal and positive definite, and the full Q is positive semidefinite.
The dimensions of each partition depend on the application and could be anything
from 0 to n.

The associated matrix H = Q + S−1

1
Z + S−1

2
Y has the structure

H =




Ĥ

D̂ ET

E Q̂


 , (3.5)

where Ĥ and D̂ are diagonal. Reduced KKT systems can be formed as before, using
suitably large diagonals in diag(Ĥ, D̂) as a block pivot. Variables associated with
Q̂ are most easily dealt with by keeping them in the “B” partition of K (alongside
those associated with dense columns of A).

A diagonal of diag(Ĥ, D̂) may be judged “suitably large” by comparison with
the corresponding column of A. (Since Q and H are semidefinite, there is no need
to compare a diagonal of D̂ with the corresponding columns of E.)

4. Stability and Sparsity Tolerances 10

3.3. Separable QP

To match the OB1 implementation based on AH−1AT [LMS90], Carpenter et al.[CLMS90]
have emphasized the case where Q̄ and E are null and Q is purely diagonal. Any
convex QP can be transformed into this case by using the Cholesky factorization
PQ̄P T = LLT, where P is a permutation matrix and L is lower triangular (and
possibly trapezoidal). Introducing linear constraints of the form

xL = LTPxQ

leads to a larger problem of the required form.
Such an approach may often be satisfactory, especially if the dimension of Q̄ is

relatively low. However, some implementations based on AH−1AT would have diffi-
culty with the additional free variables xL. Even if these are dealt with “correctly”
via the KKT system, the factors of the reduced KKT systems (which now involve
L) are likely to be more dense than in the preceding direct approach.

Further discussion of this subject, along with numerical comparisons, appears in
[VC91].

In summary, the use of reduced KKT systems for structured sparse QP Hessians
(3.4) provides greater flexibility, and hence greater efficiency in at least some cases,
than use of the full KKT system [Pon90] or the fully reduced system AH−1AT

[CLMS90].

4. Stability and Sparsity Tolerances

Let S = −(NH−1
N NT + δ2I) be the Schur complement appearing in the south-east

corner of KB (3.3). (We assume HN is diagonal.) In our implementation, three
parameters are used to control the choice of N and the factorization of KB, with
typical values as follows:

Htol = 10−6,
ndense = 10,
factol = 0.01.

Note that small diagonals of HN lead to large entries in S, while “dense” columns
in N lead to excessive density in S. We therefore use Htol and ndense to control
the partitioning of K in the following way. The j-th column of H is included in HN

(and column aj of A is included in N) if

1. Hjj ≥ Htol ‖aj‖, and

2. aj has fewer than ndense nonzeros.

Since we scale A to give ‖aj‖ ≈ 1 for all j, we avoid storing an n-vector of norms
by simplifying the first test to just Hjj ≥ Htol . Including ‖aj‖ would give slightly
greater reliability.

The third parameter factol is used as the stability tolerance u [DR82, DR83]
when the Factor phase of MA27 is applied to KB. In the extreme case (N void,
KB = −AH−1AT), factol is inoperative since MA27 is then performing Cholesky

4. Stability and Sparsity Tolerances 11

factorization on a (negative) definite matrix. In all other cases, factol affects the
stability of the numerical factorization and the fill-in in the factors (beyond that
predicted by the MA27 Analyze).

4.1. Iterative Refinement; Tightening Tolerances

Whenever a KKT system of the form

K

(
∆x

−∆π

)
=

(
w

r

)

is solved (via a reduced KKT system), we estimate whether the tolerances Htol and
factol are too lax by computing the residuals for the full system:

(
q1

q2

)
=

(
w

r

)
−K

(
∆x

−∆π

)
=

(
w −H∆x + AT∆π

r −A∆x− δ∆π

)
. (4.1)

Let the relative error in the residual be error = (‖q1‖+ ‖q2‖)/(‖w‖+ ‖r‖).
If error > 0.01, we request that Htol be increased by a factor of 100 and factol be

increased by a factor of 10, up to limits of 0.1 and 0.2 respectively. The partitioning
of K and the factorization of the reduced KKT system are then repeated. If the
tolerances are already at their limiting values, the program terminates with an error
condition.

Otherwise, if error > 10−4, we perform one step of iterative refinement:

K

(
p1

−p2

)
=

(
q1

q2

)
,

(
∆x

∆π

)
←
(

∆x

∆π

)
+

(
p1

p2

)
.

If the new relative error satisfies error > 10−4, we request increased tolerances as
in the previous paragraph.

If error ≤ 10−4 either before or after refinement, the solve is taken to be suffi-
ciently accurate.

The predictor-corrector algorithm uses more than one solve to obtain a search
direction. Forming the products A∆x and AT∆π in (4.1) is moderately expensive,
but at least for the last solve, these vectors can be saved and used to update the
residuals r and t during the linesearch:

r ← r − αx(A∆x)− αzδ
2∆π,

t← t + αx(Q + γ2I)∆x− αz(A
T∆π + ∆y −∆z).

Direct computation of r = b − Ax − δ2π and t = c + Qx + γ2x − ATπ − z + y can
then be carried out less often—say every 10 iterations, or whenever ‖r‖ or ‖t‖ drops
significantly.

Note that it is most effective to use iterative refinement on the full KKT system
as described, not on the reduced system. In particular, even implementations based

on AH−1AT should compute corrections for both ∆x and ∆π.

5. Numerical Examples 12

5. Numerical Examples

To illustrate some numerical values arising in the reduced KKT systems of Section
3, we apply the basic primal-dual algorithm to two LP problems of the form

min cTxsubject toAx = b, x ≥ 0,

with

A =

(
1 1 3 3

1 2 1 2

)
, c =

(
1 1 0 0

)T

,

using MATLABTM [MLB87] with about 16 digits of precision.

5.1. A Non-degenerate LP

We first let the right-hand side and optimal solution be

b =

(
6

3

)
, x∗ =

(
0 0 1 1

)T

.

At the start of the fifth iteration of the primal-dual algorithm, we have
x = (3.9e−6, 3.2e−6, 1.000005, 0.999992), z = (0.70, 0.70, 2.0e−6, 1.7e−6), and

K =




1.8e+5 1 1

2.2e+5 1 2

2.0e−6 3 1

1.7e−6 3 2

1 1 3 3

1 2 1 2




=

(
H AT

A

)
,

where H = X−1Z. Recall that Htol defines which diagonals of H are considered
large enough to form a block pivot. In terms of conventional error analysis for
Gaussian elimination, Htol = 1 or 0.1 should be “safe”, while Htol < 10−3 (say)
is likely to be unreliable. Various values of Htol give the following reduced KKT
systems:

Htol KB cond(KB)

0.1




2.0e−6 3 1

1.7e−6 3 2

3 3 −1e−5 −1e−5

1 2 −1e−5 −2e−5


 7.5

1.8e−6




1.7e−6 3 2

3 −4e+6 −1e+6

2 −1e+6 −5e+5


 5e+6

1e−20

(
−1e+7 −5e+6

−5e+6 −3e+6

)
58

5. Numerical Examples 13

The large diagonals of H make K seem rather ill-conditioned (cond(K) = 105),
but pivoting on those diagonals (Htol = 0.1) gives a very favorable reduced system:
cond(KB) = 7.5. Allowing one small pivot (Htol = 1.8e−6) gives the expected large
numbers and high condition: cond(KB) ≈ 106. A second small pivot would normally
have a similar effect, but here we have m = 2. The large numbers arising from m
small pivots happen to form a very well -conditioned reduced system: cond(KB) =
cond(AH−1AT) = 58.

In general, the structure of K is such that pivoting on any nonzero diagonals of
H should be safe if the following conditions hold:

• There are m or more small pivots of similar size (to within one or two orders
of magnitude).

• The associated m or more columns of A form a well-conditioned matrix.

Unfortunately, in the presence of primal degeneracy there will be less than m small
pivots, as the next example shows.

5.2. A Degenerate LP

Now let the right-hand side and optimal solution be

b =

(
3

2

)
, x∗ =

(
0 0 0 1

)T

.

At the start of the sixth iteration of the primal-dual algorithm, we have
x = (3.6e−7, 6.0e−7, 9.3e−7, 0.9999987), z = (0.61, 0.32, 0.29, 2.2e−7), and

K =




1.7e+6 1 1

5.3e+5 1 2

3.1e+5 3 1

2.2e−7 3 2

1 1 3 3

1 2 1 2




.

Two representative values of Htol give the following reduced KKT systems:

Htol KB cond(KB)

0.1




2.2e−7 3 2

3 −3e−5 −1e−5

2 −1e−5 −1e−5


 8e+5

1e−20

(
−4e+7 −3e+7

−3e+7 −2e+7

)
1e+13

We see that the partially reduced system has a considerably lower condition than
the fully reduced system. After one further iteration, the contrast is even greater
(see the second table below).

6. Implementation Details 14

5.3. Condition Numbers at Each Iteration

To further illustrate the effect of small H pivots, we list the condition of the reduced
KKT systems arising at each iteration of the primal-dual algorithm with various
values of Htol . The barrier parameter µ does not appear in K, but it is listed for
reference.

For the first (non-degenerate) problem, the following condition numbers cond(KB)
were obtained:

Itn µ Htol : 0.1 1e−3 1e−4 1.8e−6 1e−20

1 3e−2 14 14 14 14 14
2 2e−3 72 300 300 300 300
3 2e−4 8 59 59 59 59
4 2e−6 7 7 5e+4 74 74
5 2e−8 7 7 7 5e+6 59
6 2e−10 7 7 7 7 7
7 2e−12 7 7 7 7 7

We see that allowing pivots as small as Hjj = 10−p is likely to give cond(KB) = 10p

at some stage, except in the fortuitous case where are there are m or more small
pivots.

For the degenerate problem, the following values of cond(KB) were obtained:

Itn µ Htol : 0.1 1e−4 1e−20

1 2e−2 14 14 14
2 2e−4 23 23 23
3 6e−5 11 1e+3 1e+3
4 2e−5 114 114 7e+6
5 2e−7 8e+3 8e+3 1e+9
6 2e−9 8e+5 8e+5 1e+13
7 2e−11 8e+7 8e+7 2e+16
8 2e−13 8e+9 8e+9 ∞

We see that very small pivots allow the condition of KB to deteriorate seriously.
We cannot expect a method based on AH−1AT to make meaningful progress on this
example beyond the sixth iteration. Since degeneracy is a feature of most real-life
problems, it seems clear that small H pivots must be avoided if stability is to be
assured.

To date, implementations based on AH−1AT [LMS90] or some other “unstable”
factorization [VC91] appear capable of attaining 8 digits of precision on most real-
life applications, but occasionally attain only 6 digits or less. This is commendable
performance, since 6 digits is undoubtedly adequate for most practitioners. It is the
“occasionally less” that we maintain some concern about!

6. Implementation Details

The remaining discussion concerns our present implementation as it applies to LP
problems (Q = 0). When γ or δ is nonzero in (2.1) the problem being solved is

6. Implementation Details 15

in fact a QP. A diagonal Q could easily be incorporated, as in [CLMS90]. The
implementation is called PDQ1 (Primal-Dual QP code, version 1). We intend to
allow a more general sparse Q in the future.

Various run-time parameters are used in PDQ1 to define starting points, stopping
conditions, etc. (see below). Note that they are applied after the problem has been
scaled. We assume that all computations are performed with about 16 digits of
precision.

We do not perform any preprocessing of the data other than scaling. For exam-
ple, we do not attempt to discard any rows or columns of A. (Nor do we attempt to
fix variables on their bounds as the iterates converge.) In practice, of course, prepro-
cessing can be very successful in reducing the problem dimensions and improving the
numerical performance of solution algorithms. Our aim is to deal directly with the
problem data and achieve reliability in the presence of redundant constraints, null
variables, etc. (since preprocessors are not guaranteed to eliminate such difficulties).

We make an exception with regard to scaling, since we wish to solve an entire set
of test problems with a single set of run-time parameters. Without scaling, exces-
sively cautious parameter values may be needed to achieve reasonable performance.

6.1. Scaling

Row and column scales are first determined by an iterative procedure that tends
to make the elements of A close to one [Fou82]. An “effective right-hand side” v is
then defined according to

v = b−
∑

lj=uj

ajlj −
∑

lj>0

ajlj −
∑

uj<0

ajuj , (6.1)

and the row scales are applied to v to obtain the quantities v̄ and σ ≡ ‖v̄‖. If σ > 1,
all row and column scales are multiplied by σ.

This is the scaling procedure used in MINOS [MS87]. In most cases it has the
effect of making ‖x̄∗‖ ≈ 1, where x̄∗ is the solution of the scaled problem. As
noted elsewhere [GMSW89, Marx89], the test problems grow7, grow15 and grow22

are exceptions in that ‖x̄∗‖ ≈ 107. To assist such cases we have implemented an
additional scaling that takes effect if v = 0 in (6.1).

The grow problems happen to be of the form

min cTxsubject toAx = 0, 0 ≤ x ≤ u.

We first note that the optimal solution satisfies cTx∗ ≤ 0 (since x = 0 is a feasible
point). Assuming x∗ 6= 0, we can then say that x∗

j = uj for at least one j (since if
some feasible point satisfies 0 ≤ x < u, the point ρx is also feasible for some ρ > 1
and it has an improved objective value).

It follows that if τ ≡ minj uj > 1, a smaller ‖x̄∗‖ will result if all the scales are
multiplied by τ .

For the grow problems we found that τ ≈ 3000, and the additional scaling by
τ reduced ‖x̄∗‖ from 107 to 104 and improved the reliability of the solves with K.
The effective right-hand side v was zero for one other problem (sc205). In this case,
τ = 100 and the extra scaling reduced the iteration count from 15 to 11.

6. Implementation Details 16

6.2. Scaling c

Once scale factors are obtained as above, they are applied to the data A, b, c, l, u.
A further scale factor is then applied to c to make ‖c‖ ≈ 1.3 In most cases the effect
is to make ‖π̄∗‖ ≈ 1 for the scaled problem.

6.3. Starting

The initial values for the scaled primal and dual variables were chosen as follows
(with ξ0 = ζ0 = 1). Recall that the initial values of x and π do not affect the
subsequent iterations (except that x is used to define the initial s1 and s2).

• xj = 0 if zero lies between the bounds; otherwise, xj = lj or uj , whichever
bound is nearest zero.

• (s1)j = max(ξ0, xj − lj); (s2)j = max(ξ0, uj − xj).

• π = 0.

• yj = zj = ζ0.

The initial value of µ was set to balance the parts of the residual vector in (2.2) that
do and do not depend on µ (with µ0 = 0.1):

• µ = µ0‖f0‖2/
√

nbound ,

where nbound (≤ 2n) is the number of finite upper and lower bounds.

6.4. Stopping

If (x, s1, s2) and (π, z, y) are primal and dual feasible respectively, the duality gap
(the difference between the primal and dual objectives) is

sT
1z + sT

2y = (cTx + 1

2
xTQ̃x + 1

2
pTp)− (bTπ + lTz − uTy − 1

2
xTQ̃x− 1

2
pTp),

where Q̃ = Q + γ2I. The stopping criterion for LP problems required the following,
with δfea = δopt = 10−d meaning a request for d digits of accuracy (d = 6 or 8):

• ‖r‖2/(1 + ‖x‖) ≤ δfea.

• ‖t‖2/(1 + ‖π‖) ≤ δfea.

• (sT
1
z + sT

2
y)/(1 + |cTx|) ≤ δopt.

After each iteration, a minimum value of µ is defined in terms of the objective
function and the optimality tolerance. In the LP case,

• µmin = (1 + |cTx|)δopt/(10nbound).

If the current µ is below 2µmin, then µ is not reduced for the next iteration.

3The Euclidean norm ‖ . ‖2 is required for terms in the merit function ‖fµ‖2. For other vectors
v of length n we define ‖v‖ ≡ P |vj |/

√
n (which approximates ‖v‖2 but is cheaper to evaluate).

Since c may be sparse, we scale it by
P |cj |/

√
nc, where nc is the number of nonzeros in c. Using

nc in place of n affected the iteration counts for many of the test problems—on average favorably.

7. Numerical Results 17

6.5. Regularization

The values γ = 10−5 and δ = 10−5 were used, with seemingly satisfactory results.
Larger values may perturb the solution too much, and smaller values can lead to
near-singularity in K and perhaps divergence of the iterates.

Recall that the regularization terms in the objective are 1

2
‖γx‖2 + 1

2
‖δπ‖2, with

‖x‖ ≈ 1 and ‖π‖ ≈ 1 near a solution. For many problems we have observed that
‖π‖ decreases sharply in the final primal-dual iterations, showing that a nonzero δ
helps resolve some ambiguity in the dual solution.

In line with the theory of [MM79, Man84], there is no similar decrease in ‖x‖
when γ is rather small.

6.6. Solving the KKT Systems

To date we have used the Harwell Subroutine Library package MA27 [DR82, DR83]
to solve the reduced KKT systems. This is a multifrontal code designed to perform
well on vector machines on matrices that are definite or nearly definite (i.e., most
eigenvalues have the same sign).

When there are no free variables or dense columns, the tolerances are such that
KB = −AH−1AT for most of the early iterations. The performance should then be
similar to other Cholesky-based implementations.

As the optimal solution is approached, many diagonals of H become small and
KB becomes more indefinite as its dimension increases. In some cases the MA27

Factor generates substantially more nonzeros than predicted by the Analyze, and
the iteration time deteriorates significantly.

As always, improvements in computation time will come from speeding up the
KKT solves. A major modification of MA27 is being developed as MA47 [DGRST89],
and we expect that its performance in the KKT context will be considerably im-
proved. A promising alternative is the code described recently in [FM91].

7. Numerical Results

In this section we present results obtained from the netlib collection of LP test
problems [Gay85]. One aim is to explore the probable dimensions of the reduced
KKT systems that must be solved (and determine how often a new Analyze is
needed).

Another aim is to show that a primal-dual barrier algorithm similar to the ones
in [Meh89, Meh90, LMS89, LMS90] can achieve comparably low iteration counts
without the benefit of preprocessing (other than scaling) and with relatively simple
starting conditions and a straightforward reduction of µ each iteration. This is
partly due to the improved reliability of the numerical linear algebra in the presence
of free variables, dense columns, and near-singularity.

During the code development, occasional high iteration counts were usually
found to be the result of lax tolerances in forming and solving the reduced KKT
systems (just as a simplex code could be expected to iterate indefinitely if an un-
reliable basis package were used). With the current MA27 factorizer, it remains

7. Numerical Results 18

desirable to use lax tolerances tentatively (to enhance sparsity), since they are of-
ten adequate. Provision for iterative refinement and tightening of the factorization
tolerances (Section 4.1) seems to provide a reliable safeguard.

As an example, most of the test problems solved successfully with the tolerances
fixed at Htol = 10−8 and factol = 0.001. This is extremely lax in terms of con-
ventional Gaussian elimination, but note that implementations based on AH−1AT

are effectively using Htol = 0 and factol = 0, with no increase possible. Iterative
refinement can again be invoked, but that alone may be unsuccessful.

7.1. Dimension of the Reduced KKT Systems

Let nk be the dimension of the reduced KKT system KB (3.3) at iteration k, and
let rk = nk/m. The first graph in Figure 1 plots the ratios rk for a representative
selection of problems (using Htol = 10−6 and requesting 8 digits of accuracy). The
name of each problem appears near the end of the associated plot.

The value rk = 1 implies that KB = AH−1AT at iteration k. For example,
problems scsd6 and ship12l both give fully reduced systems at the beginning, since
all elements of H are of order 1 initially, and there are no dense columns. In contrast,
rk ≈ 2 for most of the pilots iterations, because almost m columns of A contain 10
or more nonzeros and are included in B throughout.

In general, rk stays almost constant until the final iterations, when many diago-
nals of H start falling below Htol . The dimension of KB increases as more columns
of A are included in B.

Similarly, let nz k be the number of nonzeros in the MA27 factorization of KB at
iteration k, and let r̄k = nz k/nz1. (The minimum number of nonzeros happens to
occur at the first iteration.) The second graph in Figure 1 plots the ratios r̄k for
the same problems. The values r̄k > 2 represent a serious loss of sparsity in order
to preserve stability.

Some observations follow.

• The dimension of KB changes from its previous value rather more than half
of the time. This determines how many times a new Analyze is needed. Some
statistics are given in Table 1.

• The cpu time for an MA27 Analyze is usually moderate compared to a Factor,
but sometimes it can be substantial. Table 1 shows how much time is spent
in each phase, as a percentage of the total cpu time. (There is normally one
Factor per iteration, except on rare occasions when the stability tolerances are
tightened.)

• There is typically a sharp increase in the MA27 Factor nonzeros during the
final iterations. In particular, requesting 8 digits of accuracy rather than 6
carries a substantial cost.

These matters reflect the cost of stability compared to implementations based on
AH−1AT (for which rk = r̄k = 1 throughout).

7. Numerical Results 19

0

1

2

3

0 5 10 15 20 25 30 35 40 45
.

.

scsd6 ship12l 25fv47 pilotja pilots 80bau3b

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45
.

.

Figure 1: The dimension of the reduced KKT systems KB (relative to m), and the
number of nonzeros in the MA27 factors (relative to the first factorization).

7.2. Performance on the netlib Test Set

Table 2 lists the iteration counts for PDQ1 in solving the first 70 LP test problems
in netlib. We give results for both 6 and 8-digit accuracy. They are compared
to the iteration counts recorded by OB1 in [LMS90], where 8-digit accuracy was
also requested (and in most cases obtained). OB1 used some preprocessing of the
data [LMS89]. The column labeled “Diff” indicates significant differences between
columns 1 and 3. A + means PDQ1 required more iterations than OB1.

Some observations follow.

• The stability tolerances Htol = 10−6 and factol = 0.01 proved to be reliable
in almost all cases. The grow problems, scsd8, pilotja and pilots required
iterative refinement at certain points and ultimately made one request for
stricter tolerances (Htol = 10−4 and factol = 0.1).

• The grow problems illustrate the effect of inaccurate solution of the KKT sys-
tem. For the last few iterations there were symptoms of difficulty (refinement,
reversion to pure primal-dual, backtracking in the linesearch) and stricter tol-
erances were finally requested for the last iteration. When Htol = 10−6 and

8. Conclusions 20

Analyze Factor Analyze time Factor time

scsd6 11 12 20% 32%
ship12l 14 19 18% 30%
25fv47 14 23 13% 72%
pilotja 19 32 16% 75%
pilots 20 35 15% 81%
80bau3b 38 42 29% 45%
degen3 9 28 29% 66%

Table 1: The number of MA27 Analyze and Factor calls, and the percentage of time
spent in each.

factol = 0.1 were used from the beginning, no symptoms of numerical error
arose and the iteration counts were 19, 21 and 21 (a significant improvement
for the last two cases, though still more than achieved by OB1).

• It is not clear why significantly more iterations were required for cycle, wood1p

and woodw. These problems are from the same source and probably have a
distinguishing characteristic that would explain the OB1 advantage.

• The first three pilot problems solved in significantly fewer iterations than with
OB1. About 80 free variables and some notoriously narrow bounds (lj = 0,
uj = 10−5) do not appear to have caused difficulty.

• Otherwise, we see that the iteration counts for OB1 and PDQ1 are comparable
for most problems.

• In terms of cpu time, the results would be far from comparable. We defer such
statistics until a more efficient indefinite solver is installed.

8. Conclusions

For various good reasons, most interior-point codes for LP (and for separable QP)
have been based on Cholesky factors of matrices of the form AH−1AT. Excellent
performance has been achieved (notably by [LMS90, Meh90, CLMS90]) and the pri-
mary sources of difficulty have been thought to be dense columns and free variables.

For general QP problems a full KKT system must be solved [Pon90], and it is be-
coming increasingly recognized that such an approach removes the above-mentioned
difficulties (e.g. [Tur90, GMPS90, FM91, Van91]).

Here we have emphasized the fact that the real source of numerical error lies in
pivoting on small diagonals of H in the presence of primal degeneracy. Reducing
a KKT system K to AH−1AT is equivalent to pivoting on all diagonals of H, re-
gardless of size. We suggest forming “reduced KKT systems” by pivoting on just
the diagonals of H that are suitably large. This allows us to avoid factorizing a full
KKT system, and often leads to use of AH−1AT in the early iterations when it is
numerically safe.

8. Conclusions 21

Code: OB1 PDQ1 PDQ1 Diff
Digits: 8 6 8

25fv47 25 23 23
80bau3b 38 37 42
adlittle 12 12 13
afiro 9 9 10
agg 24 19 21
agg2 18 19 21
agg3 17 19 21
bandm 17 16 18
beaconfd 10 18 21 ++

bore3d 18 21 23 +

brandy 19 17 19
capri 18 19 20
cycle 30 37 43 +++

czprob 35 33 36
degen2 14 15 17
degen3 20 26 28 +

e226 22 18 20
etamacro 29 19 23 -

fffff800 28 23 27
forplan 21 23 25
ganges 16 16 18
gfrdpnc 18 17 18
greenbea 41 48 51 ++

greenbeb 33 34 38 +

grow7 14 17 19 +

grow15 16 18 26 ++

grow22 16 18 30 ++

israel 23 22 23
kb2 15 13 13
nesm 30 23 30
pilotja 46 28 31 ---

pilotwe 46 30 33 ---

pilot4 36 25 27 --

pilotnov 20 16 17
pilots 29 31 34 +

Code: OB1 PDQ1 PDQ1 Diff
Digits: 8 6 8

recipe 10 13 15 +

sc205 11 11 13
scagr25 16 16 17
scagr7 12 13 14
scfxm1 17 17 18
scfxm2 19 19 20
scfxm3 20 19 21
scorpion 14 12 14
scrs8 27 20 22 -

scsd1 11 9 9
scsd6 12 11 12
scsd8 10 11 15 +

sctap1 15 14 15
sctap2 20 15 15 -

sctap3 17 16 16
seba 19 18 20
share1b 20 17 18
share2b 12 11 12
shell 21 20 21
ship04l 15 17 18
ship04s 15 17 18
ship08l 16 16 18
ship08s 14 16 17
ship12l 18 17 19
ship12s 18 17 18
sierra 18 18 20
stair 16 17 17
standata 15 17 19
standmps 24 24 25
stocfor1 19 13 13 -

stocfor2 22 33 33 ++

tuff 19 24 27 +

vtpbase 13 15 18 +

wood1p 14 27 29 +++

woodw 20 26 30 ++

Table 2: Iteration counts for OB1 (requesting 8 digits) and PDQ1 (6 and 8 digits).

The primary advantage is intended to be numerical reliability. The drawbacks
are that a new Analyze is required each time the reduced KKT system changes in
dimension, and that we are dependent on the efficiency of a symmetric indefinite
factorizer. Some new codes [DGRST89, FM91] promise to narrow the gap between
indefinite and definite solvers. A variant of “reduced KKT systems” has recently
been given in [Van91]. An advantage is that it avoids the need for an indefinite
solver, but in its present form it is susceptible to the normal dangers of small pivots
in H.

In terms of overall strategy, it remains to be seen which of the approaches in
[LMS90, Tur90, FM91, Van91] and the present paper will offer the most favorable
balance between efficiency and reliability.

References 22

Acknowledgement

We are grateful to Dr. Florian Jarre for many helpful discussions on this work during
his postdoctoral year at the Department of Operations Research.

References

[AHRT90] K. M. Anstreicher, D. den Hertog, C. Roos and T. Terlaky (1990). A long-step barrier
method for convex quadratic programming, Report 90-53, Faculty of Technical Math-
ematics and Informatics, Delft University of Technology, Delft, The Netherlands.

[BK77] J. R. Bunch and L. Kaufman (1977). Some stable methods for calculating inertia and
solving symmetric linear systems, Mathematics of Computation 31, 162–179.

[BP71] J. R. Bunch and B. N. Parlett (1971). Direct methods for solving symmetric indefinite
systems of linear equations, SIAM Journal on Numerical Analysis 8, 639–655.

[CLMS90] T. J. Carpenter, I. J. Lustig, J. M. Mulvey and D. F. Shanno (1990). A primal-dual
interior-point method for convex separable nonlinear programs, Report SOR 90-2,
Department of Civil Engineering and Operations Research, Princeton University,
Princeton, NJ.

[DG85] J. J. Dongarra and E. Grosse (1985). Distribution of mathematical software via elec-
tronic mail, SIGNUM Newsletter 20, 45–47.

[DGRST89] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott and K. Turner (1989). The factor-
ization of sparse symmetric indefinite matrices, CSS Report 236, Computer Science
and Systems Division, AERE Harwell, Oxford OX11 0RA, England.

[DR82] I. S. Duff and J. K. Reid (1982). MA27: A set of Fortran subroutines for solving
sparse symmetric sets of linear equations, Report R-10533, Computer Science and
Systems Division, AERE Harwell, Oxford, England.

[DR83] I. S. Duff and J. K. Reid (1983). The multifrontal solution of indefinite sparse sym-
metric linear equations, ACM Transactions on Mathematical Software 9, 302–325.

[FM68] A. V. Fiacco and G. P. McCormick (1968). Nonlinear Programming: Sequential Un-

constrained Minimization Techniques, John Wiley and Sons, New York and Toronto.

[Fou82] R. Fourer (1982). Solving staircase linear programs by the simplex method, 1: Inver-
sion, Mathematical Programming 23, 274–313.

[FM91] R. Fourer and S. Mehrotra (1991). Performance of an augmented system approach
for solving least-squares problems in an interior-point method for linear program-
ming, Preliminary Report, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, IL.

[Gay85] D. M. Gay (1985). Electronic mail distribution of linear programming test problems,
Mathematical Programming Society COAL Newsletter, December 1985.

[GMPS90] P. E. Gill, W. Murray, D. B. Ponceleón and M. A. Saunders (1990). Precondition-
ers for indefinite systems arising in optimization, Report SOL 90-8, Department of
Operations Research, Stanford University, Stanford, CA.

[GMPS91] P. E. Gill, W. Murray, D. B. Ponceleón and M. A. Saunders (1991). Primal-dual meth-
ods for linear programming, Report SOL 91-3, Department of Operations Research,
Stanford University, Stanford, CA.

[GMSTW86] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and M. H. Wright (1986).
On projected Newton barrier methods for linear programming and an equivalence to
Karmarkar’s projective method, Mathematical Programming 36, 183–209.

[GMSW89] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright (1989). A practical anti-
cycling procedure for linearly constrained optimization, Mathematical Programming

45, 437–474.

References 23

[Grc90] J. F. Grcar (1990). Matrix stretching for linear equations, Report SAND90-8723,
Sandia National Laboratories, Albuquerque, NM.

[JSS90] F. Jarre, G. Sonnevend and J. Stoer (1990). On the complexity of a numerical algo-
rithm for solving generalized convex quadratic programs by following a central path,
Contemporary Mathematics 114, 233–242.

[KLSW89] N. K. Karmarkar, J. C. Lagarias, L. Slutsman and P. Wang (1989). Power-series
variants of Karmarkar-type algorithms, AT&T Technical Journal 68, 3, 20–36.

[KMY88] M. Kojima, S. Mizuno and A. Yoshise (1988). A primal-dual interior-point algorithm
for linear programming, in N. Megiddo (ed.), Progress in Mathematical Programming,
Springer-Verlag, NY, 29–48.

[LMS89] I. J. Lustig, R. E. Marsten and D. F. Shanno (1989). Computational experience
with a primal-dual interior-point method for linear programming, Report SOR 89-
17, Department of Civil Engineering and Operations Research, Princeton University,
Princeton, NJ.

[LMS90] I. J. Lustig, R. E. Marsten and D. F. Shanno (1990). On implementing Mehrotra’s
predictor-corrector interior-point method for linear programming, Report SOR 90-
3, Department of Civil Engineering and Operations Research, Princeton University,
Princeton, NJ.

[LMC89] I. J. Lustig, J. M. Mulvey and T. J. Carpenter (1989). Formulating stochastic pro-
grams for interior-point methods, Report SOR 89-16, Department of Civil Engineer-
ing and Operations Research, Princeton University, Princeton, NJ.

[Man84] O. L. Mangasarian (1984). Normal solutions of linear programs, Mathematical Pro-

gramming Study 22, 206–216.

[MM79] O. L. Mangasarian and R. R. Meyer (1979). Nonlinear perturbation of linear pro-
grams, SIAM Journal of Control and Optimization 17, 745–757.

[Marx89] A. Marxen (1989). Primal Barrier Methods for Linear Programming, Ph.D. Thesis,
Department of Operations Research, Stanford University, Stanford, CA.

[MMS89] K. A. McShane, C. L. Monma and D. F. Shanno (1989). An implementation of a
primal-dual interior point method for linear programming, ORSA Journal on Com-

puting 1, 70–83.

[Meg86] N. Megiddo (1986). Pathways to the optimal set in linear programming, in N. Megiddo
(ed.), Progress in Mathematical Programming, Springer-Verlag, New York, 131–158.

[Meh89] S. Mehrotra (1989). On finding a vertex solution using interior-point methods, Report
89-22, Department of Industrial Engineering and Management Sciences, Northwest-
ern University, Evanston, IL.

[Meh90] S. Mehrotra (1990). On the implementation of a primal-dual interior-point method,
Report 90-03, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL.

[Meh91] S. Mehrotra (1991). Handling free variables in interior methods, Report 91-06, De-
partment of Industrial Engineering and Management Sciences, Northwestern Univer-
sity, Evanston, IL.

[MLB87] C. Moler, J. Little and S. Bangert (1987). PRO-MATLAB User’s Guide, The Math-
Works, Inc., Sherborn, MA.

[MA89] R. D. C. Monteiro and I. Adler (1989). Interior path-following primal-dual algorithms.
Part II: Convex quadratic programming, Mathematical Programming 44, 43–66.

[MAR88] R. D. C. Monteiro, I. Adler and M. G. C. Resende (1988). A polynomial-time primal-
dual affine scaling algorithm for linear and convex quadratic programming and its
power-series extension, Report ESRC 88-8, Department of Industrial Engineering and
Operations Research, University of California at Berkeley, Berkeley, CA.

References 24

[MS87] B. A. Murtagh and M. A. Saunders (1987). MINOS 5.1 User’s Guide, Report SOL
83-20R, Department of Operations Research, Stanford University, Stanford, CA.

[Pon90] D. B. Ponceleón (1990). Barrier Methods for Large-Scale Quadratic Programming,
Ph.D. Thesis, Computer Science Department, Stanford University, Stanford, CA.

[Roc76] R. T. Rockafellar (1976). Monotone operators and the proximal-point algorithm,
SIAM Journal on Control and Optimization 14, 877–898.

[Set89] R. Setiono (1989). An interior dual proximal-point algorithm for linear programs,
Report 879, Computer Sciences Department, University of Wisconsin, Madison, WI.

[Set90a] R. Setiono (1990). Interior proximal-point algorithm for linear programs, Report 949,
Computer Sciences Department, University of Wisconsin, Madison, WI.

[Set90b] R. Setiono (1990). Interior dual least 2-norm algorithm for linear programs, Report
950, Computer Sciences Department, University of Wisconsin, Madison, WI.

[Set90c] R. Setiono (1990). Interior dual proximal point algorithm using preconditioned conju-
gate gradient, Report 951, Computer Sciences Department, University of Wisconsin,
Madison, WI.

[Tur90] K. Turner (1990). Computing projections for the Karmarkar algorithm, Report 49,
Department of Mathematics and Statistics, Utah State University, UT.

[Van90a] R. J. Vanderbei (1990). ALPO: Another Linear Program Solver, Technical Report,
AT&T Bell Laboratories, Murray Hill, NJ.

[Van90b] R. J. Vanderbei (1990). Splitting dense columns in sparse linear systems, Technical
Report, AT&T Bell Laboratories, Murray Hill, NJ.

[Van91] R. J. Vanderbei (1991). Symmetric quasi-definite matrices, Report SOR 91-10, De-
partment of Civil Engineering and Operations Research, Princeton University, Prince-
ton, NJ.

[VC91] R. J. Vanderbei and T. J. Carpenter (1991). Symmetric indefinite systems for interior-
point methods, Report SOR 91-7, Department of Civil Engineering and Operations
Research, Princeton University, Princeton, NJ.

