Exercise 4.1. Let \(f(x) \) denote a convex continuously differentiable function. Show that if a stationary point \(x^* \) exists, then \(f(x^*) \) is a global minimum of \(f \). Also show that if \(f(x) \) is actually strictly convex, then \(x^* \) is the unique global minimum. Why can uniqueness be lost if the function is not strictly convex? Draw a picture of such a situation.

Hint: Use the result that \(f(x) \) is convex if and only if the inequality holds strictly.

Exercise 4.2. This problem requires modifying the Hessian to produce a descent direction. Consider the function \(f : \mathbb{R}^3 \to \mathbb{R} \) such that
\[
f(x) = x_1^2 + x_2^2 \cos x_3 - e^{x_2} x_3^3 + 4x_3.
\]

(a) Derive the gradient \(g(x) \) and Hessian \(H(x) \) of \(f(x) \).

(b) Compute the spectral decomposition of \(H(x) \) at \(\bar{x} = (0, 1, 0)^T \).

(c) Compute the “pure” Newton direction \(p_N \) at \(\bar{x} \). Is \(p_N \) a descent direction?

(d) Compute a modified Newton direction \(p^M \) at the same point using the eigenvalue rejection technique (the better of the two approaches we discussed in class). Find the directional derivative along \(p^M \) at \(\bar{x} \).

(e) Find a direction of negative curvature at \(\bar{x} \). Verify your result numerically.

Exercise 4.3. Write a MATLAB function `newton.m` that implements a modified Newton with a backtracking line-search. (This is a fairly simple modification of the routine `steepest.m` that you wrote for the previous homework.) Your function must include the following features:

- The specification of `newton.m` must be of the form:

  ```matlab
  function [x,fx,gx] = newton( fname,x0,tol )
  % Purpose: newton(fname,x0,tol) finds a local minimizer of a nonlinear
  % function f(x). fname is a string containing the name of an m-file that
  % computes the value of f(x) for a given value of the variables x. x0 is a
  % starting guess, tol is the target Euclidean norm of the gradient of f. For
  % example, newton('my_function',x0,1.0e-5) a function defined in the m-file
  % my_function.m.
  %
  % Use \( \mu = \frac{1}{4} \) to define the sufficient-decrease criterion in the backtracking algorithm.
  %
  % The minimization must be terminated when either \( \| g(x_k) \| \leq 10^{-5} \) or 50 iterations are performed. Any MATLAB
  % “while” loop must include a test that will terminate the loop if it is executed more than 20 times.
  ```

Now, do the following with the implementation:

(a) Starting at \(x_0 = (0, -1)^T \), apply the modified Newton method to Rosenbrock’s function
\[
f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2,
\]
which has a unique minimizer at \(x^* = (1, 1)^T \).

(b) Minimize the function
\[
f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4,
\]
starting at \(x_0 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})^T \). The minimizer lies at \(x^* = 0 \). Discuss the differences between this run and that of part (a).

In each case, verify that the point you find is a local minimizer.