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Abstract. This paper concerns general (nonconvex) nonlinear optimization when first and
second derivatives of the objective and constraint functions are available. The proposed method
is based on finding an approximate solution of a sequence of unconstrained subproblems pa-
rameterized by a scalar parameter. The objective function of each unconstrained subproblem
is an augmented penalty-barrier function that involves both primal and dual variables. Each
subproblem is solved using a second-derivative Newton-type method that employs a combined
trust region and line search strategy to ensure global convergence. It is shown that the trust-
region step can be computed by factorizing a sequence of systems with diagonally-modified
primal-dual structure, where the inertia of these systems can be determined without recourse
to a special factorization method. This has the benefit that off-the-shelf linear system soft-
ware can be used at all times, allowing the straightforward extension to large-scale problems.
Numerical results are given for problems in the COPS test collection.

Key words. nonlinear optimization – constrained minimization – primal-dual
methods – interior methods – trust-region methods

1. Introduction

This paper concerns methods for solving the nonlinear programming problem:

(NP) minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E , and ci(x) ≥ 0, i ∈ I,

where c(x) is an m-vector of nonlinear constraint functions with ith component
ci(x), i = 1, . . . , m, and E and I are nonintersecting index sets. It is assumed
throughout that f and c are twice-continuously differentiable.

Under certain conditions (see e.g. [19, 26, 60, 64]), the first-order optimality
conditions for (NP) may be perturbed by a positive parameter µ in such a way
that the perturbed conditions define a differentiable trajectory or central path
of solutions that passes through the solution as µ → 0. Primal-dual interior
methods attempt to follow this path by applying a form of Newton’s method to
the perturbed system while maintaining strictly feasible estimates of the primal
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and dual variables. In this form, primal-dual methods have a two-level structure
of inner and outer iterations: the inner iterations correspond to the iterations of
Newton’s method, and the outer iterations test for convergence and (if necessary)
adjust the value of µ.

Primal-dual methods exhibit excellent performance in the neighborhood of
a solution. In particular, under the assumption of strict complementarity and a
suitable constraint qualification, the inner iterations can be terminated in such
a way that the combined sequence of inner iterates converges to x∗ at a Q-
superlinear rate; see, e.g., [38, 63, 66, 67]. Notwithstanding this excellent local
convergence, the efficiency and reliability of primal-dual methods for general
nonconvex problems are significantly affected by the following four related issues:
(i) the method used to handle nonlinear equality constraints; (ii) the scheme used
to ensure progress toward the solution; (iii) the formulation and solution of the
linear system for the Newton step; and (iv) the treatment of nonconvexity.

Forsgren and Gill [23] introduced a primal-dual interior-point method based
on minimizing an augmented penalty-barrier function. They further show how
to globalize this method using a line search and an inertia-controlling factoriza-
tion of the primal-dual matrix. In this paper we present a primal-dual method
that is also based on minimizing the Forsgren-Gill penalty-barrier function. A
combination trust-region technique, based on one of several algorithms given in
Gertz [32], is used to handle nonconvexity and ensure convergence. The proposed
method has several advantages:

– it may be implemented using off-the-shelf direct linear solvers;
– it requires only a modest number of factorizations;
– it has strong convergence theory; and
– it may be used to implement algorithms that maintain feasibility with respect

to nonlinear inequality constraints.

In Section 2 we discuss how the trust-region subproblem may be solved by
factoring matrices with the same structure as the primal-dual matrices. No spe-
cial factorization need be used for the nonconvex case and hence the system
can be solved by a range of efficient off-the-shelf direct solvers, or by methods
tailored to particular applications.

In Section 3 we describe the combination trust-region line-search algorithm,
which combines the best practical elements of line-search and trust-region algo-
rithms without jeopardizing the strong convergence theory. The new method is
particularly well-suited to an interior-point algorithm that maintains feasibility
with respect to nonlinear inequality constraints. With conventional trust-region
algorithms, the discovery that a trial step is infeasible typically requires a reduc-
tion in the trust-region radius and the solution of a new trust-region subproblem.
Since a primal-dual system must be refactorized for each new subproblem, this
can result in a significant cost per iteration. By contrast, the new method com-
putes an improved primal-dual iterate every time a trust-region subproblem is
solved.

Section 4 is devoted to the convergence theory of the new method. We show
that under suitable conditions, the sequence of inner iterations converges to a
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point that satisfies the second-order necessary conditions for a minimizer of the
Forsgren-Gill barrier-penalty function. Since this function is minimized at every
point on the trajectory, the results provide the theoretical basis for an algorithm
that converges to points satisfying the second-order necessary conditions for a
minimizer of (NP) (see [33]).

In Section 5 we describe how to solve the primal-dual trust-region subprob-
lem using a modified version of an algorithm due to Moré and Sorensen [45].
On average, this algorithm requires few matrix factorizations per trust-region
solve and hence provides a practical way of implementing the algorithm given
in this paper. In Section 6 we present numerical results obtained by applying
a preliminary implementation of the primal-dual algorithm to a set of general
nonlinear problems.

1.1. Related work

We now summarize some related work on primal-dual interior-point algorithms
for nonlinear programming. These methods are an active field of research, and
we are only able to touch on some of the current work here. For a more complete
survey, see Forsgren, Gill and Wright [26].

Some of the earliest primal-dual interior algorithms for general nonlinear
problems were modeled on methods for convex programming. In the convex case
the linearized primal-dual equations provide a direction for a line search on the
two-norm of the residuals of the perturbed equations (see, e.g., [18, 63]). In this
situation, the normed residuals define a merit function whose value provides a
measure of the proximity of an iterate to the solution.

Barrier-SQP methods are specifically designed for problems with a mixture
of inequality and equality constraints and have their roots in general nonlinear
programming. Barrier-SQP methods can be derived by interpreting the per-
turbed primal-dual system as the first-order optimality conditions for the min-
imization of a logarithmic barrier function subject to the original equality con-
straints (see Section 1.4). This equality constrained problem can then be solved
using either a line-search or trust-region SQP method. Argaez and Tapia [2]
propose a line-search barrier-SQP method in which the merit function includes
an augmented Lagrangian term for the equality constraints. Gay, Overton and
Wright [31] also use a combined augmented Lagrangian and logarithmic barrier
merit function, but propose the use of a modified Cholesky factorization of the
condensed Hessian (see Section 1.5) to handle nonconvex problems. The soft-
ware package Loqo [4, 53, 57] is based an a barrier-SQP algorithm that uses
a direct factorization to solve the full primal-dual Newton system. Loqo uses
a line search to reduce a conventional penalty-barrier function (see Fiacco and
McCormick [19]) and the Hessian of the Lagrangian is modified by a positive
multiple of the identity if it appears that the problem is not locally convex.

Trust-region barrier-SQP methods are largely based on the Byrd-Omojokun
algorithm [8, 47], which uses different trust-regions to control the normal and
tangential components of the SQP search direction (see, e.g., [9, 10, 14, 59]).
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Yabe, Yamashita, Tanabe [65] use a trust-region approach based on a merit
function that includes equalities as an `1 penalty term. The code Knitro is a
trust-region barrier-SQP method that uses an exact `2 merit function together
with the conjugate-gradient method for finding approximate solutions of the
normal and tangential trust-region subproblems [9, 10, 59]. Conn, Gould, Orban
and Toint [12] propose a method for linear equality and nonlinear inequality con-
straints that uses the logarithmic barrier function in conjunction with a weighted
two-norm trust region method (also, see Gonn, Gould and Toint [13]).

Methods that use the logarithmic barrier function to handle inequalities in
the merit function must use a separate procedure to safeguard the dual variables
because the dual variables do not appear in the merit function. For example, in
Conn et. al. [12], after the primal variables have been updated by the trust-region
subproblem, the dual variables are updated by a separate procedure that ensures
progress towards the trajectory. By contrast, the line-search method of Forsgren
and Gill [23] minimizes an augmented penalty-barrier function with respect to
both the primal and dual variables. The formulation of an appropriate quadratic
model based on this augmented function leads to a symmetric indefinite system
that is identical to the conventional primal-dual system. Nonconvexity is handled
using an inertia-controlling symmetric indefinite factorization (for more details,
see Section 1.6 and Forsgren [22]).

A quite different procedure for forcing convergence is to use a filter, first
proposed by Fletcher and Leyffer [21] in the context of SQP methods. A filter
is a set of objective pairs that represents the Pareto frontier of best points for
a bi-objective optimization problem. There are a number of different ways to
define the filter in the primal-dual context, but a common choice is to use the
norm of the Lagrangian gradient and the norm of the distance to the trajectory.
At each inner iteration a line-search or trust-region algorithm is used to obtain
a new entry for the filter. At each step, filter elements with objective pairs that
are both worse than those at the new point are removed from the filter. For more
details, see [3, 56, 58].

1.2. Notation

The gradient of f(x) is denoted by ∇f(x), and the m × n Jacobian of c(x) is
denoted by J(x). Unless explicitly indicated, ‖ · ‖ denotes the vector two-norm
or its subordinate matrix norm. The least eigenvalue of a symmetric matrix
A will be denoted by λmin(A). Given a real symmetric matrix A, the inertia of
A—denoted by In(A)—is the associated integer triple (a+, a−, a0) indicating the
number of positive, negative and zero eigenvalues of A. An infinite sequence of
matrices {Aj} is considered to be bounded if the sequence {‖Aj‖} is bounded.
Given vectors x and y of dimension nx and ny, the (nx +ny)-vector of elements
of x augmented by elements of y is denoted by (x, y).

Following common usage in the interior-point literature, if a vector is denoted
by a lower-case letter, the same upper-case letter denotes the diagonal matrix
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whose elements are those of the vector, so that V = diag(v). Finally, e denotes
the vector of all ones whose dimension is determined by the context.

Let {αj}j≥0 be a sequence of scalars, vectors or matrices and let {βj}j≥0

be a sequence of positive scalars. If there exists a positive constant γ such that
‖αj‖ ≤ γβj , we write αj = O

(
βj

)
. If there exist positive constants γ1 and γ2

such that γ1βj ≤ ‖αj‖ ≤ γ2βj , we write αj = Θ
(
βj

)
.

1.3. Optimality conditions

Subject to a constraint qualification (see, e.g., [20], [36], and [46, Chapter 12])
the first-order necessary optimality conditions for problem (NP) state that at
an optimal solution x∗ there must exist an m-vector y∗ of Lagrange multipliers
such that

∇f(x∗)− J(x∗)T y∗ = 0, ci(x∗)y
∗
i = 0, i ∈ I, ci(x∗) = 0, i ∈ E ,
y∗i ≥ 0, i ∈ I, ci(x∗) ≥ 0, i ∈ I.

If we associate each constraint function ci(x) with a value zi = zi(yi) such that
zi = 1 for i ∈ E , and zi = yi for i ∈ I, then we can write these conditions in the
compact form F∞(x∗, y∗) = 0, and y∗i ≥ 0, ci(x∗) ≥ 0 for i ∈ I, where F∞(x, y)
is the vector-valued function

F∞(x, y) =

(
∇f(x)− J(x)T y

C(x)z(y)

)
, (1.1)

and C(x) = diag
(
c1(x), c2(x), . . . , cm(x)

)
.

1.4. Primal-dual methods

Primal-dual methods can be interpreted as solving a sequence of nonlinear
systems in which each condition ci(x)yi = 0, i ∈ I in (1.1) is perturbed as
ci(x)yi = µ for some small positive µ. This allows the perturbed equations to
be solved using a form of Newton’s method in which x and y are chosen to be
interior for the inequalities ci(x) > 0 and yi > 0 for i ∈ I (see Section 1.5).
The perturbed equations can also be interpreted as the first-order optimality
conditions for the equality constrained problem

minimize
x∈Rn

f(x)− µ
∑
i∈I

ln ci(x), subject to ci(x) = 0, i ∈ E , (1.2)

with Lagrange multipliers for the inequalities being defined as yi = µ/ci(x) for
i ∈ I. Barrier-SQP methods exploit this interpretation by replacing the general
mixed-constraint problem (NP) by a sequence of equality constraint problems in
which the inequalities are eliminated using a logarithmic barrier transformation
(see, e.g., [2, 9, 12, 14, 31, 57]).
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The methods considered in this paper involve a perturbation of the equality
constraints as well as the inequality constraints. The perturbation replaces all
equalities ci(x) = 0 by ci(x) + µyi = 0 (see, for instance, Gould [37] and Pow-
ell [49]). Here, for simplicity, the same perturbation is used for both equalities
and inequalities, but in practice a different perturbation is used—see Section 6.
If both equalities and inequalities are perturbed, we obtain a system of n + m
nonlinear equations Fµ(x, y) = 0 such that

Fµ(x, y) =

(
∇f(x)− J(x)T y

r(x, y)

)
, (1.3)

where r(x, y) is an m-vector with components ri(x, y) = ci(x) + µyi for i ∈ E ,
and ri(x, y) = ci(x)yi − µ for i ∈ I. In this case, the identity Fµ(x, y) = 0
can be interpreted as the first-order optimality conditions for the unconstrained
penalty-barrier problem [19]:

minimize
x∈Rn

Bµ(x) = f(x)− µ
∑
i∈I

ln ci(x) +
1
2µ

∑
i∈E

ci(x)2. (1.4)

Perturbing the equality constraints has the benefit of regularizing the problem,
in the sense that as long as µ is nonzero, the equality-constraint Jacobian need
not have full rank. (For a discussion of the role of regularization in linear and
quadratic programming, see, e.g., [34, 35]).

If the second-order sufficient conditions hold and the gradients of the active
constraints are linearly independent, then for µ sufficiently small, a differentiable
primal-dual trajectory of solutions

(
x(µ), y(µ)

)
exists and converges to

(
x∗, y∗

)
as µ → 0+. Primal-dual interior methods attempt to follow this trajectory by
finding an approximate solution of Fµ(x, y) = 0 for a positive sequence of µ-
values that decreases monotonically to zero.

Algorithm 1.1 gives a generic primal-dual iteration for problem (NP). The
quantity F (k)(x, y) is used to denote the residual function Fµ(x, y) for the par-
ticular value µ = µ(k). An inner iterate

(
x, y
)

is considered to be an accept-
able approximate zero of Fµ if t

(
x, y, µ

)
≤ µ, where t

(
x, y, µ

)
is a nonnega-

tive function such that: (i) ‖Fµ(x, y)‖ ≤ µ(k) implies t
(
x, y, µ

)
≤ µ(k); and (ii)

as µ(k) → 0+, convergence of { t
(
x(k), y(k), µ(k)

)
} to zero implies convergence

of {F∞(x(k), y(k)) } to zero. The simple choice of t
(
x, y, µ

)
= ‖Fµ(x, y)‖∞ is

suitable for theoretical purposes, but other choices may be better for practical
computation (see Section 6.2 for another definition). Note that the termina-
tion criterion is loose for early iterates, but becomes progressively tighter as the
iterations proceed.

Algorithm 1.1. Generic Primal-Dual Iteration.
Specify parameters µ(0), tol and kmax;
Choose x(0), y(0);
k ← 1;
repeat
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Inner iteration: Find (x(k), y(k)) so that
t
(
x(k), y(k), µ(k)

)
≤ µ(k) or ‖F∞(x(k), y(k))‖∞ ≤ tol ;

converged ← {‖F∞(x(k), y(k))‖ ≤ tol};
if not converged then

Choose µ(k+1) < µ(k).
end if
k ← k + 1;

until converged or k > kmax;

Ideally, one would choose a sequence {µ(k)} that converges to zero at a super-
linear rate. This was shown by Zhang, Tapia and Dennis [68] to be a necessary
condition for superlinear convergence of the iterates

(
x(k), y(k)

)
. In practice,

however, a fast linear reduction of µ(k) will serve just as well, because the cost of
computing the final iterates is typically much less than the cost of computing the
initial iterates. A suitable rule for choosing {µ(k)} is discussed in Section 6. The
method for finding an acceptable inner iterate (x(k), y(k)) is given in Section 3.

The emphasis of this paper is on a provably convergent method for generating
the inner iterates. Accordingly, we do not consider the affect of the choice of µ
update on the global convergence of the outer iterations. We defer such issues
to a later paper.

1.5. Definition of the inner iterations

In this section we focus on the inner iteration. Since the discussion involves
calculations associated with a fixed µ, the superscript k will be omitted for the
remainder of the section. Let v denote the n+m vector of the combined unknowns
(x, y) at an interior point, i.e., a point such that ci(x) > 0 and yi > 0 for i ∈ I.
If Fµ(v) denotes the function Fµ(x, y), then a Newton direction ∆v = (∆x,∆y)
is defined by the Newton equations Fµ(v)′∆v = −Fµ(v). It is convenient to
write these equations in terms of the vector πµ(x) of primal multipliers, which
has components:

πµ
i (x) =

{
−ci(x)/µ for i ∈ E ,
µ/ci(x) for i ∈ I. (1.5)

This definition implies that the Newton equations may be expressed as(
H(x, y) −J(x)T

Z(y)J(x) Γ

)(
∆x

∆y

)
= −

(
∇f(x)− J(x)T y

Γ
(
y − πµ(x)

) ) , (1.6)

where Γ = diag(γ1, γ2, . . . , γm), with γi = ci(x) for i ∈ I and γi = µ for i ∈ E ,
and H(x, y) denotes the Hessian of the Lagrangian with respect to x, i.e., the
matrix H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

As described above, primal-dual methods have a two-level structure of inner
and outer iterations, with the inner iterations corresponding to the iterations of
Newton’s method. The cost of a primal-dual iteration is dominated by the cost of
solving the linear system (1.6), and effective sparse linear system software is the
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key to efficiency for large problems. Since Z and Γ are invertible at an interior
point, one approach is to use block elimination to obtain a smaller “condensed”
system with matrix H+JTW−1J , where W = Z−1Γ . This system can be solved
by either a direct or iterative method. At points near a trajectory of minimiz-
ers, H + JTW−1J is positive semidefinite and off-the-shelf sparse Cholesky or
preconditioned conjugate-gradient software can be used.

An alternative approach is to use a direct solver for the full (n+m)×(n+m)
system. The efficiency of a direct sparse solver should be less dependent on
H + JTW−1J being sparse (see, e.g., [29, 34]). In this situation it is customary
to symmetrize the system so that a symmetric solver can be used. For example,
an equivalent symmetric form of (1.6) is(

H JT

J −W

)(
∆x

−∆y

)
= −

(
∇f − JT y

W (y − π)

)
. (1.7)

(The dependencies on x, y and µ have been suppressed for clarity.) This par-
ticular form of symmetrization gives an ill-conditioned system, but the ill-con-
ditioning is benign as long as certain direct methods are used to factorize the
matrix (for more details, see [25, 48, 61, 62]).

To ensure global convergence it is necessary to use a merit function to force
the early iterates towards the trajectory. In the convex case, a typical strategy
is to impose additional conditions on the step length α that ensure a sufficient
reduction of some norm of the residual of the nonlinear equations (1.3), i.e.,
‖Fµ(v + α∆v)‖ < ‖Fµ(v)‖ (see, e.g., [18, 63]). The choice of merit function
for nonconvex problem is considerably more complicated. The merit function
‖Fµ(v)‖ is not suitable in this case because it encourages convergence to points
satisfying the first-order conditions and does not provide a mechanism for using
second-order information. Some merit functions exploit the fact that equations
(1.6) are the optimality conditions for the subproblems generated by an SQP
method for the problem (1.2). This provides the motivation for many algorithms
based on standard line-search or trust-region SQP strategies (see, e.g., [2, 9, 10,
14, 31]). These algorithms usually converge to a second-order point, although
this can be guaranteed for only some of the methods.

In the nonconvex case the situation is complicated by the fact that the so-
lution of (1.6) may not exist or may not be a descent direction for the merit
function. In this case the trust-region or line-search strategy must define (either
implicitly or explicitly) a search direction from a related positive semidefinite
system of the form H̄ + JTW−1J .

1.6. The augmented barrier-penalty function

We now describe the Forsgren-Gill augmented barrier-penalty function and sum-
marize some of its properties. For a more complete description, we refer the
reader to [23].
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If both equality and inequality constraints are perturbed, progress toward a
local minimizer can be obtained by regarding the primal-dual iterates as minimiz-
ing the sequence of barrier-penalty functions Bµ(x), introduced in equation (1.4),
for each value of µ. However, if Bµ(x) is used as a merit function, it does not
provide a measure of progress in the dual variables simply because it does not
have terms involving y. An alternative approach is based on the properties of
the Forsgren-Gill augmented barrier-penalty function:

Mµ(x, y) = f(x)− µ
∑
i∈I

ln ci(x) +
1
2µ

∑
i∈E

ci(x)2

− µ
∑
i∈I

(
ln
(
ci(x)yi

µ

)
+
µ− ci(x)yi

µ

)
+

1
2µ

∑
i∈E

(
ci(x) + µyi

)2
, (1.8)

which is the penalty-barrier function Bµ(x) augmented by a weighted proxim-
ity term that measures the distance of (x, y) to the trajectory

(
x(µ), y(µ)

)
. A

fundamental property of Mµ(x, y) is that it is minimized with respect to both
x and y at any point (x(µ), y(µ)) on the trajectory (see Lemma 4.1 below).
This property suggests that a decrease in Mµ(x, y) may be used as a measure
of progress toward a minimizer of Bµ(x). However, unlike Bµ(x), the function
Mµ(x, y) also measures progress resulting from changes in the dual variables y.

Forsgren and Gill propose a method for computing
(
x(µ), y(µ)

)
based on

the unconstrained minimization ofMµ(x, y). This method uses a direction s in
both the primal and dual variables that is defined in terms of the local quadratic
model Q(s) = gT s+ 1

2s
TBs, where

g =

(
∇f − JT (2π − y)

W (y − π)

)
and B =

(
H + 2JTW−1J JT

J W

)
. (1.9)

The vector g is the gradient of the merit function ∇Mµ written in terms of W
and the primal multipliers π, introduced in (1.7). The matrix B approximates
the Hessian ∇2Mµ in the sense that if

(
x, y
)

=
(
x(µ), y(µ)

)
is a point on the

trajectory, then B = ∇2Mµ and the approximation is exact. It can be shown that
B is positive definite if and only ifH+JTW−1J is positive definite. It follows that
if H +JTW−1J is positive definite, then the solution of the symmetric positive-
definite system Bs = −g is the unique minimizer of Q. The crucial feature
of this choice of B is that s = (∆x,∆y) is also a solution of the primal-dual
system (1.6). This implies that algorithms that solve the primal-dual equations
are implicitly using an approximate Newton method to minimize Mµ.

These properties form the theoretical basis of a line-search method that uses
the solution of the primal-dual system (1.6) as search direction. If B is sufficiently
positive definite, then the search direction is the unique solution of Bs = −g
(equivalent to the primal-dual system (1.6)). Otherwise, the search direction is
a linear combination of two vectors that are by-products of the relevant fac-
torization of (1.7). The first vector is the solution of a related positive-definite
system B̄s = −g, the second vector is a direction of negative curvature for the
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quadratic model Q(s). Methods for obtaining these search directions through
inertia-controlling factorizations are described in [23, 24, 27]. A potential draw-
back of these approaches is that the row and column interchanges needed by the
inertia-controlling factorization interfere with the row and column ordering used
to maintain sparsity in the factors. This gives factors that are generally less
sparse than those obtained by off-the-shelf sparse-matrix software. Moreover,
since a modified factorization algorithm must be used, it is not easy to exploit
state-of-the-art software, or software developed for specific types of advanced
architectures.

In the remainder of this paper we formulate and analyze a primal-dual
method in which the augmented penalty-barrier function is minimized using
a combined trust-region and line search strategy. The proposed method has the
benefit that off-the-shelf linear system software can be used at all times, allowing
the straightforward extension to large-scale problems.

2. Globalization using trust regions

In this section we focus on the inner iteration and describe a trust-region method
that finds an approximate minimizer of the merit function Mµ for a given µ =
µk. As µ is fixed during this process, we will write M = Mµ and B = Bµ

where appropriate. The iterates of the trust-region method will be denoted by
vj = (xj , yj). Similarly, the subscript j will be used to indicate quantities that
have been evaluated at vj (e.g., Hj = H(xj , yj)). The ith element of a vector
associated with iteration j is denoted by the subscript ij (e.g., yij is the ith
element of the dual vector yj).

Consider the quadratic model Qj(s) = gT
j s + 1

2s
TBjs, where gj and Bj are

the quantities (1.9) defined at vj = (xj , yj), i.e.,

gj =

(
∇fj − JT

j (2πj − yj)
Wj(yj − πj)

)
, Bj =

(
Hj + 2JT

j W
−1
j Jj JT

j

Jj Wj

)
.

If Bj is positive definite, the model Qj(s) is minimized by the vector sj satisfying
Bjs = −gj . As discussed in Section 1.4, the system Bjs = −gj is equivalent to
the primal-dual Newton system (1.6) and its symmetrized form(

Hj JT
j

Jj −Wj

)(
∆xj

−∆yj

)
= −

(
∇fj − JT

j yj

Wj(yj − πj)

)
. (2.1)

Trust-region methods minimize a quadratic model of the objective function sub-
ject to a restriction on the length of the step. The algorithm is based on finding
an approximate solution of the trust-region subproblem

minimize
s∈Rn+m

Qj(s) subject to ‖s‖Tj ≤ δj , (2.2)

where ‖ · ‖Tj
denotes the elliptic norm ‖s‖Tj

= (sTTjs)1/2 and δj is the trust-
region radius. The matrix Tj is a block-diagonal matrix of the form Tj =
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diag(Mj , Nj), where Mj and Nj are n×n and m×m symmetric positive-definite
matrices defined below.

Several successful algorithms for solving the trust-region subproblem are
based on the following theorem. (For a proof, see, e.g., Gay [30] and Sorensen [54].)

Theorem 2.1. A vector sj is a global solution of the trust-region subproblem
(2.2) if and only if ‖sj‖Tj

≤ δj and there exists a nonnegative σj such that

(Bj + σjTj)sj = −gj and σj

(
δj − ‖sj‖Tj

)
= 0, (2.3)

with Bj + σjTj positive semidefinite. For any global minimizer sj, the value of
σj is unique. Furthermore, if a global minimum is achieved for more than one
sj, then σj is independent of sj. If Bj + σjTj is positive definite, then the global
solution sj is also unique. ut

Moré and Sorensen [45] define efficient methods for finding an approximate so-
lution of the trust-region subproblem (2.2). Their technique finds an optimal σj

by computing the Cholesky factorization of Bj + σTj for various values of σ. In
Section 3, we describe a modified version of the Moré-Sorensen algorithm that
repeatedly solves systems of the form Bj(σ)∆v = −gj , where

Bj(σ) 4= Bj + σTj =

(
Hj + 2JT

j W
−1
j Jj + σMj JT

j

Jj Wj + σNj

)
. (2.4)

Instead of using the Cholesky algorithm to factorize Bj(σ) directly, we show
that with appropriate choices of Mj and Nj , the solution of Bj(σ)∆v = −gj can
be obtained by solving an equivalent system that has the same “primal-dual”
structure as (1.7). This equivalence can be established by multiplying both sides
of (2.3) by the nonsingular matrix(

I −2JT
j W

−1
j

0 I

)

and symmetrizing. This yields the system(
Hj + σMj JT

j

Jj −Dj(σ)

)(
∆xj

−∆uj

)
= −

(
∇fj − JT

j yj

Wj(yj − πj)

)
, (2.5)

where ∆uj = (I + 2σW−1
j Nj)∆yj and Dj(σ) = (Wj + σNj)(I + 2σW−1

j Nj)−1.
If Nj is chosen to be diagonal, then Dj(σ) is also diagonal, with

dij(σ) = wij

(
wij + σnij

)
/
(
wij + 2σnij

)
,

where wij , nij and dij(σ) denote the ith diagonal elements of Wj , Nj and Dj(σ)
respectively. In particular, if we choose Nj = Wj , then Dj(σ) has the simple
form

dij(σ) = wij

(
1 + σ

)
/
(
1 + 2σ

)
.
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The positive-definite diagonal Mj is arbitrary apart from the requirement
that the sequences {Mj} and {M−1

j } be bounded. In practice Mj = I is an
acceptable choice. When Mj and Nj are diagonal, the matrices of the trust-
region subproblem have the same sparsity pattern as the primal-dual matrix
(2.1).

Let the matrix of equation (2.5) be denoted by Kj(σ), i.e.,

Kj(σ) =

(
Hj + σMj JT

j

Jj −Dj(σ)

)
. (2.6)

A solution of the trust-region subproblem (2.2) is obtained by repeatedly fac-
toring Kj(σ) and solving the system (2.5) for different values of σ. The need to
satisfy the conditions of Theorem 2.1 implies that we are interested in values
of σ for which Bj(σ) is positive semidefinite. The following lemma shows that
the inertia of Bj(σ) (which is not factored explicitly) can be deduced from the
inertia of Kj(σ).

Lemma 2.1. The inertias of the matrices Bj(σ) and Kj(σ) satisfy the identi-
ties:

In
(
Bj(σ)

)
= In

(
Hj + σMj + JT

j Dj(σ)−1Jj

)
+
(
m, 0, 0

)
In
(
Kj(σ)

)
= In

(
Hj + σMj + JT

j Dj(σ)−1Jj

)
+
(
0,m, 0

)
.

Proof. See Forsgren and Gill [23].

Given a symmetric indefinite factorization PTKj(σ)P = LBLT , the number
of negative eigenvalues of Kj(σ) is the number of 2 × 2 blocks and negative
1 × 1 blocks of B (see, e.g., Bunch and Parlett [7], Bunch and Kaufmann [6]).
Lemma 2.1 implies that if Kj(σ) has more than m negative eigenvalues, then
Bj(σ) is not positive semidefinite and σ must be increased.

The matrix associated with the system (2.5) must be refactorized for each
new value of σ and it is important that ∆vj be computed with as few factor-
izations as possible. The combined line-search/trust-region method described in
Section 3 requires significantly fewer factorizations than conventional methods
without sacrificing the strong convergence results (for more details, see Gertz
[32]).

3. The trust-region algorithm

Trust-region algorithms have excellent theoretical properties and work well in
practice. Moreover, a trust-region approach allows the use of standard off-the-
shelf linear solvers, even when the problem is nonconvex. However, trust-region
methods may need the solution of more than one linear system to compute an
inner iterate. Because finding a solution of this linear system can constitute a
significant portion of computing time, performing a line search along the trust-
region step can reduce the number of systems to be solved and hence significantly
reduce the solution time.
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In the case of primal-dual interior-point methods, there is an even more
compelling reason to use a line search in the trust-region subproblem. In this
case, the function being minimized includes a barrier function that is undefined
outside the feasible region. It is not uncommon for the trust-region step to be
rejected simply because it generates an iterate that is infeasible for the inequality
constraints. In terms of additional matrix factorizations, it can be very expensive
to search for a feasible step by repeatedly solving the trust-region subproblem for
smaller values of the trust-region radius. If any of the inequality constraints are
nonlinear, this search can require several iterations. Thus, it seems appropriate
to use a line search to find a step that remains feasible.

Gertz [32] shows that a backtracking line search may be added to a trust-
region algorithm without sacrificing the strong second-order convergence prop-
erties. A simple backtracking line search is considered in this paper, but more
advanced line search techniques are also possible (see Gertz [32] for an algorithm
based on the so-called strong Wolfe conditions).

Given a trust-region solution sj , the backtracking line search finds a step
length αj that satisfies the Armijo-style condition

M(vj)−M(vj + αjsj) ≥ −η1qj(αjsj), (3.1)

where η1 ∈ (0, 1
2 ) and qj(s) denotes the quadratic model

qj(s) = gT
j s+ 1

2 min
(
0, sTBjs

)
. (3.2)

If we define the merit functionM(v) to be positively infinite outside the feasible
region, only strictly feasible steps can satisfy this condition.

If sT
jBjsj ≤ 0 the Armijo-style condition (3.1) is equivalent to the condition

M(vj)−M(vj + αjsj) ≥ −η1Qj(αjsj), (3.3)

where Qj(s) = gT
j s+ 1

2s
TBjs. In this case, the line search success criterion is the

usual trust-region success criterion (M(vj + sj)−M(vj))/Qj(sj) ≥ η1.
If sT

jBjsj > 0, the requirement (3.1) is more stringent than (3.3) and is
likely to have some advantage, particularly when Bj is not a very accurate
approximation to ∇2M(vj). Furthermore, it can be shown that if η1 < 1

2 , then
condition (3.1) does not adversely affect the asymptotic rate of convergence (see
Dennis and Moré [15]).

Another modification of the conventional trust-region algorithm is to reset
yj+1 with the primal multipliers πj+1 if the line search reduces the step. In
particular, if αj < 1, then vj+1 is redefined to be (xj+1, yj+1), where

xj+1 = xj + αj∆xj and yj+1 = π(xj+1). (3.4)

The reset is added for efficiency, and does not effect the theoretical properties
of the algorithm. If αj < 1 the full trust-region step does not decrease M(v)
sufficiently, which may indicate that Qj(s) is not a good model of M(vj +
s) −M(vj). Resetting the multipliers cannot increase the merit function (i.e.,
M(vj+1) ≤ M(vj + αjsj)) and has the benefit of redefining Bj+1 as the merit
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function Hessian ∇2M(vj+1). In effect, the Hessian in the trust-region model is
replaced by the Hessian of the merit function when the reduction in the merit
function is not sufficiently close to the predicted reduction. This can be important
when the iterates vj approach a boundary of the feasible region, where the π(x)
changes very rapidly.

The combined trust-region and backtracking line-search algorithm is defined
as follows (more details on the convergence criterion is given in Section 6.1).

Algorithm 3.1. Armijo Trust-Region Algorithm.
Specify constants 0 < η1 < η2 <

1
2 , 0 < γ2 < 1 < γ3 and 1 ≤ ν < 1/γ2;

j ← 1; δj ← 1; vj ← v0;
while not converged do

Compute sj = (∆xj ,∆yj), an approximate solution to the subproblem (2.2);
ρj ← (M(vj + sj)−M(vj))/qj(sj);
if ρj ≥ η1 then

Successful iteration: vj+1 ← vj + sj ;
if ρj ≥ η2 then Set δj+1 ∈

[
δj ,max(δj , γ3‖sj‖Tj )

]
else δj+1 ← δj ;

else
Find the smallest positive integer ` such that αj = γ`

2 satisfies (3.1);
xj+1 ← xj + αj∆xj ;
Reset multipliers: yj+1 = π(xj+1); vj+1 = (xj+1, yj+1);
Choose δj+1 ∈

[
‖αjsj‖Tj

, ν‖αjsj‖Tj

]
;

end
j ← j + 1;

end

The method for solving the trust-region subproblem provides a step sj satisfying
a positive semidefinite system of the form (Bj + σjT )sj = −gj (for details, see
Section 5). This implies that the trust-region step satisfies gT

j sj ≤ 0 and that
a suitable step αj exists such that (3.1) is satisfied (for a proof, see Moré and
Sorensen [44]).

The constant ν is used to reflect that fact that when the optimal step lies
on the boundary of the trust region, sj can only be computed to within some
tolerance of δj . Typically, sj will satisfy ‖sj‖Tj

≥ (1/ν)δj or sj = −B−1
j gj . In

the algorithm of Section 5, the rule for choosing δj+1 ∈ [‖αjsj‖Tj , ν‖αjsj‖Tj ] is

δj+1 =
{
‖αjsj‖Tj if sj = −B−1

j gj ,

αjδj otherwise.

Algorithm 3.1 is designed to make progress at every iteration—not only for
the successful iterations in which the trust-region step gives an improvement
consistent with the quadratic model. If αj < 1, the resulting step αjsj is unlikely
to minimize Qj(s) subject to the trust-region constraint, but the condition (3.1)
serves to ensure that the new iterate, even if not optimal, makes significant
progress toward a minimizer. The idea is that fewer trust-region subproblems
need be solved, with a corresponding reduction in the number of factorizations
of the primal-dual matrix.
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For efficiency, it is important that the trust-region subproblem (2.2) is not
solved exactly. Given a fixed tolerance τ (0 < τ < 1), an approximate solution
need only satisfy the conditions

Qj(sj) ≤ τQj(sc
j) and ‖sj‖Tj ≤ δj , (3.5)

where sc
j is the scaled Cauchy point, which is defined as the solution of the

problem mins,β{Qj(s) : Tjs = βgj , ‖s‖Tj
≤ δj }. The method described in

Section 5 finds a step sj that satisfies the sufficient decrease conditions

Qj(sj) ≤ τQ∗j and ‖sj‖Tj
≤ δj , (3.6)

where Q∗j is the unique minimum of Qj(s) on { s : ‖s‖Tj
≤ δj }. The required

conditions (3.5) on sj then follow from the inequalities Qj(sj) ≤ τQ∗j ≤ τQj(sc
j).

4. Theoretical discussion

Some care is needed when applying standard convergence results from uncon-
strained optimization to Algorithm 3.1. The merit function and its derivatives
include barrier terms that are not uniformly continuous in the feasible region,
even when the feasible region is compact. In this section the standard uncon-
strained convergence theory is adapted to the barrier case.

First, we investigate the properties of the inequality-constraint proximity
term in the merit function.

Lemma 4.1. The function ψ(ξ) = −µ ln
(
ξ/µ

)
− µ + ξ, defined for ξ > 0, is

strictly convex and nonnegative. The minimizer of ψ(ξ) occurs at ξ = µ with
minimum value ψ(µ) = 0. Furthermore, limξ→0+ ψ(ξ) =∞ and limξ→∞ ψ(ξ) =
∞.

Proof. Differentiating ψ(ξ) twice gives ψ′(ξ) = −µ/ξ + 1 and ψ′′(ξ) = µ/ξ2. It
follows that ψ′(µ) = 0 and ψ′′(ξ) > 0 for all ξ > 0. These conditions imply
that ψ(ξ) is strictly convex and has a unique minimizer at ξ = µ. Because the
minimum value ψ(µ) = 0, the function must be nonnegative. ut

Lemma 4.2. Assume that {ci(xj)} is bounded above for all i ∈ I, and that
{f(xj)} is bounded below. Then, for all i ∈ I:

(a) {ci(xj)} is bounded away from zero;
(b) {ci(xj)yij} is bounded away from zero and bounded above;
(c) {yij} is bounded above; and
(d) ci(xj)/yij = Θ

(
ci(xj)2

)
.

Proof. Let f(xj) ≥ f̄ for all j. Omitting nonnegative quantities and bounding
f(xj) by f̄ in the definition (1.8) ofM yields:

M(x0, y0) >M(xj , yj) ≥ f̄ − µ
∑
i∈I

ln ci(xj).
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Under the assumption that {ci(xj)} is bounded above, this inequality implies
that {ci(xj)} is bounded away from zero.

Similarly, the definition ofM and the properties of ψ yield the inequality

M(x0, y0) >M(xj , yj) ≥ f̄ + ψ
(
ci(xj)yij

)
− µ

∑
i∈I

ln ci(xj) for i ∈ I.

Lemma 4.1 and the bound on {ci(xj)} imply the bound on ci(xj)yij . The upper
bound (c) on yij follows immediately from the bounds (a) and (b).

It follows from part (b) that ci(xj)yij is bounded above and below. Some
simple rearrangement yields the result (d). ut

Corollary 4.1. If {f(xj)} is bounded below and {ci(xj)} is bounded above for
all i ∈ I, then the sequence {W−1/2

j } is bounded.

Proof. For i ∈ E the diagonals of W−1/2
j are constant. For i ∈ I, we have

1/wij = yij/ci(xj) = Θ
(
1/ci(xj)2

)
, (4.1)

and since {ci(xj)} is bounded away from zero, the sequence {1/√wij} is bounded
above. ut

Given the definitions of Bj and Wj :

Bj =

(
Hj + 2JT

j W
−1
j Jj J

T
j

Jj Wj

)
, with wij =

{
µ for i ∈ E ,
ci(xj)/yij for i ∈ I.

Lemma 4.2 and Corollary 4.1 imply that ‖W−1/2
j ‖ is bounded, but that ‖Wj‖,

and hence ‖Bj‖, may grow without bound. This observation leads us to consider
the transformed matrix

T
− 1

2
j BjT

− 1
2

j =

(
M

− 1
2

j (Hj + 2JT
j W

−1
j Jj)M

− 1
2

j M
− 1

2
j JT

j W
− 1

2
j

W
− 1

2
j JjM

− 1
2

j I

)
, (4.2)

which can remain bounded when ‖Bj‖ does not. At each point v = (x, y),
consider the transformed quantities

ĝ(v) = T−
1
2 g and B̂(v) = T−

1
2BT−

1
2 . (4.3)

Practical methods for solving the trust-region subproblem do not perform this
transformation, but it is simpler to work with the rescaled matrix (4.2) when
discussing the theoretical properties of the algorithm. With this notation, the
trust-region subproblem (2.2) may be written in the form

minimize
ŝ∈Rn+m

ĝT
j ŝ+ 1

2 ŝ
TB̂j ŝ subject to ‖ŝ‖ ≤ δj , (4.4)

where ŝ = T
1/2
j s. It will be shown that under suitable conditions, ĝj converges

to zero. This immediately leads to the question of what implications the conver-
gence of ĝj has to the convergence of gj , or for that matter, to the convergence
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of F (k). The relationship turns out to be nontrivial, but suggests that the con-
vergence criterion requiring ‖F (k)‖ to be less than some tolerance is a reasonable
one.

At issue is the convergence of the elements of Wj(yj−πj) associated with the
inequality constraints. These elements are related to the corresponding elements
of F (k) through the relations

rij = ci(xj)yij − µ = yijwij(yij − πij) for i ∈ I. (4.5)

In general, {yij} is not bounded away from zero, which implies that the asso-
ciated element of gj = ∇M can be arbitrarily larger than the corresponding
element of F (k). Fortunately, as the following theorem shows, the situation is
much improved when we work with ĝj instead of gj .

Theorem 4.1. Assume that the sequences {Mj} and {M−1
j } are bounded. If

{f(xj)} is bounded below, {ci(xj)} is bounded above for all i ∈ I, and JT
j (y −

πj) = O
(
‖yj − πj‖

)
, then ĝj = Θ

(
‖Fµ(xj , yj)‖

)
.

Proof. From the definition of ĝ (4.3) we have

ĝj =

(
M

− 1
2

j (∇fj − JT
j (2πj − yj))

W
1
2

j (yj − πj)

)
.

The termination criterion involves the norm of the vector

Fµ(x, y) =

(
∇f(x)− J(x)T y

r(x, y)

)
, where ri(x, y) =

{
ci + µyi for i ∈ E ,
ciyi − µ for i ∈ I.

First, consider the vector r(x, y) of last m components of Fµ(x, y). It will be
shown that

W
1
2

j (yj − πj) = Θ
(
‖r(xj , yj)‖

)
. (4.6)

For i ∈ E , the expression√wij (yij − πij) = (ci(xj) + µyij) /
√
µ derived from the

definition of wij and πij implies that the bound (4.6) holds for these components.
Similarly, for i ∈ I, we have

√
wij (yij − πij) =

ci(xj)yij − µ√
ci(xj)yij

.

In this case, the upper and lower bounds on {ci(xj)yij} established in part (ii)
of Lemma 4.2 imply that (4.6) holds.

Next, consider the first n components of Fµ(x, y). If the sequences {Mj} and
{M−1

j } are bounded then

M
− 1

2
j (∇fj − JT

j (2πj − yj)) = Θ
(
‖∇fj − JT

j (2πj − yj)‖
)
.

The term in parenthesis on the left-hand side can be expanded as

∇fj − JT
j (2πj − yj) = ∇fj − JT

j yj + 2JT
j (yj − πj). (4.7)
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If it can be shown that yij−πij = O
(
|Fµ

n+i(xj , yj)|
)

and yij−πij = O
(
|ĝn+i(vj)|

)
,

then the assumption that JT
j (yj−πj) = O

(
‖yj−πj‖

)
and the relations (4.6) and

(4.7) imply the result. The relations yij−πij = O
(
|Fµ

n+i(xj , yj)|
)

and yij−πij =
O
(
|ĝn+i(vj)|

)
may be verified by substituting the definition of πij ,

yij − πij =
{

(ci(xj) + µyij)/µ for i ∈ E ,
(ci(xj)yij − µ)/ci(xj) for i ∈ I. (4.8)

For i ∈ I, ci(xj) is bounded away from zero and yij − πij = O
(
|Fµ

n+i(xj , yj)|
)
.

On the other hand, for i ∈ E , wij is constant and so yij − πij = O
(
|√wij(yij −

πij)|
)
. Furthermore, as we remarked earlier, equation (4.1) implies that 1/√wij

is bounded, so yij − πij = O
(
|√wij(yij − πij)|

)
, for i ∈ I as well, and thus

yij − πij = O
(
|ĝn+i(vj)|

)
. ut

The assumption that JT
j (yj − πj) = O

(
‖yj − πj‖

)
certainly holds if {Jj} is

bounded. However, the assumption that JT
j (yj − πj) = O

(
‖yj − πj‖

)
is signifi-

cantly weaker than the assumption that {Jj} is bounded.

4.1. First-order analysis

The convergence of Algorithm 3.1 is established using proofs similar to those
given by Gertz [32] for the general unconstrained problem. However, the analysis
is complicated by the need to occasionally reset the multipliers using (3.4). The
possibility of a reset implies that the property ‖vj+1 − vj‖Tj

≤ δj may not hold
at every step. What does remain true, however, is that ‖xj+1−xj‖Mj

≤ δj . This
is sufficient to force convergence because the reset multipliers are a continuous
function of x.

The proposed algorithm conforms to a general framework for proving the con-
vergence of trust-region algorithms that was first presented in the early proofs of
Powell [50, 51]. To fit in this framework, an algorithm must have two properties:

(P1) If {M(vj)} is bounded below and {‖ĝj‖} is bounded away from zero, then
δj → 0 and {vj} converges.

(P2) If {‖ĝj‖} is bounded away from zero and {vj} converges, then δj 6→ 0.

It follows immediately that for any algorithm that satisfies (P1) and (P2), either
{M(vj)} is unbounded below or lim infj→∞ ‖ĝj‖ = 0.

The Cauchy-point condition (3.5) ensures that the approximate solution of
the trust-region subproblem (2.2) satisfies the inequalities:

−Qj(sj) ≥ τ‖ĝj‖min
(
δj , ‖ĝj‖/‖B̂j‖

)
and ‖sj‖Tj

≤ δj . (4.9)

(For a proof, see Powell [50]). This inequality plays a crucial role in the next
lemma, which verifies that Algorithm 3.1 has property (P1).
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Lemma 4.3. Let {vj} be a sequence of iterates generated by Algorithm 3.1
such that {B̂j}, {Mj} and {M−1

j } are bounded. Assume that for each j, the
step sj satisfies the Cauchy-point condition (3.5) and the step length αj satisfies
condition (3.1). Then, if {M(vj)} is bounded below and {‖ĝj‖} is bounded away
from zero, either δj → 0 and {vj} converges, or some vj satisfies the termination
criteria and the algorithm terminates.

Proof. A simple calculation gives

j∑
l=0

M(vl)−M(vl+1) =M(v0)−M(vj+1),

which implies that if the sequence {M(vj)} is bounded below, then the sequence
of partial sums

∑j
l=0M(vl)−M(vl+1) must be bounded above.

Let S denote the set of indices of the successful iterations, i.e.,

S = { j :M(vj)−M(vj + sj) ≥ −η1qj(sj) }.

SinceM(vj)−M(vj+1) ≥ 0 for all j, the sum of a subset of the terms must be
bounded, i.e.,

∑
j∈SM(vj)−M(vj+1) <∞.

Every sj satisfies inequality (4.9), and so, for those iterates with j ∈ S,

M(vj)−M(vj + sj) ≥ −η1qj(sj) ≥ −η1Qj(sj) ≥ η1τ‖ĝj‖min
(
δj , ‖ĝj‖/‖B̂j‖

)
.

Summing over all successful iterations gives∑
j∈S
M(vj)−M(vj+1) ≥ τη1

∑
j∈S
‖ĝj‖min

(
δj , ‖ĝj‖/‖B̂j‖

)
, (4.10)

and hence if ‖ĝj‖ is bounded below and ‖B̂j‖ is bounded above, then
∑

j∈S δj <
∞.

Let ᾱ = νγ2 < 1. Note that δj+1 < ᾱδj whenever j 6∈ S. If there are no
successful iterations, then δj ≤ ᾱj−1δ1, in which case it is clear that

∑
j→∞ δj <

∞. Similarly, if l is the last successful iteration, then for j > l, δj ≤ ᾱj−l−1δl+1.
Again, it follows that

∑
j→∞ δj <∞.

Now suppose that there are an infinite number of successful iterations. Let
i be the index of any successful iteration such that the next iteration is unsuc-
cessful. Let k be an index such that j 6∈ S for i + 1 ≤ j ≤ k. In other words
i+ 1, . . . , k is the largest consecutive sequence of unsuccessful iterations start-
ing at iteration i+ 1. For every index j such that i+ 1 ≤ j ≤ k, it follows that
δj ≤ ᾱj−i−1γ3δi and hence

k∑
j=i+1

δj ≤
k∑

j=i+1

ᾱj−i−1γ3δi ≤ γ3δi

∞∑
j=1

ᾱj =
γ3

1− ᾱ
δi.

This leads to the inequality∑
j→∞

δj ≤
γ3

1− ᾱ
∑
j∈S

δj <∞,
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and it follows immediately that
∑

j→∞ δj <∞ and hence δj → 0.
The boundedness of the sequences {Mj} and {M−1

j } and the implicit bound
‖xj+1 − xj‖Mj

≤ δj imposed by the trust-region constraint implies that {xj}
converges to some limit x̄. Since δj → 0, the updating rules for the trust-region
radius will cause the choice αj < 1 to occur infinitely often. This, in turn, will
cause the multipliers to be reset infinitely often using (3.4). The continuity of
π(x) implies that for any ε > 0, there exists a sufficiently large positive integer
L such that for all j > L for which yj = πj , it holds that ‖π(x̄)−πj‖ < ε/2. The
sequence ‖W−1/2

j ‖ is bounded above and hence, without loss of generality, L is

also sufficiently large that
∑

j>L δj <
1
2 infj ε/‖W−1/2

j ‖. But whenever αj = 1,

‖yj+1−yj‖ < ‖W−1/2
j ‖δj and so we may conclude that for j > L, ‖yj−π(x̄)‖ < ε,

and thus that {vj} converges. ut

The next lemma establishes the conditions under which Algorithm 3.1 has
property (P2).

Lemma 4.4. Let {vj} be a sequence of iterates generated by Algorithm 3.1
such that {B̂j}, {Mj} and {M−1

j } are bounded. Assume that for each j, the
step sj satisfies the Cauchy-point condition (3.5) and the step length αj satisfies
condition (3.1). Then, if {‖ĝj‖} is bounded away from zero and {vj} converges,
then δj 6→ 0.

Proof. We use Taylor’s Theorem to obtain the inequality

|M(vj + sj)−M(vj)− qj(sj)| ≤ ‖sj‖Tj
max

0≤ξ≤1
‖ĝ(vj + ξsj)− ĝ(vj)‖+ 1

2‖sj‖2Tj
‖B̂j‖

≤ δj max
0≤ξ≤1

‖ĝ(vj + ξsj)− ĝ(vj)‖+ 1
2δ

2
j ‖B̂j‖.

Dividing both sides of this inequality by |qj(sj)| and using the definition of ρj

gives

|ρj − 1| ≤ δj
|qj(sj)|

max
0≤ξ≤1

‖ĝ(vj + ξsj)− ĝ(vj)‖+
δ2j

2|qj(sj)|
‖B̂j‖. (4.11)

If {‖ĝj‖} is bounded below and {B̂j} is bounded, then (4.9) implies that for
δj sufficiently small, the inequality |qj(sj)| = −qj(sj) ≥ κδj holds for some
κ > 0. Because {vj} converges, all iterates lie in a compact region in which
ĝ(v) is continuous, and therefore uniformly continuous. We may conclude that
if δj → 0, then

max
0≤ξ≤1

‖ĝ(vj + ξsj)− ĝ(vj))‖ → 0.

Suppose that δj → 0. Inequality (4.11) then implies that ρj → 1. However, the
rules for modifying the trust-region radius imply that if ρj → 1 then δj 6→ 0.
This is a contradiction and it must hold that δj 6→ 0. ut

The preceding lemmas yield the following theorem.
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Theorem 4.2. Let {vj} be a sequence of iterates generated by Algorithm 3.1
such that {B̂j}, {Mj} and {M−1

j } are bounded. Assume that for each j, the
step sj satisfies the Cauchy-point condition (3.5) and the step length αj sat-
isfies condition (3.1). If the sequence {M(vj)} is bounded below, then either
lim infj→∞ ‖ĝj‖ = 0 or some vj satisfies the termination criterion and the algo-
rithm terminates. ut

4.2. Second-order analysis

Further convergence results require the additional assumptions, possibly the
weakest of which is that ĝ(x, y) is uniformly continuous. Here we prefer to make
the assumption that the sequence {xj} lies in a compact region, because ‖xj‖
can be monitored during the course of the computation.

Lemma 4.5. Assume that the iterates {xj} generated by Algorithm 3.1 lie in
a compact region. Then

(a) {ci(xj)} and {yij} are bounded above and bounded away from zero for i ∈ I;
(b) {yj} is bounded;
(c) {(xj , yj)} lies within a compact region; and
(d) {vj + αjsj} lies within a compact region.

Proof. Lemma 4.2 establishes that for i ∈ I, {ci(xj)} is bounded away from
zero and that {yij} is bounded above. Given the assumption that the iterates
{xj} lie in a compact region, the sequence {ci(xj)} is bounded above for all i,
and in particular for i ∈ I. Thus Lemma 4.2 also implies that {yij} is bounded
away from zero for i ∈ I.

Similarly, since each xj lies in a compact set, the sequence {B(xj)} of penalty-
barrier function values (1.4) is bounded below by some B̄ (say). Omitting selected
nonnegative terms from the merit function (1.8) and bounding {B(xj)} from
below by B̄ yields

M(x0, y0) >M(xj , yj) ≥ B̄ +
1
2µ
(
ci(xj) + µyij

)2 for i ∈ E . (4.12)

It follows that {yij} is bounded for i ∈ E . Norm equivalence in finite dimensional
space implies that {yj} is also bounded.

Because the sequences {xj} and {yj} both lie within compact regions of finite
dimensional space, the product sequence {(xj , yj)} must lie within a compact
region of the product space.

Let sj = (∆xj ,∆yj) and note that xj+1 = xj + αj∆xj . Define ζj+1 =
yj + ∆yj . Then the bound (4.12) and the conclusions of this lemma apply to
(xj , ζj) as well as (xj , yj). ut

Note that the bound on {yj} is the bound on a sequence of iterates of Algo-
rithm 3.1 for a fixed value of µ. The Lagrange multipliers of (NP) need not be
bounded.
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Corollary 4.2. Assume that the iterates {xj} generated by Algorithm 3.1 lie in
a compact region, and that the sequences {Mj} and {M−1

j } are bounded. Then

(a) {Wj}, {W−1
j }, {Tj} and {T−1

j } are bounded;
(b) ĝj = Θ

(
‖gj‖

)
; and

(c) B̂j = Θ
(
‖Bj‖

)
with λmin(B̂j) = Θ

(
λmin(Bj)

)
.

Proof. From the definitions (4.3) of ĝ and B̂, we have

ĝj = T
− 1

2
j gj and B̂j = T

− 1
2

j BjT
− 1

2
j , with Tj = diag(Mj ,Wj).

The combined results of Corollary 4.1 and Lemma 4.5 imply that the diagonals
of {Wj} are bounded above and bounded away from zero. The result follows
immediately. ut

Corollary 4.2 implies that under the assumption that the iterates lie in a
compact region, it is no longer necessary to distinguish between gj and ĝj or Bj

and B̂j in the convergence results.

Lemma 4.6. Assume that the iterates {xj} generated by Algorithm 3.1 lie in
a compact region. Then the sequence {(xj , yj)} lies in the interior of a region
within which g(x, y) is uniformly continuous. Moreover, B(x, y) is also uniformly
continuous in the same region and hence {Bj} is bounded.

Proof. As the sequences {ci(xj)} and {yij} are both bounded away from zero
for i ∈ I, all limit points of {(xj , yj)} lie in a region within which g(x, y) is
continuous. Thus, because the closure of {(xj , yj)} is compact, it follows that
supj ‖g(xj , yj)‖ < ∞. Let the value of this supremum be denoted by L. Let
β > 0 be a constant for which ci(xj) > β and yij > β for i ∈ I and any j. Then
for any ε > 0, the set

Ω = { (x, y) : ‖g(x, y)‖ ≤ L+ ε and ci(x) ≥ β, yi ≥ β }

is closed and the sequence {(xj , yj)} lies entirely within its interior. Further-
more, the functions g(x, y) and B(x, y) are continuous at every point in Ω. (The
discontinuities occur at points for which ci(x) = 0 or yi = 0, but none of these
points lie in Ω.)

Because {(xj , yj)} lies within a compact region in finite-dimensional space,
there is a closed ball D centered at the origin that is large enough to contain
{(xj , yj)} entirely within its interior. It follows that the set Ω ∩ D is compact
and {(xj , yj)} lies in its interior. The function g(x, y) is continuous, and hence
uniformly continuous, in the set Ω ∩ D. ut

Under the assumption that {xj} lies in a compact region, we can prove
strong convergence results involving the sequence {Bj}. In particular, it will
be shown that if the trust-region subproblem is solved using the techniques
described in Section 5, then there is a subsequence {(xj , yj)}j∈S of {(xj , yj)}
for which limj∈S ‖gj‖ = 0, and limj∈S λmin(Bj) ≥ 0. It will also be shown that
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this is a strong convergence result on {∇2M(x, y)}, for which {Bj} is a sequence
of approximations.

Algorithms for finding an approximate solution to the trust-region subprob-
lem satisfying condition (3.6) are based on Theorem 2.1, which together with
condition (3.6), provides the following useful bound.

Corollary 4.3. If sj satisfies the trust-region termination condition (3.6) then
−Q(sj) ≥ 1

2τσjδ
2
j . ut

This result is used extensively in the convergence proof of Sorensen [54],
which we follow broadly here. A major difference, however, is that the update
to the trust-region radius is controlled by the ratio

ρj = (M(vj + sj)−M(vj))/qj(sj)

instead of the ratio (M(vj + sj) −M(vj))/Qj(sj) used in conventional trust-
region algorithms. It will be shown that if sj satisfies (3.6) and δj → 0, then

|ρj −Qj(sj)/qj(sj)| → 0. (4.13)

It must be emphasized that the relations derived in the proof of Lemma 4.4
are based on the counter-factual assumption that {‖ĝj‖} is bounded away from
zero, and that (4.13) holds when this assumption is not made. Thus, we require
the following lemma to establish a lower bound on the ratio Qj(sj)/qj(sj).

Lemma 4.7. Let sj be an approximate solution of the trust-region subproblem
satisfying the termination condition (3.6). Then

Qj(sj)
qj(sj)

≥ 1
2
(
1−
√

1− τ
)
. (4.14)

Proof. If sT
jBjsj ≤ 0, the definition of qj(sj) (3.2) implies that Qj(sj)/qj(sj) =

1 and (4.14) follows from the trivial inequality 1 > 1
2

(
1 −
√

1− τ
)
. For the

remainder of the proof, it will be assumed that sT
jBjsj > 0.

If Q∗j = 0, then gj = 0, Bj is positive semidefinite and we assume that the
algorithm terminates. Otherwise, it must hold that Q∗j < 0, in which case the
termination condition (3.6) for the trust-region subproblem guarantees that

0 > τQ∗j ≥ Qj(sj) = gT
j sj + 1

2s
T
jBjsj ≥ gT

j sj ,

and gT
j sj < 0.

The required lower bound on Qj(sj)/qj(αsj) will be derived in terms of the
scalar β that solves the problem

minimize
α

Qj(αsj) subject to ‖αsj‖Tj
≤ ζ, (4.15)

where ζ = ‖sj‖Tj
≤ δj . Under our assumption that sT

j Bjsj > 0, it must hold
that β = −gT

j sj/s
T
j Bjsj if −gT

j sj ≤ sT
j Bjsj , and β = 1 otherwise. In either

case, β must satisfy the inequalities β ≤ 1 and β ≤ −gT
j sj/s

T
j Bjsj .



24 E. Michael Gertz, Philip E. Gill

The termination condition (3.6) ensures that Qj(sj) ≤ τQ∗j ≤ τQj(βsj).
Focusing on the inequality Qj(sj) ≤ τQj(βsj) yields

Qj(sj) ≤ τQj(βsj) = τ(βgT
j sj + 1

2β
2sT

jBjsj) ≤ 1
2τβg

T
j sj , (4.16)

with the last inequality being a consequence of the bound β ≤ −gT
j sj/s

T
j Bjsj .

Dividing each of these inequalities by qj(sj) = gT
j sj < 0, we arrive at the in-

equality
Qj(sj)/qj(sj) ≥ 1

2τβ, (4.17)

and it remains to find a lower bound on β. The value of β will depend upon
whether β is a constrained or unconstrained solution of (4.15). If β = 1, then
Qj(sj)/qj(sj) ≥ 1

2τ ≥
1
2 (1 −

√
1− τ), as required. On the other hand, if β =

−gT
j sj/s

T
j Bjsj , then the inequalities (4.16) imply that βQj(sj) ≤ 1

2τβ
2gT

j sj ,
which leads to the inequality

βgT
j sj + 1

2βs
T
jBjsj ≤ 1

2τβ
2gT

j sj .

Substituting −gT
j sj for βsT

j Bjsj and canceling the (necessarily negative) term
gT

j sj gives 1
2τβ

2 − β + 1
2 ≤ 0, which implies

1−
√

1− τ
τ

≤ β ≤ 1 +
√

1− τ
τ

.

Using the lower bound on β in (4.17) yields the result (4.14). ut

Theorem 4.3. Assume that the sequence {xj} generated by Algorithm 3.1 lies
in a compact region, and that limj→∞ ‖Bj − ∇2M(vj)‖ = 0. Suppose that for
each j, the step sj satisfies the termination criteria (3.6) with gT

j sj ≤ 0, and the
step length αj satisfies the line search criterion (3.1) with η1 chosen such that
η1 <

1
2 (1−

√
1− τ). Then either some vj satisfies the termination criteria and

the algorithm terminates or lim supj→∞ λmin

(
∇2M(vj)

)
≥ 0.

Proof. Let S = { j :
(
M(vj + sj) − M(vj)

)
/qj(sj) ≥ η1 } denote the set of

indices of the successful iterations. The definition (3.2) of qj(sj) implies that
qj(sj) ≤ Qj(sj), which allows us to extend the inequality of Corollary 4.3 so
that

−qj(sj) ≥
τ

2
σjδ

2
j . (4.18)

It follows that for the successful iterations

M(vj)−M(vj + sj) ≥ −η1qj(sj) ≥
τ

2
η1σjδ

2
j . (4.19)

Suppose that {σj} is bounded away from zero. If the set S is infinite, then
because {M(vj)} is decreasing and bounded below, the inequality (4.19) implies
limj∈S, j→∞ δj = 0. If m 6∈ S, let l < m be the largest predecessor of m that is
in S. In other words, l ∈ S and j 6∈ S for l < j < m. Then δm ≤ γ3δl. It follows
that if S is infinite, then limj→∞ δj = 0. On the other hand, if S is finite, then
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for sufficiently large j, δj+1 ≤ γ2νδj . Because γ2ν < 1, for this case we also find
that limj→∞ δj = 0.

We now show that if limj→∞ δj = 0 and η1 is chosen such that η1 < 1
2 (1 −√

1− τ), then ρj = (M(vj + sj) −M(vj))/qj(sj) ≥ η1 for j sufficiently large.
By Taylor’s theorem,

|M(vj + sj)−M(vj)−Qj(sj)|
= |M(vj + sj)−M(vj)− gT

j sj − 1
2s

T
jBjsj |

≤ 1
2‖sj‖2

(
max

0≤ξ≤1
‖∇2M(vj + ξsj)−∇2M(vj)‖+ ‖Bj −∇2M(vj)‖

)
≤ 1

2‖T
−1
j ‖

2δ2j
(

max
0≤ξ≤1

‖∇2M(vj + ξsj)−∇2M(vj)‖+ ‖Bj −∇2M(vj)‖
)
.

Dividing both sides of this expression by |qj(sj)| and using the inequality (4.18)
yields

|ρj −Qj(sj)/qj(sj)|

≤
‖T−1

j ‖2

τσj

(
max

0≤ξ≤1
‖∇2M(vj + ξsj)−∇2M(vj)‖+ ‖Bj −∇2M(vj)‖

)
.

By assumption, the sequence {σj} is bounded away from zero, {T−1
j } is bounded

and limj→∞ ‖Bj −∇2M(vj)‖ = 0. It follows that if δj → 0, then ‖sj‖ → 0 and
by the uniform continuity of ∇2M(v) it must hold that

lim
j→∞

|ρj −Qj(sj)/qj(sj)| = 0. (4.20)

This result and Lemma 4.7 imply that if η1 < 1
2 (1 −

√
1− τ), then ρj ≥ η1

for all j sufficiently large. However, the updating rules of Algorithm 3.1 choose
δj+1 ≥ δj if ρj ≥ η1, and so it is not possible for δj → 0. This contradiction
implies that our assumption that σj is bounded away from zero is false, and since
σj ≥ −λmin(Bj), it must hold that lim supj→∞ λmin(Bj) ≥ 0. The assumption
that ‖∇2M(vj)−Bj‖ → 0 now implies that lim supj→∞ λmin

(
∇2M(vj)

)
≥ 0.

ut

It remains to be shown that limj→∞ ‖Bj − ∇2M(vj)‖ = 0. The following
lemma will be of use.

Lemma 4.8. Assume that the sequence {xj} generated by Algorithm 3.1 lies in
a compact region. If limj→∞ ‖gj‖ = 0 then limj→∞ ‖Bj −∇2M(vj)‖ = 0.

Proof. Corollary 4.2 implies that the sequences {Wj} and {W−1
j } are bounded.

It follows from the definition of gj that if limj→∞ ‖gj‖ = 0, then yj → πj .
However, Lemma 4.6 shows that the iterates lie in a region in which B(x, y)
is uniformly continuous, and so the identity B(x, π) = ∇2M(x, π) gives the
required limit limj→∞ ‖Bj −∇2M(vj)‖ = 0. ut
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4.3. Convergence of the gradient

The proof that limj→∞ ‖gj‖ = 0 is arguably the most subtle part of the analysis.
It is an extension of Thomas’ [55] original proof for the conventional trust-region
method. The use of a line search complicates the proof considerably.

In this section, we modify the notation slightly in order to simplify the expo-
sition. The successful iterations of Algorithm 3.1 do not involve a line search, and
as a consequence, a step length is defined only for those iterations for which the
conditionM(vj + sj)−M(vj))/qj(sj) < η1 holds. For the purposes of this sec-
tion, we will associate a step length αj with every iteration, with the assumption
that αj = 1 for the successful iterations.

The main result requires five lemmas.

Lemma 4.9. Assume that the sequence {xj} generated by Algorithm 3.1 lies in
a compact region. Then the sequence {δj} is bounded above.

Proof. From Lemma 4.5, both the sequences {vj} and {vj + αjsj} lie in a
compact region. Thus, there is some ∆ > 0 such that ‖αjsj‖ ≤ ∆ for all j.
But then, since the rule for updating the trust-region radius is to choose δj+1 ≤
max

(
δj , γ3‖αjsj‖Tj

)
, we find that δj ≤ max

(
δ0, γ3∆ supi{‖Ti‖}

)
for all j. By

Corollary 4.2 the sequence {Tj} is bounded, and so the sequence {δj} is bounded
above. ut

Lemma 4.10. Let {vj} be the sequence of iterates generated by Algorithm 3.1
and let {αj} be the corresponding sequence of step lengths. If ᾱ is any number
in the interval (0, 1/ν), then for any iteration for which αj ≥ ᾱ, it holds that

M(vj)−M(vj + αjsj) ≥ η1τᾱ‖ĝj‖min
(
αjδj , αj‖ĝj‖/‖B̂j‖

)
.

Proof. A combination of the inequality −qj(sj) ≥ −Qj(sj), the Cauchy-point
condition (3.5) and the Powell inequality (4.9) yield

−qj(sj) ≥ τ‖ĝj‖min
(
δj , ‖ĝj‖/‖B̂j‖

)
.

Consider the set A = { j : αj ≥ ᾱ }. First, the inequality ᾱ < 1/ν ≤ 1 may
be used to obtain an expression for qj(αjsj) in terms of qj(sj) for all j ∈ A.
If sT

jBjsj ≥ 0, then −qj(αjsj) = −αjg
T
j sj ≥ −ᾱαjqj(sj). Alternatively, if

sT
jBjsj < 0, then

−qj(αjsj) = −αjg
T
j sj − 1

2α
2
js

T
jBjsj ≥ −ᾱαjg

T
j sj − 1

2 ᾱαjs
T
jBjsj = −ᾱαjqj(sj).

In either case, αjsj satisfies the Armijo-style condition (3.1) and

M(vj)−M(vj + αjsj) ≥ η1τᾱ‖ĝj‖min
(
αjδj , αj‖ĝj‖/‖B̂j‖

)
for all j ∈ A. ut

The next lemma considers the properties of a consecutive sequence of iterates
in which ‖g(vj)‖ decreases by a positive amount at least as large as a positive
quantity ε1 − ε2.
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Lemma 4.11. Assume that the sequence {xj} generated by Algorithm 3.1 lies in
a compact region. Choose ε1 > ε2 > 0. For every ε3 > 0 there is an L sufficiently
large that

∑q−1
j=p ‖αjsj‖ < ε3 for all indices q > p ≥ L for which ‖g(vp)‖ > ε1,

‖g(vj)‖ > ε2 for consecutive indices j = p, p+ 1, . . . , q − 1, and ‖g(vq)‖ < ε2.

Proof. Note that if ‖g(vj)‖ > ε1 holds only finitely often, then the lemma is
trivially true. Furthermore, as lim infj→∞ ‖g(vj)‖ = 0, it must hold that for
every iteration p such that ‖g(vp)‖ > ε1, there must exist a subsequent iteration
q such that ‖g(vq)‖ < ε2.

Let ᾱ be any number in the interval (0, 1/ν). Lemma 4.10 implies that for
every index in the set A = { j : αj ≥ ᾱ }, we have

M(vj)−M(vj + αjsj) ≥ η1τᾱ2‖ĝ(vj)‖min
(
δj , ‖ĝ(vj)‖/‖B̂j‖

)
.

Let G(p) = { j : j ≥ p and ‖g(vj)‖ > ε2 }. Because
∑∞

j=1M(vj)−M(vj+1) <∞,∑
j∈A∩G(p)

‖ĝ(vj)‖min
(
δj , ‖ĝ(vj)‖/‖B̂j‖

)
<∞.

By Corollary 4.2, B̂j = Θ
(
‖Bj‖

)
and ĝj = Θ

(
‖gj‖

)
. As {Bj} is bounded, and

‖g(vj)‖ > ε2 for j ∈ G(p), it follows that∑
j∈A∩G(p)

δj <∞. (4.21)

Let J denote the sequence of iteration indices {p, p + 1, . . . , q − 1}. Let
{jk}rk=1 denote the subsequence of J with indices in A. We now partition J
into r+1 nonoverlapping subsequences P0, P1, . . . , Pr with P0 = {p, p+1, . . . ,
j1−1}, Pk = {jk, jk +1, . . . , jk+1−1}, k = 1, 2, . . . , r−1 and Pr = {jr, jr +1,
. . . , q − 1}. Note that if the first index p is in A, then P0 is empty. Otherwise
none of the indices of P0 will be in A. For k > 0, the sequence Pk starts with
an index in A, followed by a (possibly empty) sequence of indices that are not
in A. These definitions allow us to write the quantity to be bounded as

q−1∑
j=p

‖αjsj‖ =
∑
j∈P0

‖αjsj‖+
r∑

k=1

∑
j∈Pk

‖αjsj‖. (4.22)

First we estimate the quantity
∑

j∈P0
‖αjsj‖. If the set P0 is empty, then∑

j∈P0
‖αjsj‖ = 0. Otherwise, αj < ᾱ for every j ∈ P0 and the rules for updating

the trust-region radius give δj+1 ≤ νᾱδj . This gives the sequence of inequalities∑
j∈P0

‖αjsj‖ ≤
∑
j∈P0

ᾱδj ≤ ᾱδp
∞∑

i=0

(νᾱ)i = ᾱ
( 1

1− νᾱ

)
δp ≤ ᾱ

( 1
1− νᾱ

)
δmax,

where δmax is the bound on {δj} established in Lemma 4.9. The scalar ᾱ is
arbitrary and may be chosen sufficiently small that

ᾱ
( 1

1− νᾱ

)
δmax ≤ 1

2ε3, (4.23)
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for any ε3 > 0.
To estimate the terms in (4.22) involving the indices in Pk for k > 0, we

derive the following bound on the sum of trust-region radii:∑
j∈Pk

δj ≤
(
1 +

γ3

1− νᾱ

)
δjk
. (4.24)

For j ∈ Pk \ {jk}, i.e., for every element of Pk except the first, αj < ᾱ and the
rules for updating the trust-region radius give δj+1 ≤ νᾱδj . Thus,

∑
j∈Pk\{jk}

δj ≤ δjk+1

∞∑
i=0

(νᾱ)i =
( 1

1− νᾱ

)
δjk+1. (4.25)

At iteration jk, it is possible that the trust-region will increase, so the appropriate
bound on δjk+1 is δjk+1 ≤ γ3δjk

. Combining this bound with (4.25) yields (4.24).
From the definition of Pk we have∑

j∈Pk

‖αjsj‖ ≤
∑

j∈Pk

δj ≤
(
1 +

γ3

1− νᾱ

)
δjk
.

By construction, jk ∈ A∩ G(p) and we may sum the contributions from each of
the subsequences to give

r∑
k=1

∑
j∈Pk

‖αjsj‖ ≤
(
1 +

γ3

1− νᾱ

) r∑
k=1

δjk
≤
(
1 +

γ3

1− νᾱ

) ∑
j∈A∩G(p)

δj .

Given the value of ᾱ determined by (4.23), the bound (4.21) implies that we
may choose p sufficiently large that(

1 +
γ3

1− νᾱ

) ∑
j∈A∩G(p)

δj <
1
2ε3. (4.26)

But then, from (4.23) and (4.26), we have

q−1∑
j=p

‖αjsj‖ =
∑
j∈P0

‖αjsj‖+
r∑

k=1

∑
j∈Pk

‖αjsj‖ ≤ 1
2ε3 + 1

2ε3 = ε3,

where ε3 may be chosen to be arbitrarily small. ut

The next lemma concerns the limiting behavior of the gradient of the barrier-
penalty function, i.e.,∇B(xj) = ∇f(xj)−J(xj)Tπ(xj), where π(xj) is the vector
of primal multipliers (see (1.4) and (1.5)).

Lemma 4.12. Assume that the sequence {xj} generated by Algorithm 3.1 lies
in a compact region. Then limj→∞ ‖∇B(xj)‖ = 0.
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Proof. First it must be shown that lim infj→∞ ‖∇B(xj)‖ = 0. Theorem 4.2 and
Corollary 4.2 establish that lim infj→∞ ‖g(vj)‖ = 0. It follows from the definition
of g(vj) that there must be a subsequence for which both yj → πj and ∇B(xj)+
JT

j (yj − πj) → 0. The assumption that {xj} lies in a compact region implies
that {Jj} is bounded and so lim infj→∞ ‖∇B(xj)‖ = 0 as required.

If ‖∇B(xj)‖ does not converge to zero, there must exist an ε > 0, such that
‖∇B(xj)‖ > ε infinitely often. Let p be an index such that ‖∇B(xp)‖ > ε and let
q be the smallest index larger than p for which ‖∇B(xp)‖ < 1

2ε. The definition
of g(vj) is such that ‖g(vj)‖ ≥ ‖∇B(xj)‖, and Lemma 4.11 can be applied
to conclude that p may be chosen sufficiently large to make

∑q−1
j=p ‖αjsj‖ (and

hence ‖xp−xq‖) arbitrarily small. The uniform continuity of ∇B(x) implies that
p can be chosen sufficiently large to make ‖∇B(xq) − ∇B(xp)‖ < 1

2ε. This is a
contradiction because

1
2ε < ‖∇B(xq)‖ − ‖∇B(xp)‖ ≤ ‖∇B(xq)−∇B(xp)‖.

We conclude that limj→∞ ‖∇B(xj)‖ = 0. ut

The merit function (1.8) may be written asM(x, y) = B(x)+Ψ(x, y), where
B(x) is the conventional barrier-penalty function (1.4) and Ψ(x, y) is the prox-
imity term

Ψ(x, y) = −µ
∑
i∈I

(
ln
(ci(x)yi

µ

)
+
µ− ci(x)yi

µ

)
+

1
2µ

∑
i∈E

(
ci(x) + µyi

)2
.

The next lemma concerns the behavior of this proximity term when the norm of
the merit function gradient behaves nonmonotonically in the limit. In particular,
it is shown that Ψ(x, y) must increase by at least a fixed value if the merit
gradient norm increases from a small value.

Lemma 4.13. Assume that lim infj→∞ ‖g(vj)‖ = 0 and that there exists a pos-
itive number ε1 such that the relation ‖g(vj)‖ > ε1 holds infinitely often. Then
there exists an ω > 0, a positive ε2 sufficiently small and an index L suffi-
ciently large that if q > p ≥ L with ‖g(vq)‖ > ε1 > ε2 > ‖g(vp)‖, then
Ψ(xq, yq) ≥ Ψ(xp, yp) + ω.

Proof. Theorem 4.1 and Corollary 4.2 imply that gn+i(vj) = Θ
(
|ri(vj)|

)
, where

ri(vj) =
{
ci(xj) + µyij for i ∈ E ,
ci(xj)yij − µ for i ∈ I.

It follows from the assumption ‖g(vp)‖ < ε2 and the definition of Ψ(x, y) in
terms of the elements of r(vj) that we may choose ε2 to make Ψ(x, y) arbitrarily
close to zero.

From the definition of g(v) (1.9) we have

g(vj) =

(
∇fj − JT

j (2πj − yj)
Wj(yj − πj)

)
=

(
∇B(xj) + JT

j (yj − πj)
Wj(yj − πj)

)
,
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and hence taking norms and using the triangle inequality gives

‖Aj(yj − πj)‖ ≥ | ‖g(vj)‖ − ‖∇B(xj)‖ | , where Aj =

(
JT

j

Wj

)
.

Lemma 4.12 indicates that we may choose L sufficiently large that ‖∇B(xj)‖ <
ε2, and thus ‖Aj(yj−πj)‖ ≥ ε1− ε2. Since ‖a‖ ≤

√
n+m ‖a‖∞ for any (n+m)-

vector a, we may infer that at least one element of Aj(yj − πj) must have
magnitude at least (ε1 − ε2)/

√
n+m. This implies that the infinity norm of

Wj(yj − πj) must satisfy

‖Wj(yj − πj)‖∞ ≥ γj
ε1 − ε2√
n+m

,

where γj = min{1, λmin(Wj)/(
√
m‖Jj‖). But {γj} is bounded away from zero.

This implies that Ψ(xq, yq) must have some minimum value. By choosing ε2
sufficiently small, we may make this minimum value greater than the maximum
value for Ψ(xp, yp). ut

Now we come to the main result of this section.

Theorem 4.4. Assume that the sequence {xj} generated by Algorithm 3.1 lies
in a compact region. Then either some vj satisfies the termination criteria and
the algorithm terminates or limj→∞ ‖g(vj)‖ = 0.

Proof. Suppose ‖g(vj)‖ does not converge to zero. Let ε1 > 0 be a number for
which ‖g(vj)‖ > ε1 infinitely often.

Given any ε2 such that ε1 > ε2 > 0, let p be any index such that ‖g(vp)‖ <
ε2, and let q denote the next index greater than p for which ‖g(vq)‖ > ε1.
Similarly, let r be the next index greater than q such that ‖g(vr)‖ < ε2. We
may apply Lemma 4.13 to assert that for p sufficiently large, the proximity
term satisfies Ψ(xq, yq) ≥ Ψ(xp, yp) + ω. The property that the merit function
decreases monotonically implies that M(xq, yq) < M(xp, yp) and it must hold
that B(xq) < B(xp)−ω. But then by Lemma 4.11, we may choose p large enough
to make

∑r
j=q ‖αjsj‖ arbitrarily small. Thus, since B(x) is uniformly continuous,

it must hold that for all sufficiently large choices of p, |B(xr)−B(xq)| < 1
2ω and

hence

B(xr) < B(xp)− 1
2ω.

It follows that each time ‖g(vj)‖ increases from a value less than ε2 to a value
greater than ε1 and then decreases again to a value less than ε2, the barrier-
penalty function must decrease by at least a constant factor. As B(x) is bounded
below in a compact region, the value of ‖g(vj)‖ can exceed ε1 only finitely
often. The assumption that ε1 is arbitrary implies that limj→∞ ‖g(vj)‖ = 0,
as required. ut
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5. Solving the trust-region subproblem

The algorithm for the trust-region subproblem (2.2) is based on the method
of Moré and Sorensen [45], which is in turn a modification of an algorithm by
Gay [30]. In this section, we briefly describe our algorithm and discuss how it
differs from the Moré-Sorensen approach. In the subsections that follow, we omit
the subscript j when considering the details associated with a single trust-region
subproblem.

5.1. Background

The necessary and sufficient conditions of Theorem 2.1 state that s solves the
trust-region subproblem if and only if ‖s‖T ≤ δ and there exists a unique non-
negative scalar σ∗ such that

(B + σ∗T )s = −g and σ∗
(
δ − ‖s‖T

)
= 0. (5.1)

Let ψ(σ) denote the univariate function

ψ(σ) =
1
δ

(
‖pσ‖T − δ

)
, where pσ satisfies (B + σT )pσ = −g. (5.2)

It follows that if λ is the smallest eigenvalue of B̂, i.e., λ = λmin(T−1/2BT−1/2),
then for any σ > −λ the matrix B + σT is positive definite and ψ(σ) is well-
defined. Clearly, if σ is a positive zero of ψ(σ), then s = pσ is a global solution to
the trust-region subproblem. This result is the basis of the method of Hebden [40]
for the case T = I, which employs Newton’s method to find an approximate zero
of ‖pσ‖T − δ. In order to avoid difficulties associated with the singularities of
‖pσ‖T − δ, Reinsch [52] suggests an alternative approach based on finding a zero
of

φ(σ) =
1
δ
− 1
‖pσ‖T

. (5.3)

This function is also used in the safeguarded Newton method of Moré and
Sorensen, which is the basis of the method considered here.

The main properties of φ(σ) are stated without proof in the following lemma.
(For details, see, e.g., Gay [30], and Moré and Sorensen [45].)

Lemma 5.1. Assume that the vector g is nonzero. The function φ(σ) has the
following properties:

(a) φ(σ) is twice continuously differentiable on (−λ,∞);
(b) φ(σ) is strictly decreasing and strictly convex on (−λ,∞);
(c) if limσ→−λ+ φ(σ) > 0, then φ(σ) has a unique zero in (−λ,∞);
(d) limσ→−λ+ φ(σ) ≤ 0 if and only if the linear system (B − λT )p = −g is

compatible. ut
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It is straightforward to verify that if (B−λT )p = −g is compatible then the
vector

p̄ = lim
σ→−λ

−(B + σT )−1g, (5.4)

exists and has finite norm. If ‖p̄‖T < δ, then φ(σ) has no zero in (−λ,∞) and
there are two possibilities. If λ is positive then the pair (σ∗, s) such that σ∗ = 0
and s = −B−1g satisfies the optimality conditions (5.1) because ‖s‖T < ‖p̄‖T <
δ. Otherwise, if λ is negative or zero, then there is a null vector z for B − λT
such that

(B − λT )(p̄+ z) = −g and ‖p̄+ z‖T = δ.

In this case, the optimality conditions (5.1) are satisfied by the pair (σ∗, s) such
that σ∗ = −λ and s = p̄+ z. Moré and Sorensen call the case in which σ∗ = −λ
the “hard case”.

5.2. Approximate solutions of the trust-region subproblem

The Moré-Sorensen method uses a safeguarded Newton iteration to find an ap-
proximate zero of φ(σ). This generates a nonnegative sequence {σi} and an
associated sequence of vectors {pi} such that B + σiT is positive semidefinite
and (B + σiT )pi = −g. For a given σ, the functions φ(σ) and ψ(σ) have the
same sign. Moreover, |ψ(σ)| is a measure of the accuracy of σ as an approximate
zero of φ. Let ε be a fixed scalar such that 0 < ε < 1. Given the sequence {σi},
the scalar σ = σi is considered an approximate zero of φ(σ) (with s = pi the
associated step) if the condition

(C1) |ψ(σi)| ≤ ε.
is satisfied. In addition to this convergence condition, there are two situations
in which the Newton iteration is terminated prior to convergence:

(T1) if σi = 0 and ψ(σi) < ε; or
(T2) if σi > 0, ψ(σi) < −ε and there exists a sufficiently accurate approximate

null-vector zi of B + σiT (see the condition (5.6) below).

When termination occurs because of condition (T1), the scalar σ = 0 and vector
s = pi satisfy the optimality conditions of Theorem 2.1. For condition (T2), the
vector pi associated with the final σi is an approximation to p̄ (see (5.4)) and
the approximate null vector zi is scaled so that ‖pi + zi‖T = δ. In this case, we
define σ = σi and s = pi + zi. Condition (T2) makes the algorithm well-defined
when σ∗ = −λ, and often allows the algorithm to terminate without the need
to compute a zero of φ(σ) to high accuracy.

5.3. Properties of an approximate solution

Given δ and ε, the convergence and termination conditions given in the previous
section provide a nonnegative scalar σ and vector s = p + z that satisfy the
conditions

(B + σT )p = −g and ‖p+ z‖T ≤ (1 + ε)δ, (5.5)



Primal-Dual Trust Region Algorithm 33

where B+σT is positive semidefinite, and the (possibly zero) vector z is chosen
to satisfy the approximate null-vector condition

zTB(σ)z ≤ ε(2− ε)
(
pTB(σ)p+ σδ2

)
. (5.6)

More precisely, if σ = 0, then z = 0 and the upper bound on ‖s‖T is (1− ε)δ; if
σ > 0 and ‖p‖T ≥ (1− ε)δ then z = 0 and (1− ε)δ ≤ ‖s‖T ≤ (1 + ε)δ; finally, if
σ > 0 and ‖p‖T < (1 − ε)δ, then z 6= 0 and ‖s‖T = δ. These inequalities imply
that the parameter ν of Algorithm 3.1 has the value 1/(1− ε).

The next lemma shows that any s satisfying the conditions (5.5) and (5.6)
also satisfies condition (3.6) for a certain τ and related trust-region radius δ̂.

Lemma 5.2. Let ε be a fixed scalar such that 0 < ε < 1. Consider any σ ≥ 0
and vector s = p+z satisfying (5.5) and (5.6) with B+σT positive semidefinite.
Then s satisfies

Q(s) ≤ τQ∗ and ‖s‖T ≤ δ̂, (5.7)

where τ =
(
(1− ε)/(1 + ε)

)2, δ̂ = (1 + ε)δ and Q∗ = min{Q(s) : ‖s‖T ≤ δ̂ }.

Proof. See Moré and Sorensen [45] and Gertz [32]. ut

This result implies that the approximate solution of the trust-region subprob-
lem satisfies the decrease requirement (3.6) with a slightly larger value of the
trust-region radius. Condition (3.6) is simpler to use when proving theoretical
results, but conditions (5.5) and (5.6) are more appropriate for the discussion of
the algorithm for the trust-region subproblem.

5.4. The safeguarded Newton iteration

If g 6= 0, the function φ(σ) is strictly decreasing and strictly convex, and it is
straightforward to verify the following results.

Lemma 5.3. Suppose that there is a σ0 ∈ (−λ,∞) such that φ(σ0) = 0. Let
N (σi) denote the Newton iterate

N (σi) = σi − φ(σi)/φ′(σi)

for some σi ∈ (−λ,∞). Then

(a) if σi 6= σ0, the products φ(σi)(σi − σ0) and ψ(σi)(σi − σ0) are negative;
(b) if σi > σ0 then N (σi) < σ0;
(c) if σi ∈ (−λ, σ0) then N (σi) > σi and N (σi) ∈ (−λ, σ0); and
(d) if σi ∈ (−λ, σ0) then all subsequent Newton iterates increase monotonically

and converge to σ0. ut

Since the termination criteria for the Newton iteration are based on the value
of ψ(σ), we state the next result for both φ and ψ.

Lemma 5.4. Suppose there is no σ0 ∈ (−λ,∞) such that φ(σ0) = 0. If σi > −λ,
then N (σi) < −λ and both φ(σi) and ψ(σi) are negative. ut
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Corollary 5.1. If σ∗ = 0 and σi > 0, then N (σi) < 0 and both φ(σi) and ψ(σi)
are negative. ut

The goal of the safeguarding procedure is to define a valid iterate in situations
where N (σi) < −λ or N (σi) < 0. The safeguarded iteration produces a nested
sequence of half-open intervals {Ji} such that Ji = (ai, bi] with Ji+1 ⊂ Ji. If
N (σi) is not a valid iterate, then σi+1 is chosen as a positive weighted average
of the endpoints ai+1 and bi+1 lying in the interior of Ji+1.

Lemma 5.3 implies that if σ∗ 6= 0 and σ∗ 6= −λ, then there is a nonempty
interval D = (max{ 0,−λ }, σ∗] of desirable starting points for which an unmod-
ified Newton iteration will be well-defined and converge to σ∗. Suppose that D
is nonempty. Then by design there is an interval D̂ ⊂ D of positive length such
that D̂ ⊂ Ji for all i. In Theorem 5.1, it is shown that sequences {Ji} and {σi}
are generated so that if σi 6∈ D, then σi ∈ Ji and bi+2 − ai+2 ≤ γ(bi − ai) for
some 0 < γ < 1. It follows that there is some finite q for which σq ∈ D̂ ⊂ D.
Care must be taken to ensure that the algorithm converges when D is empty;
i.e., when σ∗ = 0 or σ∗ = −λ. These cases are the subject of Theorems 5.2 and
5.3 respectively.

The algorithm requires routines λ̄min(A) and znull(B, σ, T, p, δ). The routine
λ̄min(A) computes a lower bound estimate of the least eigenvalue of a symmetric
matrix A, i.e., λ̄min(A) ≤ λmin(A). The routine znull(B, σ, T, p, δ) computes a
scaled approximate null-vector z of B+σT . In particular, z is such that zT(B+
σT )z is small and ‖p + z‖T = δ. Then under suitable conditions, if g 6= 0 the
following algorithm will produce a step s that satisfies condition (5.5).

Algorithm 5.1. Trust-region Subproblem.
Specify constants 0 < ε < 1, and 0 < ω < 1;
Choose σ0 ≥ 0;
b̄← 1.05×max

(
1,−λ̄min(B̂)

)
/(1− ω); [a0, b0]← [−1,max{σ0, b̄ }];

converged← false; i← 0;
while not converged do(

λ+, λ−, λ0
)
← In

(
K(σi)

)
;

if λ+ < n then
[ai+1, bi+1]← [σi, bi]; σi+1 ← 1

2 (ai+1 + bi+1);
else

p← −B(σi)−1g;
if |ψ(σi)| < ε or

(
ψ(σi) < ε and σi = 0

)
then

s← p; converged← true;
else if ψ(σi) ≤ −ε and σi > 0 then

z ← znull

(
B, σi, T, p, δ

)
;

if zTB(σi)z > ε(2− ε)
(
pTB(σi)p+ σiδ

2
)

then
āi ← σi − zTB(σi)z/‖z‖2T ;
[ai+1, bi+1]← [max{ ai, āi }, σi];

else
s← p+ z; converged← true;

end if
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else
[ai+1, bi+1]← [ai, bi];

end if
if not converged then

σ̄i+1 ← max{ 0,N (σi) };
if σ̄i+1 > ai+1 then

σi+1 ← σ̄i+1

else
σi+1 ← ωai+1 + (1− ω)bi+1;

end if
end if

end if
i← i+ 1;

end do

As our safeguarding techniques are somewhat different from those used in
the Moré-Sorensen algorithm, we briefly describe their convergence properties.

Lemma 5.5. Suppose g is nonzero. Define the interval D = (max{ 0,−λ }, σ∗],
where D is empty if σ∗ = 0 or σ∗ = −λ. Let q be the smallest integer for which
σq ∈ D with q = ∞ if no such iterate exists. Suppose D ⊂ J0 = (a0, b0]. Then
for i < q, it holds that the intervals {Ji} are ordered by inclusion, that D ⊂ Ji

and that both σi ∈ Ji and σ∗ ∈ Ji. Moreover,

bi+2 − ai+2 ≤ max
{

1
2 , 1− ω

}
(bi − ai) (5.8)

for all i ≥ 0 for which i+ 2 < q.

Proof. We proceed by induction. By assumption, D ⊂ J0 and σ∗ ∈ J0. The
choice of σ0 and J0 immediately gives σ0 ∈ (a0, b0].

Suppose D ⊂ Ji, σi ∈ Ji and σ∗ ∈ Ji. Three cases are possible. If σi ∈ D,
then i ≥ q and there is nothing to prove. Otherwise, it must hold that either
σi ≤ −λ or σi > σ∗.

If σi ≤ −λ, then σi+1 is chosen by bisection and

bi+1 − ai+1 = 1
2 (bi − σi) < 1

2 (bi − ai).

In this case, Ji+1 is updated as bi+1 = bi and ai+1 = σi ≤ −λ, and it follows
that D ∈ Ji+1 ⊂ Ji, σi+1 ∈ (ai+1, bi+1] and σ∗ ∈ (ai+1, bi+1].

If σi > σ∗, then by Lemma 5.3, ψ(σi) is negative, with

[ai+1, bi+1] = [max{ ai, āi }, σi], (5.9)

where āi = σi − zTB(σi)z/‖z‖2T . It is not difficult to see that āi ≤ −λ ≤ 0
(see Moré and Sorensen [45] for details). Hence D ⊂ Ji+1 ⊂ Ji. Moreover,
N (σi) < σ∗ < σi ≤ bi and so σ̄i+1 ≤ σi. However, in this case the rule

σi+1 =
{
σ̄i+1 if σ̄i+1 > ai,
ωai+1 + (1− ω)bi+1 otherwise,
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implies that σi+1 ∈ (ai+1, bi+1]. Hence, for i < q we may conclude that the
intervals {Ji} are ordered by inclusion, that D ⊂ Ji and that both σi ∈ Ji and
σ∗ ∈ Ji. It remains to show that the inequality (5.8) holds.

Now consider the length of Ji+2. Observe that for any ` > 0, if σ` ≤ σ∗ then
either σ` ∈ D or σ` < −λ. If σ` ∈ D then all subsequent iterates are in D and
the inequality (5.8) is irrelevant. If σ` < −λ then both σ`+1 and (a`+1, b`+1] are
chosen by bisection and the inequality (5.8) will hold for both iterations i = `
and i = `− 1.

Thus, we need only consider the case in which both σi > σ∗ and σi+1 > σ∗.
If σi > σ∗, then two situations are possible. If σi+1 = max{ 0,N (σi) }, then
from Lemma 5.3 and the assumption that σ∗ > 0, it follows that σi+1 ≤ σ∗.
Otherwise, σi+1 is defined by the rule σi+1 = ωai+1 + (1 − ω)bi+1. Suppose
σi+1 > σ∗. In this case, ψ(σi+1) is negative, the interval Ji+2 is defined by (5.9)
and

bi+2 − ai+2 > σi+1 − ai+1 = (1− ω)bi+1 + ωai+1 − ai+1 ≥ (1− ω)(bi − ai).

Thus (5.8) holds and the lemma is proved. ut

Theorem 5.1. Suppose g is nonzero. Define the interval D = (max{ 0,−λ }, σ∗].
If max{ 0,−λ } < σ∗ then Algorithm 5.1 will produce an iterate σq ∈ D or ter-
minate under conditions (T1) or (T2) before that occurs.

Proof. Assume that Algorithm 5.1 does not terminate before producing an iter-
ate σq ∈ D.

If b0 ≥ σ∗, then the conditions of Lemma 5.5 are met. But then, because
σ∗ > max{ 0,−λ }, the interval D has a positive length and so the bound (5.8)
together with the inclusions σ0 ∈ (a0, b0] and D ⊂ J0 imply that q is finite.

If, on the other hand, b0 < σ∗, then either σ0 ∈ D or σ0 ≤ −λ. In the
latter case, the iterates are chosen by repeatedly bisecting the intervals Ji until
σi > −λ, and hence σi ∈ D. ut

If σ∗ = 0 or σ∗ = −λ, then D is empty and Theorem 5.1 does not apply.
The case in which σ∗ = 0 is a desirable special case, because then s is an
unmodified Newton iterate for the underlying optimization algorithm. Therefore,
Algorithm 5.1 has been designed to favor σ = 0 as a solution to the subproblem.

Theorem 5.2. If σ∗ = 0, then either σ0 or σ1 is zero.

Proof. If σ0 6= 0 and σ∗ = 0, then σ0 > σ∗ ≥ −λ and so σ̄1 = max{ 0,N (σ0) } is
defined. But by Corollary 5.1, N (σ0) is negative and hence σ̄1 = 0. Furthermore,
a1 = max{ a1, ā1 }, where ā1 = σ0 − zTB(σi)z/‖z‖2T . As discussed in the proof
of Theorem 5.1, ā1 ≤ −λ. Therefore ai+1 ≤ 0 = σ̄1, and hence σ1 = 0. ut

If σ∗ = 0 > −λ, then σ = 0 and s = p = −B−1g satisfy conditions (5.5)
and (5.6), and Algorithm 5.1 will terminate. Neither Theorem 5.1 nor Theo-
rem 5.2 implies convergence when σ∗ = −λ. Theorem 5.1 cannot be applied
because D is empty. Theorem 5.2 implies that if σ∗ = −λ = 0, then either σ0

or σ1 will be zero. However, if λ = 0 then B is not invertible and s cannot be
defined as −B−1g.
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Theorem 5.3. If σ∗ = −λ then either Algorithm 5.1 finds a point satisfying
the convergence criteria in a finite number of iterations, or supj≥i σj converges
to σ∗ from above.

Proof. Suppose the algorithm does not find a point that satisfies the convergence
criteria. The interval D is empty and so the conditions of Lemma 5.5 are trivially
met. We may therefore conclude that limi→∞ σi = σ∗. We must now show that
σi > σ∗ infinitely often. But if σi ≤ σ∗ = −λ, subsequent iterates are chosen by
bisection until one is greater than −λ. ut

It is important that σi > σ∗ holds infinitely often, because znull(·) is only
defined for σi > −λ. If the znull(·) routine can be guaranteed to produces a z
satisfying

zTB(σi)z ≤ ε(2− ε)
(
pTB(σi)p+ σiδ

2
)

as σi converges to −λ from above, then Theorem 5.3 guarantees that Algo-
rithm 5.1 must terminate after finitely many iterations.

Moré and Sorensen define a routine znull(·) that uses the Cholesky factors
of B̂ + σI and the condition estimator proposed by Cline, Moler, Stewart and
Wilkinson [11]. Since our method does not compute an explicit factorization of
B̂+σI, we define znull(·) using the condition estimator DLACON supplied with La-
pack [1]. This routine generates an approximate null vector using Higham’s [41]
modification of Hager’s algorithm [39]. This routine uses matrix-vector products
with (B+σT )−1, rather than a matrix factorization, to estimate ‖(B̂+σI)−1‖1.
By-products of the computation of ‖(B̂+σI)−1‖1 are vectors v and w such that
w = (B̂ + σI)−1v, ‖v‖1 = 1 and

‖(B̂ + σI)−1v‖1 = ‖w‖1 ≈ ‖(B̂ + σI)−1‖1 = max
‖u‖1=1

‖(B̂ + σI)−1u‖1.

Thus, unless ‖w‖ = 0, the vector y = w/‖w‖ is a unit approximate null vector
from which we determine an appropriate z such that ‖p+ z‖T = δ. The imple-
mentation in Lapack computes at most five matrix-vector products, and so the
work associated with Hager’s algorithm is proportional to a small multiple of
(m+ n)2.

The disadvantage of using Hager’s algorithm is a theoretical one. Moré and
Sorensen are able to show that if σ∗ = −λ, and the algorithm of Cline et al.
is used to find y, then yTB̂(σ)y → 0. We are not aware of an analogous proof
for Hager’s algorithm, and without such a proof we cannot prove that Algo-
rithm 5.1 converges when σ∗ = −λ. However, we note that Moré and Sorensen’s
proof assumes the use of exact arithmetic and does not consider the instabil-
ities associated with the Cholesky factorization of a near-singular matrix (see
Higham [42] for details). Notwithstanding this, we would prefer to have a the-
oretical guarantee of convergence, but are obliged to use Hager’s algorithm for
practical reasons.

Another difference between Algorithm 5.1 and the Moré-Sorensen algorithm
concerns the definition of z once y has been computed. For every y there are
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two choices of z, and unless gTy = 0, one value of z gives a negative gTz and
the other gives a positive gTz. We always ensure gTz ≤ 0, so that gT(p+ z) ≤ 0,
whereas Moré and Sorensen choose z to minimize Q(p + z). In theory, either
choice is equally valid, but the Moré-Sorensen choice may give gT(p + z) > 0,
which would prevent s = p+z from being a descent direction for the line search.
(In practice, our choice of sign often gives the Moré-Sorensen direction.)

The last and most significant departure from the Moré-Sorensen algorithm
is that we cannot determine a good upper bound on λmin(B+σT ) when B+σT
is indefinite. During the attempt to compute a Cholesky factorization of an
indefinite matrix, it is straightforward to find a direction of negative curvature
(and hence an upper bound on λmin). It is not clear, however, how to find such
an estimate from a general factorization of (2.5). The availability of a good upper
bound on λmin can accelerate the convergence of Algorithm 5.1, but does not
alter the convergence theory.

6. Numerical experiments

In this section we describe some numerical results on the problems in the Cops 2.0
test collection [5, 16, 17] implemented in the Ampl modeling language [28]. The
results were obtained using a Matlab implementation of the primal-dual trust-
region method defined by Algorithms 1.1 and 5.1.

6.1. Extensions

For simplicity, the theoretical results of Section 4 are presented in terms of a
single parameter µ for both the penalty and barrier terms. A trivial modification
of the theory allows the use of different parameters—µE for the penalty term
and µI for the barrier term. With this modification, the residual function for the
perturbed optimality conditions is defined as

r(x, y) =
{
ci(x) + µEyi for i ∈ E ,
ci(x)yi − µI for i ∈ I

(see the definition (1.3)). Let cE and cI denote the components of c corresponding
to the index sets E and I respectively, with analogous definitions for yE and
yI. Given penalty and barrier parameters µE and µI, the inner iterations are
terminated when x and y satisfy tE

(
x, y, µE

)
≤ max {µE , µI } and tI

(
x, y, µI

)
≤

µI, where

tE
(
x, y, µE

)
= max

{
‖∇f − JT y‖∞, ‖cE − µEyE‖∞

}
, (6.1a)

and tI
(
x, y, µI

)
= τ ×max

i∈I
{ ciyi }, (6.1b)

with τ ∈ (0, 1
2 ] a parameter with value given below. This test is less stringent

than requiring ‖Fµ(x, y)‖∞ ≤ max {µE , µI }, and we have observed empirically
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that when conditions (6.1) are satisfied it is usually beneficial to reduce µE and
µI rather than to continue to find a smaller value of ‖Fµ‖∞.

The initial barrier and penalty parameters are defined as

µ
(0)
E = 10−2 ×max

{
‖∇f − JT y‖∞, ‖cE‖∞, 10−10

}
,

and µ
(0)
I = max

{
‖F∞‖∞, 10−8

}
,

where all quantities are evaluated at the primal-dual starting point
(
x(0), y(0)

)
(see Section 6.4 below). The updating rules for these parameters involve the
quantity

ξk = max
{
‖∇f − JT y‖∞, ‖cE + µ

(k)
E yE‖∞

}
,

where, in this case, all quantities are evaluated at the kth outer iterate
(
x(k), y(k)

)
.

The following rule for updating µE is superlinear. Given an initial scale factor
β0 (0 < β0 < 1), we define

µ
(k+1)
E = max

{
βk ×min {µ(k)

E , ξk }, 10−8
}

and βk+1 = β
3/2
k .

The rule for updating µ(k)
I is more conservative. We choose

µ
(k+1)
I = max

{1
τ

(1 + τ)×min
{
µ

(k)
I , max

i∈I
{ ciyi }

}
,
ξk
100

, 10−8
}
,

where τ is the parameter used to terminate the inner iterations (see, e.g., (6.1b)).
The values β0 = .81 and τ = 1

9 are used in all the numerical experiments.
The generic termination criterion for Algorithm 1.1 must also be modified

to allow for poorly scaled problems. The outer iterations are terminated at the
first primal-dual point (x, y) that satisfies the inequalities:

‖∇f − JT y‖∞ ≤ tol×(1 + ‖y‖∞),
‖cE‖∞ ≤ tol×(1 + ‖x‖∞),

and max
i∈I
{ ciyi } ≤ tol×(1 + ‖yI‖∞),

where tol = 10−6 in the numerical experiments.

6.2. The Matlab implementation

The Matlab implementation is part of a general-purpose optimization testing
environment intended to support the rapid development of algorithms indepen-
dently of the problem format. In this environment, all problems are converted to
the generic form (NP) and all derivative matrices as treated as dense. The Mat-
lab interior-point solver forms a preliminary implementation of the C++ program
Iotr (Interior methods for Optimization using Trust Regions) being developed
jointly at the University of California, San Diego and the University of Wiscon-
sin, Madison. The algorithm fully implements Algorithm 5.1 for the solution of
the trust-region subproblem. The code uses the dense linear algebra subroutines
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DSYTF2, DSYTRS and DLACON from Lapack [1]. The routines DSYTF2 and DSYTRS
factor and solve the symmetric indefinite system using Bunch-Kaufman symmet-
ric pivoting. Subroutine DLACON is used to compute the approximate null-vector
in the hard case.

In Ampl, all constraints are formulated as lj ≤ φj(x) ≤ uj , where lj and
uj are constants such that lj = uj for an equality constraint, and |lj | or |uj | is
infinite when no bound is present. The function φj(x) is either a simple vari-
able φj(x) = xj , or a general linear or nonlinear function. The format of problem
(NP) makes no distinction between simple bounds and general constraints. More-
over, inequality constraints lj ≤ φj(x) ≤ uj with finite upper and lower bounds
are treated as two constraints φj(x) ≥ lj and −φj(x) ≥ −uj . Given that the
code treats all Jacobians and Hessians as dense matrices, these features limit
the dimension of the KKT system that may be solved using dense factorization
techniques and hence limit the size of problem that may be attempted in the
Matlab environment. (In any production code the computation would be ar-
ranged so that the KKT system seen by the solver would be of the dimension
n+m where n is the number of variables xj with lj 6= uj and m is the number
of terms lj ≤ φj(x) ≤ uj involving general φj(x).)

6.3. Properties of the Cops problems

The dimension of a particular “case” or “instance” of a Cops problem is deter-
mined by one or more parameters assigned in its Ampl data file. For each of the
17 Cops problems, Dolan and Moré [16] give the results of several optimization
algorithms on a range of cases obtained by varying only one of the parameters.
Here we consider one problem from each Dolan-Moré selection. In each case, this
problem was the largest problem that could be solved in reasonable computation
time, subject to the resource limitations imposed by the form of the Matlab
implementation.

Table 6.1 gives the details of the 17 Cops problems used in the numeri-
cal experiments. The first three columns give the problem number, name and
value of the problem-size parameter (listed in the notation of [16]). The fourth
column describes the problem type, where “nc” indicates a nonlinear objective
with bounds and general nonlinear constraints (some of which may be linear),
and “bc” indicates a nonlinear objective with simple upper and lower bound
constraints only. The last four columns give the dimension of the problem, as
determined by the parameter given in the “Problem/size” column. The “Vars.”
column gives the total number of variables, including fixed variables. The col-
umn “Constraints/total” gives the number of general constraints of the form
lj ≤ φj(x) ≤ uj . The columns “Constraints/inEq.” and “Constraints/eqn” give
the number of general inequalities (i.e., terms with lj 6= uj) and general equalities
(terms with lj = uj) respectively.

By default, when generating a problem instance from a model file, Ampl
uses a so-called “presolve” in an attempt to tighten the upper and lower bounds
and eliminate as many bounds and linear constraints as possible. Generating an
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Table 6.1. Cops problems in Ampl format with default presolve.

Problem Vars. Constraints

No. Name Size Type InEq. Eq. Total

1 Polygon nv = 50 nc 98 1273 0 1273
2 Elec np = 200 nc 600 0 200 200
3 Chain nh = 400 nc 800 0 401 401
4 Camshape n = 200 nc 200 400 0 400
5 Pinene nh = 50 nc 1000 0 995 995
6 Marine nh = 25 nc 615 0 592 592
7 Channel nh = 100 nc 900 0 300 300
8 Robot nh = 50 nc 449 0 301 301
9 Steering nh = 100 nc 500 0 401 401

10 Rocket nh = 100 nc 401 0 300 300
11 Glider nh = 100 nc 499 0 400 400
12 Gasoil nh = 50 nc 501 0 498 498
13 Methanol nh = 50 nc 602 0 597 597
14 Catmix nh = 200 nc 601 0 400 400
15 Torsion ny = 25 bc 1250 0 0 0
16 Bearing ny = 25 bc 1250 0 0 0
17 Minsurf ny = 25 bc 1250 0 0 0

instance of an Ampl problem without a presolve provides an additional problem
for testing. Table 6.2 gives the details of the 17 Cops problems generated without
a presolve (invoked using the Ampl command “option presolve 0”).

Table 6.2. Cops problems in Ampl format with no presolve.

Problem Vars. Constraints

No. Name Size Type InEq. Eq. Total

1 Polygon nv = 50 nc 100 1374 2 1376
2 Elec np = 200 nc 600 0 200 200
3 Chain nh = 400 nc 802 0 403 403
4 Camshape n = 200 nc 200 403 0 403
5 Pinene nh = 50 nc 1005 5 1000 1005
6 Marine nh = 25 nc 615 15 592 607
7 Channel nh = 100 nc 800 0 800 800
8 Robot nh = 50 nc 461 0 313 313
9 Steering nh = 100 nc 507 102 408 510

10 Rocket nh = 100 nc 405 304 304 608
11 Glider nh = 100 nc 506 304 407 711
12 Gasoil nh = 50 nc 503 3 500 503
13 Methanol nh = 50 nc 605 5 600 605
14 Catmix nh = 200 nc 603 0 402 402
15 Torsion ny = 25 lc 1404 1250 154 1404
16 Bearing ny = 25 lc 1404 0 158 158
17 Minsurf ny = 25 lc 1404 1824 158 1982

The only problem unaltered by the presolve is Elec. The others have some
substantial differences in formulation. For example, without a presolve, Ampl
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formulates the bound constraints of problems Torsion, Bearing and Minsurf as
general linear constraints (marked as “lc” in the “Problem/type” column). Such
differences in formulation can have a significant effect on performance because
the code uses a different technique to obtain feasibility for simple bound and
general constraints (see Section 6.4).

6.4. Starting points

In all the numerical experiments, the initial values for the dual variables were
y
(0)
E = 0 and y

(0)
I = 1. For the primal variables, the standard starting point for

each Cops model was used whenever possible. However, in some cases it is nec-
essary to redefine some components of the standard start so that the initial point
is sufficiently interior with respect to the simple bounds. The precise definition
of “sufficiently interior” depends on a positive preassigned scalar ε (ε = 10−1

in our tests). Given the Cops standard start xC , the components of the initial
primal iterate are defined such that

x
(0)
j = min

{
max{xC

j , lj + δlj}, uj − δuj

}
, (6.2)

where δlj and δuj define strictly positive perturbations of the lower and upper
bounds. If an upper or lower bound is infinite, then its corresponding perturba-
tion is zero. If both bounds are finite, then δlj = ε(uj− lj), otherwise, if |lj | <∞
and there is no upper bound, then δlj = ε(1 + |lj |). The value of δuj is defined
in a similar way.

If the resulting x(0)
j is not sufficiently interior for a general constraint li ≤

φi(x) ≤ ui, then a slack variable si is used to convert the inequalities into
the equality φi(x) − si = 0 and simple bound constraints li ≤ si ≤ ui. This
transformation is used for all inequality constraints for which

φi(x(0)) 6= min
{

max{φi(x(0)), lj + δlj}, uj − δuj)
}
,

where δlj and δuj are defined as in the case of simple bounds. The slack is
initialized at the value: min

{
max{φi(x(0)), lj + δlj}, uj − δuj

}
.

Tables 6.3 and 6.4 give the problem statistics for the Cops problems written
in the form (NP). The first two columns give the problem number and name, as
in Table 6.1. The columns “n”, “|E|” and “|I|” list the number of variables and
constraints associated with problem (NP). The value of |E|+ |I| is the number of
distinct finite bounds lj and uj associated with the constraints lj ≤ φj(x) ≤ uj ,
plus the number of added slack variables. The entries in the n column reflect the
number of variables from Table 6.1 plus the number of added slack variables. The
column marked “KKT” gives the dimension of the dense system (2.5) factored
and solved at each inner iteration. The last two columns give the number of
added slack variables and the number of components of the Cops standard start
that were moved inside their upper and lower bounds.
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Table 6.3. Cops problem statistics in format (NP).

Problem Modifications

No. Name n |E| |I| KKT Slacks Infs. xj

1 Polygon 316 218 1469 2003 218 --
2 Elec 600 200 0 800 -- --
3 Chain 800 401 0 1201 -- --
4 Camshape 204 4 998 1206 4 2
5 Pinene 1000 995 5 2000 -- 5
6 Marine 615 592 15 1222 -- 15
7 Channel 900 300 0 1200 -- --
8 Robot 449 301 601 1351 -- --
9 Steering 500 401 203 1104 -- --

10 Rocket 401 300 601 1302 -- 101
11 Glider 499 400 402 1301 -- --
12 Gasoil 501 498 3 1002 -- 3
13 Methanol 602 597 5 1204 -- --
14 Catmix 601 400 402 1403 -- 201
15 Torsion 1250 0 2500 3750 -- --
16 Bearing 1250 0 1250 2500 -- 625
17 Minsurf 1250 0 1250 2500 -- 420

Table 6.4. Cops problem statistics in format (NP). Presolve = 0.

Problem Modifications

No. Name n |E| |I| KKT Slacks Infs. xj

1 Polygon 321 223 1474 2018 221 --
2 Elec 600 200 0 800 -- --
3 Chain 802 403 0 1205 -- --
4 Camshape 204 4 1004 1212 4 --
5 Pinene 1010 1005 5 2020 5 --
6 Marine 630 607 15 1252 15 --
7 Channel 800 800 0 1600 -- --
8 Robot 461 313 613 1387 -- --
9 Steering 507 408 203 1318 -- --

10 Rocket 510 409 607 1526 105 --
11 Glider 507 408 405 1320 1 --
12 Gasoil 506 503 3 1012 3 --
13 Methanol 605 600 5 1210 -- --
14 Catmix 603 402 402 1407 -- 201
15 Torsion 1404 154 2500 4058 -- --
16 Bearing 1404 158 1404 2966 -- 729
17 Minsurf 1878 632 1824 4334 474 --

6.5. Numerical results

Table 6.5 gives the results of applying the algorithm to the Cops problems
defined in Tables 6.3–6.4. The values of the preassigned parameters used for
Algorithm 1.1 were η1 = 10−1, η2 = 1

4 , γ2 = 1
2 , γ3 = 2, and ν = 1. The

parameters used for Algorithm 5.1 were ε = 10−1, and ω = .99. The termination
criteria for the inner and outer iterations were defined with the parameters τ = 1

9
and tol = 10−6.
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For each problem we list the total number of function evaluations, the average
number of KKT factorizations per inner iteration, and the final value of the
objective function. When the problems are generated with the presolve phase,
Iotr can solve 14 problems, at the total cost of 3515 function evaluations. With
the given parameter settings, the algorithm was unable to solve Pinene, Marine,
and Glider within an allotted 1000 function evaluations. When no presolve is
used, Iotr can solve 15 problems in a total of 3990 function evaluations. In
this case, Iotr was unable to solve Channel and Glider within an allotted 1000
function evaluations.

The average number of factorizations per inner iteration is a measure of the
efficiency of the Newton method for the trust-region parameter. The number
varies between 1.3 and 4.0 over all the problems, with an average value of 2.
Given the remarks of Section 5 we would expect this average to be more than
the average of 1.5–2 factorizations per iteration reported by Moré and Sorensen
[45] for unconstrained problems. Note that our results are comparable to those
of Moré and Sorensen for the bound-constraint versions of the problems Torsion,
Bearing and Minsurf.

Table 6.5. Performance on the Cops problems.

Problem Presolve No Presolve

No. Name Fcns Factrs Final obj. Fcns Factrs Final obj.

1 Polygon 355 2.3 1.3263e-05 632 2.2 1.1026e-05
2 Elec 321 4.0 1.8439e+04 321 4.0 1.8439e+04
3 Chain 214 2.1 5.0677e+00 214 2.1 5.0682e+00
4 Camshape 81 1.9 4.0700e+00 121 2.4 4.0700e+00
5 Pinene --- --- --- 26 1.8 1.9621e+01
6 Marine 47 1.6 1.9752e+07 141 2.7 1.9749e+07
7 Channel 332 4.0 4.2132e+04 --- --- ---
8 Robot 609 2.4 9.1469e+00 171 3.0 9.1469e+00
9 Steering 151 2.0 5.5460e-01 123 1.9 5.5460e-01

10 Rocket --- --- --- 825 1.4 1.0003e+00
11 Glider --- --- --- --- --- ---
12 Gasoil 354 2.7 5.2364e-03 395 2.5 5.2366e-03
13 Methanol 949 2.1 9.0223e-03 897 2.1 9.0224e-03
14 Catmix 19 1.6 -4.8160e-02 19 1.6 -4.8161e-02
15 Torsion 15 1.3 -4.1745e-01 32 1.7 -4.1730e-01
16 Bearing 19 1.6 -1.5396e-01 14 2.2 2.6938e-02
17 Minsurf 49 2.0 2.5196e+00 59 1.9 2.5195e+00

Some care is needed when interpreting the results of Table 6.5. First, many
of the problems are not convex, and the number of function evaluations can vary
considerably depending on which local solution is found. In particular, Polygon,
Elec and Channel have local solutions (see [16]).

Second, it should be emphasized that although the algorithm was unable to
solve every problem with the default parameter settings, successful runs were
possible with other sensible choices. For example, if the parameter ε used for the
feasible perturbation (6.2) is reduced from 10−1 to 10−2, then Glider converges in
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375 evaluations with a presolve and 952 evaluations without a presolve. The same
value of ε allows a presolved Pinene to converge in 76 function evaluations. These
results suggests that more study of the choice of the initial feasible perturbation
is needed.

Overall, given the difficulty of the Cops problems, the somewhat unsophis-
ticated choices for the penalty and barrier parameters, and the simple initial
values of the primal-dual variables, the numerical experiments indicate that the
proposed algorithm forms the basis for a viable algorithm for computing second-
order solutions for large-scale nonlinear optimization problems. In particular, it
seems likely that the efficiency and reliability exhibited in Table 6.5 can be im-
proved considerably. (For more sophisticated choices for the barrier parameter
and initial dual variables, see, e.g., Gay, Overton and Wright [31], and Moguerza
and Prieto [43].)

7. Summary

We have formulated and analyzed a primal-dual trust-region interior algorithm
for large-scale nonlinear optimization. The main idea of the method is a sim-
ple one—to use a trust-region method to minimize an unconstrained function
that involves both the primal and dual variables. This is a different approach
from that taken in other trust-region interior methods and it has the benefit
that the constituent linear systems have the same structure as the conventional
primal-dual system. No special factorization need be used for the nonconvex case
and hence the system can be solved by a range of efficient off-the-shelf direct
solvers, or by methods tailored to particular applications. The algorithm appears
to be effective in maintaining the quick convergence and stability of trust-region
methods, while significantly decreasing the average cost per iteration. It has been
shown that under suitable conditions, the sequence of inner iterations converges
to a point that satisfies the second-order necessary conditions for a minimizer of
the augmented penalty-barrier function. Finally, we have performed some pre-
liminary numerical testing on some medium-scale problems from the nontrivial
Cops test set. The numerical experiments indicate that the proposed algorithm
forms the basis for a viable algorithm for computing second-order solutions for
large-scale nonlinear optimization problems. In addition, the results serve as a
useful predictor of how the method will behave on larger problems. The conver-
gence of the outer iterations and more extensive tests on large-scale problems
will be the subject of a separate paper.
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44. J. J. Moré and D. C. Sorensen, On the use of directions of negative curvature in a
modified Newton method, Math. Program., 16 (1979), pp. 1–20.

45. , Computing a trust region step, SIAM J. Sci. and Statist. Comput., 4 (1983),
pp. 553–572.

46. J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York,
1999.

47. E. O. Omojokun, Trust Region Algorithms for Nonlinear Equality and Inequality Con-
straints, PhD thesis, Department of Computer Science, University of Colorado, Boulder,
1989.

48. D. B. Ponceleón, Barrier methods for large-scale quadratic programming, Report SOL
91-2, Department of Operations Research, Stanford University, Stanford, CA, 1991. PhD
thesis.

49. M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Op-
timization, R. Fletcher, ed., London and New York, 1969, Academic Press, pp. 283–298.



48 Primal-Dual Trust Region Algorithm

50. , A new algorithm for unconstrained optimization, in Nonlinear Programming (Proc.
Sympos., Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1970,
pp. 31–65.

51. , Convergence properties of a class of minimization algorithms, in Nonlinear pro-
gramming, 2 (Proc. Sympos. Special Interest Group on Math. Programming, Univ. Wis-
consin, Madison, Wis., 1974), Academic Press, New York, 1974, pp. 1–27.

52. C. H. Reinsch, Smoothing by spline functions II, Numer. Math., 16 (1971), pp. 451–454.
53. D. F. Shanno and R. J. Vanderbei, Interior-point methods for nonconvex nonlinear

programming: orderings and higher-order methods, Math. Program., 87 (2000), pp. 303–
316.

54. D. C. Sorensen, Newton’s method with a model trust region modification, SIAM J. Numer.
Anal., 19 (1982), pp. 409–426.

55. S. W. Thomas, Sequential estimation techniques for quasi-Newton algorithms, PhD thesis,
Cornell University, 1975.

56. M. Ulbrich, S. Ulbrich, and L. Vicente, A globally convergent primal-dual interior-
point filter method for nonlinear programming. Manuscript, 2000.

57. R. J. Vanderbei and D. F. Shanno, An interior-point algorithm for nonconvex nonlinear
programming, Comput. Optim. Appl., 13 (1999), pp. 231–252.
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