
Computational Multiscale Modeling: Adaptive Methods
and FETK with Applications in Biophysics

Fast high-fidelity numerical methods inside APBS, SMOL, and related efforts

Michael Holst

Professor of Mathematics
University of California, San Diego

Co-Director, CCM and CSME Program
Senior Scientist, CTBP

Core Investigator, NBCR

September 11, 2008

UCSD Center for Computational Mathematics Slide 1/111 September 11, 2008

Outline

1 The mathematics of coarse-grain modeling: Partial Differential Equations (PDE)

2 PDE with variational structure: functionals, stationary points

3 Detailed example: The Poisson-Boltzmann equation

4 PDE discretization techniques: finite difference, box, spectral, finite element

5 Finite Element Methods (FEM): Basic approximation theory

6 FEM Example: The Poisson-Boltzmann equation

7 Adaptive FEM (AFEM): Error estimates driving refinement techniques

8 Fast solvers for AFEM: Low/optimal space/time complexity methods

9 FETK: Overview

10 FETK example: The Poisson-Boltzmann equation

11 FETK parallel algorithms: Two-scale decoupling methods

UCSD Center for Computational Mathematics Slide 2/111 September 11, 2008

Partial Differential Equations (PDE): Notation, etc

Let x , y ∈ Rd , u(x) ∈ C∞(Rd).

Summation convention: xi yi ≡
∑d

i=1 xi yi

Multi-index notation: α = (α1, . . . , αd), 0 ≤ αi ∈ Z:

I Order relation: α ≥ β iff αi ≥ βi ∀i
I Magnitude: |α| ≡ α1 + · · ·+ αd .
I Exponentiation: xα ≡ xα1

1 · · ·+ xαd

d .

Used to denote partial differentiation of u(x) ∈ C∞(Rd):

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαd

d

E.g., if α = (1, 2), then

Dαu =
∂3u

∂x1∂x2
2

.

UCSD Center for Computational Mathematics Slide 3/111 September 11, 2008

Differential operators in strong form
Using multi-indices, a compact expression for a 2m-th-order linear differential
operator L in d-space is:

Lu =
∑
|α|≤2m

aα(x)Dαu(x)

Some of the most common operators arising in mathematical physics occur in
divergence form:

Lu =
∑
|β|≤m

∑
|α|≤m

(−1)|β|Dβ(aαβ(x)Dαu(x))

The principle part of the operator consists of:

Lprincu =
∑
|β|=m

∑
|α|=m

(−1)|β|Dβ(aαβ(x)Dαu(x))

The properties of the matrix [aij] = [aαβ] formed by the d2 coefficient functions
in the principle part of a 2nd-order operator are key to understanding the
properties of the particular PDE.

(The mapping here is aij ≡ a(0,...,0,1,0,...,0)(0,...,0,1,0,...,0).)

UCSD Center for Computational Mathematics Slide 4/111 September 11, 2008

Classification of PDE into types
A differential operator is classified according to the properties of this matrix aij :

Elliptic (at x): All eigenvalues of [aαβ(x)] have same (nonzero) sign.

Hyperbolic (at x): All eigenvalues of [aαβ(x)] are nonzero; one has opposite
sign of remaining d − 1.

Parabolic (at x): All eigenvalues of [aαβ(x)] have same nonzero sign, except
for one zero eigenvalue.

Note that the type could change with x .

Elliptic operators can be further classified according to:

Strongly or strictly elliptic (at x): aij (x)xi xj ≥ λ|x |2, ∀ 0 6= x ∈ Rd .
Self-adjoint (principle part, at x): aij (x) = aji (x).

Some key ideas from the theory of elliptic differential operators:

Distributions

Green functions

Maximum principles

UCSD Center for Computational Mathematics Slide 5/111 September 11, 2008

Examples

Elliptic: Poisson equation:

∂2u(x , y)

∂x2
+
∂2u(x , y)

∂y 2
= f (x , y), (x , y) ∈ Ω = (0, 1)× (0, 1).

Hyperbolic: Wave equation (y=t):

∂2u(x , y)

∂x2
− ∂2u(x , y)

∂y 2
= 0, (x , t) ∈ Ω = (0, 1)× (0,T).

Parabolic: Heat equation (y=t):

∂u(x , y)

∂y
− ∂2u(x , y)

∂x2
= 0, (x , t) ∈ Ω = (0, 1)× (0,T).

A general linear elliptic operator in divergence form (Ω ⊂ R2):

−∇ · (a∇u) + bu = − ∂

∂x
(a11

∂

∂x
u)− ∂

∂y
(a22

∂

∂y
u) + bu = f .

UCSD Center for Computational Mathematics Slide 6/111 September 11, 2008

Side (boundary/initial) conditions for well-posedness
In order to determine the function which satisfies the differential equation, side
conditions must be provided.

Specifying u = g on ∂Ω is an essential or Dirichlet condition. Specifying
∇u · n = g is a natural or Neumann condition. Specifying ∇u · n + cu = g is a
mixed or Robin condition.

There are obvious nonlinear generalizations; the requirement is compatibility with
the PDE and well-posedness of the problem:

1 There exists a solution to the problem

2 The solution is unique.

3 The solution depends continuously on the “problem data”.

Only certain domain/operator/boundary condition combinations lead to
well-posed problems:

B.C. Domain Hyperbolic Elliptic Parabolic

D, N, or R open Under det. Under det. Well-posed
D, N, or R closed Not unique Well-posed Over det.

I.V. open Well-posed Unstable Over det.
I.V. closed Over det. Over det. Over det.

UCSD Center for Computational Mathematics Slide 7/111 September 11, 2008

Weak PDE formulations (for analysis and numerics)
Consider the following simple problem:

− uxx = f in Ω = (0, 1), (1)

u = 0 on Γ = ∂Ω = {0, 1}.

Let v ∈ C 2
0 (Ω) be arbitrary, where

C k
0 (Ω) = {v : v ∈ C k (Ω), Dαv(x) = 0 ∀x ∈ ∂Ω, |α| < k}

is simply the vector space of real-valued functions defined over Ω which have two
continuous derivatives and vanish on the boundary ∂Ω of Ω.

Multiply (1) by v , and integrate over the domain:∫
Ω

[−uxx v]dx =

∫
Ω

fvdx .

Using integration by parts, we can shift some of the differentiability requirements
on u over to v :

−ux v
∣∣1
0

+

∫ 1

0

ux vx dx =

∫ 1

0

fvdx .

UCSD Center for Computational Mathematics Slide 8/111 September 11, 2008

Producing a weak formulation
Since v vanishes on the boundaries, we are left with:∫

Ω

ux vx dx =

∫
Ω

fvdx . (2)

We can reverse the integration by parts, so that a function satisfying (2) clearly
also satisfies (1).

Since v was arbitrary, the equation (2) holds for all v ∈ C 2
0 (Ω).

Note that (2) only requires that the u, v have one derivative, so that we can
define a weak form of the problem:

Find u ∈ C 1
0 (Ω) s.t.

∫
Ω

ux vx dx =

∫
Ω

fvdx , ∀v ∈ C 1
0 (Ω). (3)

Key question: What are sufficient conditions for (3) to be well-defined?

In other words, what assumptions on u, v , f , and Ω are necessary to ensure that
all terms in (3) are always finite?

(We will worry about well-posedness shortly...)

UCSD Center for Computational Mathematics Slide 9/111 September 11, 2008

Functions and the vector spaces they live in
One answer is given by the Cauchy-Schwarz inequality:∣∣∣∣∫

Ω

ux vx dx

∣∣∣∣ ≤ (∫
Ω

|ux |2
)1/2(∫

Ω

|vx |2
)1/2

,

∣∣∣∣∫
Ω

fvdx

∣∣∣∣ ≤ (∫
Ω

|f |2
)1/2(∫

Ω

|v |2
)1/2

.

We don’t really need to require u, v ∈ C 1
0 (Ω); all we need is for the RHS of the

above inequalities to be finite.

This leads us to define the function space (again, simply a vector space):

L2(Ω) = {u : ‖u‖L2 <∞},

with norm and inner-product (making L2 a normed as well as an inner-product
space) defined as:

‖u‖L2 = (u, u)
1/2
L2 , (u, v)L2 =

∫
Ω

uvdx .

Note that L2(Ω) is actually a well-defined (Hilbert, or complete inner-product)

space for any (reasonable) open set Ω ⊆ Rd , for d ≥ 1, not just d = 1.

UCSD Center for Computational Mathematics Slide 10/111 September 11, 2008

The function space H1

Note that if all we need at this point is to ensure both sides of the equation are
finite using the the Cauchy-Schwarz inequality, then in fact the following “weak
form” of the problem is all we really need:

Find u ∈ H1
0 (Ω) s.t.

∫
Ω

ux vx dx =

∫
Ω

fvdx , ∀v ∈ H1
0 (Ω). (4)

Since all that is necessary is for these integrals to be finite, the weak form leads
us naturally to define a Sobolev space:

H1(Ω) = {u ∈ L2(Ω) : ‖u‖H1(Ω) <∞},

where again Ω ⊆ Rd , d ≥ 1. The corresponding inner-product, semi-norm, and
norm are:

(u, v)H1 =

∫
Ω

(∇u · ∇v + uv)dx , |u|H1 = ‖∇u‖L2 ,

‖u‖H1 = (|u|2H1 + ‖u‖2
L2)1/2.

We can then also define the subspace which vanishes on the boundary:

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.

UCSD Center for Computational Mathematics Slide 11/111 September 11, 2008

Weak formulation of more general problems with d ≥ 1
Consider now Ω ⊂ Rd , d ≥ 1, with boundary Γ = ΓD ∪ ΓN , where ΓD ∩ ΓN = ∅.
Second order linear elliptic equations in divergence form can be written as:

−∇ · (ā∇û) + bû = f in Ω, (5)

û = gD on ΓD , (6)

(ā∇û) · n + cû = gN on ΓN , (7)

where
b(x) : Ω 7→ R, f (x) : Ω 7→ R, gD(x) : ΓD 7→ R, gN (x) : ΓN 7→ R,
c(x) : ΓN 7→ R, û(x) : Ω 7→ R, ā(x) : Ω 7→ L(Rd ,Rd).

Since we have a Dirichlet condition over part of the boundary, define:

H1
0,D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

We will look for a solution in the form:

û = u + w , u ∈ H1
0,D(Ω), w ∈ H1(Ω),

where w is an arbitrary (but known and fixed) function satisfying: w |ΓD
= gD .

UCSD Center for Computational Mathematics Slide 12/111 September 11, 2008

Properties of the bilinear and linear weak forms
All of the steps we took in the one-dimensional case can be repeated using now
the divergence theorem, giving the multi-dimensional weak formulation:

Find u ∈ H1
0,D(Ω) such that A(u, v) = F (v) ∀v ∈ H1

0,D(Ω), (8)

where the bilinear form A(u, v) is defined as:

A(u, v) =

∫
Ω

ā∇u · ∇v + buv dx +

∫
ΓN

cuv ds, (9)

and the linear functional F (v) is defined as:

F (v) =

∫
Ω

fv dx +

∫
ΓN

gN v ds − A(w , v). (10)

Note that if the strong form operator was self-adjoint, then the bilinear form is
symmetric, A(u, v) = A(v , u), ∀u, v ∈ H1

0,D(Ω).

Strongly ellipticity (and additional conditions) imply coercivity of the bilinear
form, A(u, u) ≥ m‖u‖2

H1 , ∀u ∈ H1
0,D(Ω).

Boundedness is: |A(u, v)| ≤ M‖u‖H1‖v‖H1 , |F (v)| ≤ L‖v‖H1 , ∀u, v ∈ H1
0,D(Ω).

These conditions are actually sufficient for well-posedness.

UCSD Center for Computational Mathematics Slide 13/111 September 11, 2008

PDE with variational structure
Let J : X 7→ R, where X is a Banach space (complete normed vector space).
J(u) is called stationary at u ∈ X if:

〈J ′(u), v〉 = 0, ∀v ∈ X . (11)

J ′ is the (Gateaux, or G-)derivative of J at u in the direction v ,

〈J ′(u), v〉 =
d

dε
J(u + εv)

∣∣∣∣
ε=0

.

At each point u ∈ X , J ′(u) ∈ X ∗ (space of bounded linear functionals on X).
Stationarity (11) is e.g. a necessary condition for u to be a solution to:

Find u ∈ X such that J(u) ≤ J(v), ∀v ∈ X . (12)

However, the condition of stationarity is more general, since the functional J(u)
may have only saddle points; (11) then includes the principle of stationary action
in dynamics.

UCSD Center for Computational Mathematics Slide 14/111 September 11, 2008

Variational Problems: A Nonlinear Elliptic Example
Let X = W 1,p

0 (Ω), with Ω ⊂ Rd a “smooth” bounded domain. Define:

J(u) =

∫
Ω

[
1

2
∇u · ∇u − g(u)] dx , with g(u) ∈ L1(Ω) when u ∈W 1,p(Ω).

The notation here is (1 ≤ p <∞):

‖u‖W 1,p(Ω) =

(∫
Ω

|u|p + |∇u|p dx

)1/p

,

W 1,p(Ω) = {u ∈ Lp(Ω) : ‖u‖W 1,p(Ω) <∞ },

W 1,p
0 (Ω) = {u ∈W 1,p(Ω) : trace u = 0 on ∂Ω }.

The condition for stationarity of J(u) is:

Find u ∈W 1,p
0 (Ω) s.t. 〈J ′(u), v〉 =

∫
Ω

[∇u ·∇v −g ′(u)v] dx = 0, ∀v ∈W 1,p
0 (Ω).

If a classical solution exists, this is equivalent to determining u from:

−∇2u = g ′(u) in Ω,

u = 0 on ∂Ω.

UCSD Center for Computational Mathematics Slide 15/111 September 11, 2008

Solving General Nonlinear Variational Problems
Let X ,Y be Banach spaces (possibly X = Y), and F : X 7→ Y ∗. Consider now:

Find u ∈ X such that F (u) = 0 ∈ Y ∗.

As a linear functional on Y , we can consider the general “variational” problem:

Find u ∈ X such that 〈F (u), v〉 = 0, ∀v ∈ Y . (13)

If the nonlinear problem (13) is well-posed, one typically solves for u using a
Newton iteration based on linearization with the G -derivative of 〈F (u), v〉:

〈F ′(u)w , v〉 =
d

dε
〈F (u + εw), v〉

∣∣∣∣
ε=0

.

Given an initial approximation u0 ≈ u, a (global, inexact) Newton iteration is:

(a) Find w ∈ X such that: 〈F ′(uk)w , v〉 = −〈F (uk), v〉+ r , ∀v ∈ Y
(b) Set: uk+1 = uk + λw

One discretizes (a)-(b) at the “last moment”, producing a matrix equation.
Required Newton steps independent of “h” [e.g., Allgower et. al, 1986].

UCSD Center for Computational Mathematics Slide 16/111 September 11, 2008

Our Nonlinear Potential Equation Example
From our earlier example, if

J(u) =

∫
Ω

[
1

2
∇u · ∇u − g(u)] dx ,

the condition for stationarity of J(u) is:

Find u ∈W 1,p
0 (Ω) such that 〈F (u), v〉 = 0, ∀v ∈W 1,p

0 (Ω),

where

〈F (u), v〉 = 〈J ′(u), v〉 =

∫
Ω

[∇u · ∇v − g ′(u)v] dx .

To build a Newton iteration, we only need the additional derivative:

〈F ′(u)w , v〉 =
d

dε
〈F (u + εw), v〉

∣∣∣∣
ε=0

=

∫
Ω

[∇w · ∇v − g ′′(u)wv] dx .

Well-posedness of the linearized problem in a Newton iteration:

Find w ∈W 1,p(Ω) such that 〈F ′(u)w , v〉 = −〈F (u), v〉, ∀v ∈W 1,p(Ω),

assured by e.g. establishing coercivity and boundedness properties on F ′ and F .

UCSD Center for Computational Mathematics Slide 17/111 September 11, 2008

The Resulting Linear Problems when X 6= Y
Solving the nonlinear problem (13) requires repeatedly solving a linear problem:

Find u ∈ X such that a(u, v) = f (v), ∀v ∈ Y , (14)

where for fixed ū ∈ X ,

a(u, v) = 〈F ′(ū)u, v〉, f (v) = −〈F (ū), v〉.

Assume the bilinear form a(·, ·) and linear functional f (·) satisfy four conditions:

inf
u∈X

sup
v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ m > 0, a(u, v) ≤ M‖u‖X‖v‖Y , f (v) ≤ L‖v‖Y , (15)

For each 0 6= v ∈ Y , there exists u ∈ X s.t. a(u, v) 6= 0. (16)

It follows [Babuska-Aziz, 1972] that (14) is well-posed, and a priori estimate:

‖u‖X ≤
L

m

follows from

m‖u‖X ≤ sup
v∈Y

a(u, v)

‖v‖Y
= sup

v∈Y

f (v)

‖v‖Y
≤ L.

If some of the properties (15)–(16) are lost, or if the problem is nonlinear as
in (13) itself, other a priori estimates may still be possible (case-by-case basis).

UCSD Center for Computational Mathematics Slide 18/111 September 11, 2008

The Resulting Linear Problems when X = Y

Consider again the linear problem, but now in special case of X = Y :

Find u ∈ X such that a(u, v) = f (v), ∀v ∈ X , (17)

The following three conditions (with m > 0) are trivially equivalent to the three
conditions (15) when X = Y (condition (16) is no longer needed):

a(u, u) ≥ m‖u‖2
X , a(u, v) ≤ M‖u‖X‖v‖X , f (v) ≤ L‖v‖X . (18)

It follows [Lax-Milgram, 1957] that (17) is well-posed, and the a priori estimate:

‖u‖X ≤
L

m

follows now simply from

m‖u‖2
X ≤ a(u, u) = f (u) ≤ L‖u‖X .

Again, If some of the properties (18) are lost, or if the problem is nonlinear as
in (13) itself, other a priori estimates may still be possible (case-by-case basis).

UCSD Center for Computational Mathematics Slide 19/111 September 11, 2008

Well-posedness, A priori Estimates, Related Questions
Given a nonlinear elliptic PDE (or other type of PDE):

Find u ∈ ū + X such that 〈F (u), v〉 = 0 ∀v ∈ Y , (∗)

the following mathematical questions are of fundamental importance:

1 What function spaces X and Y produce a well-defined problem?
(i.e., all terms in the equations are everywhere finite)

2 What function spaces X and Y give well-posedness?
(i.e., existence, uniqueness, continuous dependence on the data)

3 How “smooth” are the functions in X ?
(i.e., is X = C∞0 , X = Lp(M), X = W k,p(M), . . .)

4 How well can we approximate a solution to (*) using standard methods?
(i.e., for some approximation uh ≈ u, how large is: ‖u − uh‖X)

5 Can we produce such approximations using algorithms that have optimal
(linear) or near-optimal space and time complexity?

These questions are related, since standard discretizations, as well as techniques
for solving the discrete system, depend on smoothness.

UCSD Center for Computational Mathematics Slide 20/111 September 11, 2008

PDE example: The nonlinear Poisson-Boltzmann equation

κ>0−

+

+

−

−

+

−ε=ε
m

ε=ε
s

Ω
m

Ω
s

κ=0

−

+

+

Solvent Mobile ions

Molecule

The potential φk satisfies Gauss’ law (and φ3(∞) = 0)

∇2φk (x) =
−4πρk (x)

εk
, k = 1, 2, 3.

Below, εk , ec , kB ,NA,T will denote physical constants & temperature.

UCSD Center for Computational Mathematics Slide 21/111 September 11, 2008

Example: The Poisson-Boltzmann equation

Is = 1000M/NA moles/liter, M = solvent ions/cm3

qi = zi ec = charge at point ri , zi ∈ [−1, 1], i = 1, . . . ,Nm.

u(x) = ecφ(x)
kB T , κ =

(
8πNAe2

c

1000e3kB T

)1/2

I
1/2
s

κ̄(x) =

{
0, x ∈ Ω1,Ω2

ε
1/2
3 κ, x ∈ Ω3

, ε(x) =

{
ε1, x ∈ Ω1

ε2(= ε3), x ∈ Ω2,Ω3

A Boltzmann assumption on the ion concentration ratio gives rise to the nonlinear
Poisson-Boltzmann equation:

−∇ · (ε(x)∇u(x)) + κ̄2 sinh(u(x)) =

(
4πe2

c

kB T

) Nm∑
i=1

ziδ(x− xi).

Computing the formal variational (or Gateaux) derivative of the nonlinear PBE
operator gives the linearized PBE:

−∇ · (ε(x)∇u(x)) + κ̄2u(x) =

(
4πe2

c

kB T

) Nm∑
i=1

ziδ(x− xi).

UCSD Center for Computational Mathematics Slide 22/111 September 11, 2008

More Complexity: Elasticity models of biological structures

ϕ

Ω Ω

x xϕ

ϕ

x
Γ

Γ

0

1

Notation:
ϕ(x) = id + u(x) : Ω 7→ R3; deformation & displacement

∇ϕ(x), ∇u(x) : Ω 7→M3; def. & disp. gradients

C = ∇ϕT∇ϕ, E = 1
2 (C − I) : Ω 7→ S3; RCG & GSV strains

UCSD Center for Computational Mathematics Slide 23/111 September 11, 2008

Stress and strain, and Cauchy’s equations

Σ(x) = Σ̂(x,∇ϕ(x)). (E.g., Σ̌(E) = λ(trE)I + 2µE .)

Cauchy equations (via Piola-transformation) for (ϕ1, ϕ2, ϕ3):

−∇ · (∇ϕ(x)Σ(x)) = f (x) in Ω,

n(x) · (∇ϕ(x)Σ(x)) = g(x) on Γ1,

ϕ(x) = ϕ0(x) on Γ0 = Γ− Γ1

An immersed nonlinear elastic dielectric can be described by

−∇ ·
{

(I +∇u(x)) Σ̌(E (u))
}

= f (x) in Ω

−∇(ε(x)∇φ(x)) + κ̄2(x) sinh(φ(x)) = ρ(x) in R3

n(x) · (I +∇u(x)) Σ̌(E (u)) = g(x) on Γ1,

u(x) = 0 on Γ0 = Γ− Γ1,

φ(∞) = 0.

UCSD Center for Computational Mathematics Slide 24/111 September 11, 2008

Dealing with various difficulties in the PBE
The PBE has several interesting (read “hard”) features:

Domain Ω ⊆ Rd , d = 3;

Coefficients ε(x) and κ̄(x) are discontinuous at interfaces in Ω;

Supercritical nonlinearity sinh(u): stronger than up, p = (d + 2)/(d − 1), d > 1.

Source term contains delta functions: these are not bounded linear functionals on
the natural function space H1(Ω) for d > 1.

We have tried to address these difficulties over the last several years:

1 Properties the PBE and a priori estimates of the solution. [CHX2,YHM,HYZ]

2 Approximation theory (general and specific methods). [CHX2,H1]

3 Properties of discrete approximations of the PBE. [CHX2,YHM,HYZ]

These results have been used to develop high-resolution numerical methods for PBE:

1 Design of iterative methods for the discrete eqns. [AH,ABH]

2 Design of adaptive algorithms for nonlinear approx. [H1,CHX1,CHX2]

3 Convergence of such adaptive algorithms. [CHX1,CHX2]

4 Adaptive algorithms for parallel computers. [BH,H1,H2,EHL]

We will outline the developments that have been implemented in FETK below.

UCSD Center for Computational Mathematics Slide 25/111 September 11, 2008

Regularized forms of the PBE

κ>0−

+

+

−

−

+

−ε=ε
m

ε=ε
s

Ω
m

Ω
s

κ=0

−

+

+

Solvent Mobile ions

Molecule

Problem: Charge source term produces non-smooth PBE solutions ũ:

−∇ · (ε∇ũ) + κ̄2 sinh(ũ) =

NmX
i=1

qiδi , ũ(∞) = 0.

Solution: Exploit a two-scale expansion usually reserved for linear problems:

ũ = u + G , where G =

NmX
i=1

Gi , Gi =
qi

εm

1

|x − xi |
.

Gives the Regularized PBE (RPBE) for the smooth remainder u:

−∇ · (ε∇u) + κ̄2 sinh(u + G) = ∇ · ((ε− εm)∇G) in Ω ⊆ R3,

u = g − G , on ∂Ω.

This idea goes back to at least 1996 (Z. Zhou et al).

UCSD Center for Computational Mathematics Slide 26/111 September 11, 2008

Finite difference and spectral discretizations

We very quickly review the four primary discretization techniques that are used to
generate discrete (linear and nonlinear algebraic) equations as approximations to
ordinary and partial differential equations.

Finite difference methods: Very simple approach: du
dx ≈

u(x+h)−u(x)
h , where h is

sufficiently small for “good” approximation.

One ends up with an algebraic equation Au = f for a set of approximate solution
values ui = u(xi) at a finite “mesh” of points.

The matrix A tend to be very large and sparse due to the local natural of the
difference expression, and hence iterative methods must be used.

Spectral methods: u(x) ≈
∑N

J=1 αjφj (x), where N is sufficiently large for
“good” approximation, and where φj (x) are “spectral” basis functions, e.g.
trigonometric or other functions defined globally over the domain.

One ends up with an algebraic equation Au = f for the spectral coefficients αj ;
thus, the spectral solution is globally defined (not just at mesh points).

The spectral basis functions generally have global support, hence matrix A tends
to be dense and expensive to invert directly or iteratively.

UCSD Center for Computational Mathematics Slide 27/111 September 11, 2008

Finite volume (box) discretization methods

Box methods: Consider the following domain partition of Ω ⊂ R3:

Ω ≡
⋃l

j=1 τ
j , the elements τ j are rectangles or triangles (or perhaps

hexahedra or tetrahedra in 3D).

Associated with the l elements τ j are the n nodes xi .

{τ j ;i} ≡ {τ j : xi ∈ τ j}, τ (i) ≡
⋃

j τ
j ;i ≡ {

⋃
j τ

j : xi ∈ τ j}.

Mesh parameter h, Ωh = {x1, . . . , xn}, Th = {τ 1, . . . , τ l}.

Assume u(x) and a∇u · n are continuous.

Begin by integrating the strong form over an arbitrary τ (i):

−
∑

j

∫
τ j ;i

∇ · (a∇u) dx +
∑

j

∫
τ j ;i

bu dx =
∑

j

∫
τ j ;i

f dx .

UCSD Center for Computational Mathematics Slide 28/111 September 11, 2008

Box discretization methods (continued)

Employing the divergence theorem:

−
∑

j

∫
∂τ j ;i

(a∇u) · n ds +
∑

j

∫
τ j ;i

bu dx =
∑

j

∫
τ j ;i

f dx ,

Interior surface integrals vanish (a∇u · n is continuous):

−
∫
∂τ (i)

(a∇u) · n ds +
∑

j

∫
τ j ;i

bu dx =
∑

j

∫
τ j ;i

f dx ,

The relationship is exact in each e(i).

Integrals are then approximated with quadrature, yielding a linear algebraic
system for an approximate u at the nodes xi :

Au = f .

Box method error estimation: through Taylor expansion as in finite differences; a
more powerful modern approach employs finite element approximation theory.

UCSD Center for Computational Mathematics Slide 29/111 September 11, 2008

Box methods: A one-dimensional example

Consider the following simple problem:

− d

dx

(
a(x)

d

dx
u(x)

)
+ b(x)u(x) = f (x) in (c , d), u(c) = u(d) = 0.

Define a discrete mesh c = x0 < x1 < · · · < xn+1 = d , with xi+1 = xi + hi ,
hi > 0. We define the boxes around xi to be

[xi −
hi−1

2
, xi +

hi

2
]

The continuity assumptions at xi are:

lim
x→x−i

u(x) = lim
x→x+

i

u(x), lim
x→x−i

a(x)
du(x)

dx
= lim

x→x+
i

a(x)
du(x)

dx
.

Some notation: xi−1/2 ≡ xi − hi−1/2, xi+1/2 ≡ xi + hi/2.

UCSD Center for Computational Mathematics Slide 30/111 September 11, 2008

One-dimensional example continued

Integration by parts over a particular box, employing the continuity conditions,
produces (still exact):(

a(xi−1/2)
d

dx
u(xi−1/2)

)
−
(

a(xi+1/2)
d

dx
u(xi+1/2)

)

+

∫ xi+1/2

xi−1/2

b(x)u(x)dx =

∫ xi+1/2

xi−1/2

f (x)dx .

Employing now some quadrature rules and centered differences (O(h2) for
hi = h), gives the approximation:

a(xi−1/2)

(
uh(xi)− uh(xi−1)

hi−1

)
− a(xi+1/2)

(
uh(xi+1)− uh(xi)

hi

)

+uh(xi)

(
hi−1b(x−i) + hi b(x+

i)

2

)
=

(
hi−1f (x−i) + hi f (x+

i)

2

)
.

UCSD Center for Computational Mathematics Slide 31/111 September 11, 2008

APBS: Discretization with the Box Method and PMG

APBS based on PMG (Parallel algebraic MultiGrid), which has:

Box method discretization of PBE on a tensor-product mesh of unit cube.

Fast multigrid solution of the resulting linear and nonlinear algebraic system.

Provably and (emperically demonstratable) optimal (linear) computational
and storage complexity.

Why do anything beyond this? Consider:

Left: Approx 500K degrees of freedom; Right: Approx 50K degrees of freedom.

UCSD Center for Computational Mathematics Slide 32/111 September 11, 2008

Alternative Discretization with Adaptive FEM
Among the host of possible numerical discretization techniques available for this
class of problems, we focus primarily on finite element methods, due to:

1 Representation of complex domain shapes and boundaries.

2 Discretization of general nonlinearities and bndry conds.

3 Well-suited for general coupled nonlinear elliptic systems.

4 General nonlinear (adaptive) approximation theory framework.

5 Ideal setting for building optimal multilevel solvers.

Key play: Finite Element Methods (FEM) provide a powerful discretization and
numerical solver framework to improve on box method-type discretization of the
PBE and similar problems in the following ways:

More accurate/realistic representation of biomolecular structures with
geometric complexity (mesh generation);

Minimization of degrees of freedom in the discrete problem through use of
Adaptive FEM (AFEM; posteriori estimates, mesh refinement);

Preservation of the linear computational and storage complexity of the
resulting numerical methods (fast multilevel solvers for AFEM).

UCSD Center for Computational Mathematics Slide 33/111 September 11, 2008

Discretizing Nonlinear Variational Problems
A Petrov-Galerkin (PG) method looks for an approximation uh ≈ u satisfying the
variational problem (13) in subspaces:

Find uh ∈ Xh ⊆ X such that 〈F (uh), vh〉 = 0, ∀vh ∈ Yh ⊆ Y .

A Galerkin method is the special case of Y = X and Yh = Xh.

Consider now the case dim(Xh) = dim(Yh) = n <∞.

If span{φ1, . . . , φn} = Xh ⊆ X and span{ψ1, . . . , ψn} = Yh ⊆ Y for bases {φj},
{ψj}, the problem is then to determine the appropriate coefficients in the
expansion:

uh =
n∑

j=1

αjφj .

The variational problem gives n (nonlinear) equations for the n coefficients:

Find uh =
n∑

j=1

αjφj such that 〈F (uh), ψi 〉 = 0, i = 1, . . . , n.

UCSD Center for Computational Mathematics Slide 34/111 September 11, 2008

Finite Element Methods

For a PG approximation uh =
∑n

j=1 αjφj , an n× n matrix equation is produced at

each Newton iteration for the Newton correction wh =
∑n

j=1 γjφj :

AX = B,

where
Aij = 〈F ′(uh)φj , ψi)〉, Xi = γi , Bi = −〈F (uh), ψi 〉.

Regarding this linear system, for practical reasons one hopes that:

The cost of storing the matrix A is as close to optimal O(n) as possible;

The cost of inverting the matrix A is as close to optimal O(n) as possible.

Roughly speaking, finite element (FE) methods are computational techniques that
allow management of two issues related to PG approximation:

1 Control of the approximation error: E (u − uh) = ‖u − uh‖X ,

2 Space/time complexity of storing and solving the n equations: AX = B.

UCSD Center for Computational Mathematics Slide 35/111 September 11, 2008

Locally Supported FE Bases and Simplex Subdivision

FE methods use piecewise polynomial spaces (controls E (u − uh)) with local
support (generates sparse matrices A), defined on elements such as simplices.

Error-estimate-driven adaptive finite element methods often based on simplex

subdivision. (Above: 2/4/8-section and conformity.)

UCSD Center for Computational Mathematics Slide 36/111 September 11, 2008

Locally Supported FE Bases and Simplex Subdivision

FE methods use piecewise polynomial spaces (controls E (u − uh)) with local
support (generates sparse matrices A), defined on elements such as simplices.

Error-estimate-driven adaptive finite element methods often based on simplex

subdivision. (Above: 2/4/8-section and conformity.)

UCSD Center for Computational Mathematics Slide 36/111 September 11, 2008

Locally Supported FE Bases and Simplex Subdivision

FE methods use piecewise polynomial spaces (controls E (u − uh)) with local
support (generates sparse matrices A), defined on elements such as simplices.

Error-estimate-driven adaptive finite element methods often based on simplex

subdivision. (Above: 2/4/8-section and conformity.)

UCSD Center for Computational Mathematics Slide 36/111 September 11, 2008

Locally Supported FE Bases and Simplex Subdivision

FE methods use piecewise polynomial spaces (controls E (u − uh)) with local
support (generates sparse matrices A), defined on elements such as simplices.

Error-estimate-driven adaptive finite element methods often based on simplex

subdivision. (Above: 2/4/8-section and conformity.)

UCSD Center for Computational Mathematics Slide 36/111 September 11, 2008

Locally Supported FE Bases and Simplex Subdivision

FE methods use piecewise polynomial spaces (controls E (u − uh)) with local
support (generates sparse matrices A), defined on elements such as simplices.

Error-estimate-driven adaptive finite element methods often based on simplex

subdivision. (Above: 2/4/8-section and conformity.)

UCSD Center for Computational Mathematics Slide 36/111 September 11, 2008

Assembling FE Systems Using An Atlas of Charts
Interesting aspect of FE techniques: coordinate transformations.

For example, if our variational problem a(u, v) = f (v) involves

a(u, v) =

∫
Ω

[∇u · ∇v + cuv] dx , f (v) =

∫
Ω

fv dx ,

and if the domain Ω ⊂ Rd is disjointly covered by conforming elements Tk ,

Ω̄ =
m⋃

k=1

Tk , ∅ =
m⋂

k=1

int(Tk),

then

Aij = a(φj , ψi) =

∫
Ω

[∇φj · ∇ψi + cφjψi] dx =
m∑

k=1

∫
Tk

[∇φj · ∇ψi + cφjψi] dx ,

Bi = f (ψi) =

∫
Ω

f ψi dx =
m∑

k=1

∫
Tk

f ψi dx .

Implementation involves integration on each element Tk via coordinate
transformation to a model of Rd (reference element), doing the integral there
using transformation jacobians, and then mapping the result back to Tk .

UCSD Center for Computational Mathematics Slide 37/111 September 11, 2008

Linear Petrov-Galerkin Approximation Error (X 6= Y)

To analyze the error, consider a linear problem and its PG approximation:

Find u ∈ X s.t. a(u, v) = f (v), ∀v ∈ Y , (19)

Find uh ∈ Xh ⊆ X s.t. a(uh, vh) = f (vh), ∀vh ∈ Yh ⊆ Y , (20)

where the following are assumed to hold for [X ,Y] (AND ALSO [Xh,Yh]!):

inf
u∈X

sup
v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ m > 0, a(u, v) ≤ M‖u‖X‖v‖Y , f (v) ≤ L‖v‖Y . (21)

The following a priori error estimate [Babuska;Brezzi] for PG approx holds:

‖u − uh‖X ≤
(

1 +
M

m

)
inf

wh∈Xh

‖u − wh‖X . (22)

To see this, first let Ph denote the projection of u onto the unique PG approx

uh = Phu, and let ‖Ph‖ denote the subordinate operator norm on X .

UCSD Center for Computational Mathematics Slide 38/111 September 11, 2008

Linear Petrov-Galerkin Approximation Error (X 6= Y)

Then,

‖u−uh‖X = ‖(I −Ph)(u−wh)‖X ≤ ‖I −Ph‖ ‖u−wh‖X ≤ (1 +‖Ph‖) ‖u−wh‖X .
(23)

Using the fact that a(uh, vh) = a(u, vh), ∀vh ∈ Yh, one notes:

m‖Phu‖X = m‖uh‖X ≤ sup
vh∈Yh

a(uh, vh)

‖vh‖Y
= sup

vh∈Yh

a(u, vh)

‖vh‖Y
≤ M‖u‖X ,

giving ‖Ph‖ = M/m. Employing this in (23) gives then (22).

It is interesting to note that the ”1” in the constant can be removed using a
result on projectors.

UCSD Center for Computational Mathematics Slide 39/111 September 11, 2008

Improving the Constant in P-G Approximation
Consider the following result on non-trivial idempotent linear operators.

Lemma: [Kato,Xu-Zikatanov] Let H be a Hilbert space. If P ∈ L(H,H) satisfies
0 6= P2 = P 6= I , and if ‖ · ‖ denotes the subordinate operator on H, then

‖P‖ = ‖I − P‖.

As pointed out by [Xu-Zikatanov], this result can be used to remove the leading
“1” in the PG constant. As before, let Ph denote the projection of u onto the
unique PG approximation uh = Phu. The result on idempotent linear operators
gives now:

‖u−uh‖X = ‖(I−Ph)(u−wh)‖X ≤ ‖I−Ph‖ ‖u−wh‖X = ‖Ph‖ ‖u−wh‖X . (24)

As before, using the fact that a(uh, vh) = a(u, vh), ∀vh ∈ Yh, one notes:

m‖Phu‖X = m‖uh‖X ≤ sup
vh∈Yh

a(uh, vh)

‖vh‖Y
= sup

vh∈Yh

a(u, vh)

‖vh‖Y
≤ M‖u‖X ,

giving ‖Ph‖ = M/m. Employing this in (24) gives now an improved constant:

‖u − uh‖X ≤
(

M

m

)
‖u − wh‖X .

UCSD Center for Computational Mathematics Slide 40/111 September 11, 2008

Linear Galerkin Approximation Error (X = Y)
To analyze the error, consider a linear problem and its Galerkin approximation:

Find u ∈ X s.t. a(u, v) = f (v), ∀v ∈ X , (25)

Find uh ∈ Xh ⊆ X s.t. a(uh, vh) = f (vh), ∀vh ∈ Xh ⊆ X , (26)

where

a(u, u) ≥ m‖u‖2
X , a(u, v) ≤ M‖u‖X‖v‖X , f (v) ≤ L‖v‖X . (27)

The following a priori error estimate [Cea’s Lemma] for the Galerkin approx:

‖u − uh‖X ≤
(

M

m

)
inf

wh∈Xh

‖u − wh‖X ,

follows from a(u − uh, vh) = 0, ∀vh ∈ Xh, and from

m‖u − uh‖2
X ≤ a(u − uh, u − uh) = a(u − uh, u − wh) ≤ ‖u − uh‖X‖u − wh‖X .

If some of the properties (27) are lost, or if the problem is nonlinear, a priori
estimates for Galerkin methods may still be possible (case-by-case basis).

UCSD Center for Computational Mathematics Slide 41/111 September 11, 2008

Nonlinear Petrov-Galerkin Approx. Error (X 6= Y)
To analyze the error, consider a nonlinear problem and its PG approximation:

Find u ∈ X s.t. a(u, v) + 〈b(u), v〉 = f (v), ∀v ∈ Y , (28)

Find uh ∈ Xh ⊆ X s.t. a(uh, vh) + 〈b(uh), vh〉 = f (vh), ∀vh ∈ Yh ⊆ Y ,(29)

where the following are assumed to hold for [X ,Y] (AND ALSO [Xh,Yh]!):

inf
u∈X

sup
v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ m > 0, a(u, v) ≤ M‖u‖X‖v‖Y , f (v) ≤ L‖v‖Y , (30)

as well as the following conditions on the nonlinearity:

sup
vh∈Yh

〈b(uh)− b(wh), vh〉 ≥ 0,

〈b(u)− b(wh), vh〉 ≤ K‖u − wh‖X‖vh‖Y , ∀wh ∈ Xh, vh ∈ Yh.

The following a priori error estimate holds for nonlinear PG approximation:

‖u − uh‖X ≤
(

1 +
M + K

m

)
inf

wh∈Xh

‖u − wh‖X .

To see this, first note that the Petrov-Galerkin solution uh satisfies:

a(u − uh, vh) + 〈B(u)− B(uh), vh〉 = 0, ∀vh ∈ Yh.

UCSD Center for Computational Mathematics Slide 42/111 September 11, 2008

Nonlinear Petrov-Galerkin Approx. Error (X 6= Y)
This implies ∀vh ∈ Yh that:

a(u − wh, vh) + 〈B(u)− B(wh), vh〉 = a(uh − wh, vh) + 〈B(uh)− B(wh), vh〉
+ a(u − uh, vh) + 〈B(u)− B(uh), vh〉
= a(uh − wh, vh) + 〈B(uh)− B(wh), vh〉.

Then
m‖uh − wh‖X ≤ sup

vh∈Yh

a(uh − wh, vh)

‖vh‖Y

≤ sup
vh∈Yh

{
a(uh − wh, vh) + b(uh − wh, vh)

‖vh‖Y

}
= sup

vh∈Yh

{
a(u − wh, vh) + b(u − wh, vh)

‖vh‖Y

}
≤ (M + K)‖u − wh‖X .

From the triangle inequality we have then

‖u − uh‖X ≤ ‖u − wh‖X + ‖uh − wh‖X ≤
(

1 +
M + K

m

)
‖u − wh‖X .

Unlike the linear case, the leading “1” cannot be easily removed.

UCSD Center for Computational Mathematics Slide 43/111 September 11, 2008

Nonlinear Galerkin Approximation Error (X = Y)

To analyze the error, consider a linear problem and its Galerkin approximation:

Find u ∈ X s.t. a(u, v) + 〈b(u), v〉 = f (v), ∀v ∈ X , (31)

Find uh ∈ Xh ⊆ X s.t. a(uh, vh) + 〈b(uh), vh〉 = f (vh), ∀vh ∈ Xh ⊆ X ,(32)

where the following are assumed to hold for [X ,Y]:

a(u, u) ≥ m‖u‖2
X , a(u, v) ≤ M‖u‖X‖v‖X , f (v) ≤ L‖v‖X .

as well as the following conditions on the nonlinearity at the solutions u and uh:

〈b(u)− b(uh), u − uh〉 ≥ 0,

〈b(u)− b(uh), u − wh〉 ≤ K‖u − uh‖X‖u − wh‖Y , ∀wh ∈ Xh.

The following a priori error estimate [H1] holds for the nonlinear Galerkin
approximation:

‖u − uh‖X ≤
(

M + K

m

)
inf

wh∈Xh

‖u − wh‖X .

UCSD Center for Computational Mathematics Slide 44/111 September 11, 2008

Nonlinear Galerkin Approximation Error (X = Y)

To see this, note that the Petrov-Galerkin solution uh satisfies:

a(u − uh, vh) + 〈b(u)− b(uh), vh〉 = 0, ∀vh ∈ Xh,

and the result then follows now from:

m‖u − uh‖2
X ≤ a(u − uh, u − uh)

≤ a(u − uh, u − uh) + 〈b(u)− b(uh), u − uh〉
= a(u − uh, u − wh) + 〈b(u)− b(uh), u − wh〉
≤ (M + K)‖u − uh‖X‖u − wh‖X .

UCSD Center for Computational Mathematics Slide 45/111 September 11, 2008

Provably Convergent Discretization of the PBE
The discrete PBE problem is to determine the expansion coefficients:

Find uh =
nX

j=1

αjφj such that 〈F (uh), ψi 〉 = 0, i = 1, . . . , n,

using Newton methods by (repeatedly) solving for the correction wh =
Pn

j=1 γjφj :

AW = G ,
U = U + W ,

where


Aij = 〈F ′(uh)φj , ψi)〉,
Gi = −〈F (uh), ψi 〉,

Ui = αi ,
Wi = γi .

ff
Again, FE methods allow management of two critical PG approximation issues:

1 Control of the approximation error: E(u − uh) = ‖u − uh‖X ,

2 Space/time complexity of storing and solving the n equations: AW = G .

Problem: Standard discretizations in use for the PBE do not converge.
Solution: Convergent discretization method build from RPBE two-scale splitting:

Theorem: [CHX2] Let u and uh be the RPBE solution and the finite element
approximation, respectively. When uh is uniformly bounded, we have

‖u − uh‖X . inf
vh∈Xh

‖u − vh‖X .

UCSD Center for Computational Mathematics Slide 46/111 September 11, 2008

Nonlinear Approximation using Adaptive Methods in FETK
Adaptive FEM (AFEM): build approximation spaces adaptively, meeting target quality
using spaces having minimal dimension. This is nonlinear approximation.

Iterative SOLVE-ESTIMATE-MARK-REFINE algorithms try to equi-distribute error over
simplices using subdivision driven by a posteriori error estimates:

1 Construct problem (build mesh, define PDE coefficients, etc)

2 While (e(u − uh) is “large”) do:

1 SOLVE: Find uh ∈ Xh such that 〈F (uh), vh〉 = 0,∀vh ∈ Yh

2 ESTIMATE: Estimate e(u − uh) over each element, set Q1 = Q2 = φ.
3 MARK: Mark subset of elements for refinement, place in Q1.
4 REFINE:

1 (R) Place simplices with large error in “refinement” Q1
2 Bisect simplices in Q1; place nonconforming simplices in Q2.
3 Q1 is now empty; set Q1 = Q2, Q2 = φ.
4 If Q1 is not empty, goto (R).

3 end while

Problem: Very few convergence results on adaptive methods for nonlinear problems.
Solution: Convergence proof of an AFEM algorithm for the RPBE [CHX2]:

Theorem: [CHX2] There exists 0 ≤ γ < 1 such that

‖u − uk+1‖X ≤ γ‖u − uk‖X , so that lim
k→∞

‖u − uk‖X = 0,

where uk is the solution of the k-th iteration of AFEM for the RPBE.UCSD Center for Computational Mathematics Slide 47/111 September 11, 2008

Examples with adaptive FE codes PLTMG and FETK

−∆u = 1 −∇ · (∇u + βu) = 1 −∆u − 2u = 1

−∇ · (ε∇u) + κ̄2 sinh(u) = f −∇ ·
˘

(I +∇u) Σ̌(E(u))
¯

= f γ̂abD̂aD̂bφ = P(φ,W ab)

D̂b (̂lW)ab = 2
3
φ6D̂atrK + 8πĵa

UCSD Center for Computational Mathematics Slide 48/111 September 11, 2008

A posteriori error estimation for driving h-adaptivity
Idea: estimate E (u − uh) and use information to improve uh. Some standard
options with a well-developed literature:

1 Nonlinear (strong) residual error estimation [Babuska,Verfurth,...].

2 Linearized global dual problem error estimation [Johnson,Estep,...].

Residual estimation: given Banach spaces X , Y , and Xh ⊂ X , Yh ⊂ Y , consider

F (u) = 0, F ∈ C 1(X ,Y ∗), Fh(uh) = 0, Fh ∈ C 0(Xh,Y
∗
h).

The nonlinear residual F (uh) can be used to estimate ‖u − uh‖X :[
1

2
‖DF (u)‖−1

L(X ,Y ∗)

]
·‖F (uh)‖Y ∗ ≤ ‖u−uh‖X ≤

[
2‖DF (u)−1‖L(Y ∗,X)

]
·‖F (uh)‖Y ∗ .

Theorem: (E.g., [H1]) (Residual-based) The galerkin solution uh satisfies

E (u − uh) = ‖u − uh‖X ≤ C

(∑
s∈S

ηp
s

)1/p

, (p depends on choice of X and Y)

where ηs is a computable element-wise error “indicator” and C is a “constant”.

Proof Outline: A few inequalities and a quasi-interpolation argument.

UCSD Center for Computational Mathematics Slide 49/111 September 11, 2008

A general residual a posteriori error estimate
In our setting of second order nonlinear PDE, what is needed is a bound on the
dual norm with the index q determined by the weak formulation:

‖F (u)‖W−1,q(M) = sup
06=v∈W 1,q(M)

|〈F (u), v〉|
‖v‖W 1,q(M)

.

We derive such a bound for the following class of elliptic problems:

−Aia(xb, uj , uk
;c);a + B i (x j , uk , uk

;c) = 0 in M,

Aiq(xb, uj , uk
;c)na + C i (x j , uk) = 0 on ∂1M,

ui (xb) = E (xb) on ∂0M,

which includes all the nonlinear elliptic problems above, where:

1 ≤ a, b, c ≤ d , 1 ≤ i , j , k ≤ n,

A :M×Rn×Rnd 7→ Rnd , B :M×Rn×Rnd 7→ Rn, C : ∂1M×Rn 7→ Rn,

E : ∂0M 7→ Rn, ∂0M∪ ∂1M = ∂M, ∂0M∩ ∂1M = ∅.
We are using tensor notation here, with X;c = ∂X

∂xc representing partial
differentiation, and with summation convention in play.

UCSD Center for Computational Mathematics Slide 50/111 September 11, 2008

Residual a posteriori error estimate (cont)

Under growth restrictions on Aia,B i ,C i , there exists 1 < pk , qk , rk <∞ such that
the weak formulation is well-defined:

Find ui ∈ ūi + B1 s.t. 〈F (ui), v j〉 = 0, ∀v j ∈ B2,

where E i = tr ūi via a covariant Trace Theorem, and where

B1 = W 1,r1

0,D (M)× · · · ×W 1,rk

0,D (M), B2 = W 1,q1

0,D (M)× · · · ×W 1,qk

0,D (M),

with 1/pk + 1/qk = 1, and rk ≥ min{pk , qk}.

The form is produced by (covariant) integration-by-parts:

〈F (u), v〉 =

∫
M
Gij (Aiav j

;a + B i v j) dx +

∫
∂1M
Gij C

i v j ds = 0,

for suitable product metric Gij .

UCSD Center for Computational Mathematics Slide 51/111 September 11, 2008

Residual a posteriori error estimate (cont)

Some additional notation:

[v]f (x) = lim
ε→0+

v(x + εnf)− lim
ε→0−

v(x − εnf).

S = Set of shape-regular simplices forming M
N (s) = The union of faces in s lying on ∂1M
I(s) = The union of faces in s not in N (s)
F(s) = N (s) ∪ I(s)
ωs =

⋃
{ s̃ ∈ S | s

⋂
s̃ 6= ∅, where s ∈ S }

ωf =
⋃
{ s̃ ∈ S | f

⋂
s̃ 6= ∅, where f ∈ F }

hs = The diameter of the simplex s
hf = The diameter of the face f .

UCSD Center for Computational Mathematics Slide 52/111 September 11, 2008

Residual a posteriori error estimate (cont)

Theorem: [H1] The galerkin solution uh satisfies

‖u − uh‖W 1,r (M) ≤ C

(∑
s∈S

ηp
s

)1/p

, 1/p + 1/q = 1, r ≥ min{p, q},

where C and the element-wise residual error indicator ηs are:

C = 2 ·max{Cs ,Cf } ·max{D1/q
s ,D

1/q
f } · ‖DF (u)−1‖L(W−1,q,W 1,p),

ηs =

hp
s ‖B i − Aia

;a‖
p
Lp(s) +

1

2

∑
f∈I(s)

hf ‖
[
Aiana

]
f
‖p

Lp(f)

+
∑

f∈N (s)

hf ‖C i + Aiana‖p
Lp(f)

1/p

.

Proof: A few inequalities (continuous and discrete Hölder) and
W k,p-quasi-interpolation (Clément or Scott-Zhang) argument.

UCSD Center for Computational Mathematics Slide 53/111 September 11, 2008

Duality-based a posteriori error estimation
Assume F : X 7→ Y , X and Y Banach spaces, and F ∈ C 1, s.t.

F (u + h) = F (u) +

{∫ 1

0

DF (u + ξh)dξ

}
h.

Taking h = uh − u, F (u) = 0, and uh a Galerkin approximation to u, gives

F (uh) = F (u + h) = F (u + [uh − u]) = F (u) +A(uh − u) = −A(u − uh),

where

A =

∫ 1

0

DF (u + ξh)dξ.

We wish to estimate linear functionals E (u− uh) = 〈u− uh, ψ〉 of the error u− uh.

Theorem: (E.g., [H1]) (Duality-based) If φh is a Galerkin approximation to the
solution of the dual problem: ATφ = ψ, then

E (u − uh) = −〈F (uh), φ− φh〉.

Proof Outline:

E (u−uh) = 〈u−uh, ψ〉 = 〈u−uh,ATφ〉 = 〈A(u−uh), φ−φh〉 = −〈F (uh), φ−φh〉.

UCSD Center for Computational Mathematics Slide 54/111 September 11, 2008

Solving the resulting nonlinear discrete equations
Each iteration of these types of adaptive algorithm requires:

1 Solve discrete nonlinear problem (e.g. via Global Inexact Newton).

2 Estimate the error in each simplex.

3 Locally adapt the mesh; go back to 1.

Solution of Newton linearization systems completely dominate space and time
complexity of overall adaptive algorithm (everything else has linear complexity).

Fundamental Problems:

Algorithms must have (nearly) linear space and (sequential) time complexity.

Algorithms must scale (nearly) linearly with P on a parallel computer.

MG *does not* have linear space OR time complexity on adapted meshes.

Our Solutions: Fast linear elliptic solvers based on:

BPX [Bramble-Pasciak-Xu] & stabilized HB [Bank;Vassilevski-Wang]. [AH]

De-coupling algorithms for scalability on parallel computers. [BH]

UCSD Center for Computational Mathematics Slide 55/111 September 11, 2008

Iterative methods for solving discretized linear PDE
We wish to solve the operator equation Au = f .
Given a preconditioner B ≈ A−1, consider preconditioned system BAu = Bf , and
a resulting linear iterative method:

un+1 = un + B(f − Aun) = (I − BA)un + Bf . (33)

The identity u = u − BAu + Bf yields an error equation for en = u − un:

en+1 = (I − BA)en = (I − BA)2en−1 = · · · = (I − BA)n+1e0. (34)

The convergence of Algorithm 33 is determined by the spectral radius of the error
propagator E = I − BA.

Theorem: The condition ρ(I − BA) < 1 is necessary and sufficient for
convergence of Algorithm 33.

Note that any symmetric positive definite (SPD) n × n matrix M can be used to
define an alternative norm on Rn as follows:

‖u‖A = (Au, u), (u, v) =
n∑

i=1

ui vi .

UCSD Center for Computational Mathematics Slide 56/111 September 11, 2008

Iterative methods for solving linear equations
Since |λ|‖u‖ = ‖λu‖ = ‖Mu‖ ≤ ‖M‖ ‖u‖ for any norm ‖ · ‖, it follows that
ρ(M) ≤ ‖M‖ for all norms ‖ · ‖.
Thus, ‖I − BA‖ < 1 and ‖I − BA‖A < 1 are both sufficient conditions for
convergence of Algorithm 33.
In fact, it is the norm of the error propagation operator which will bound the
reduction of the error at each iteration, which follows from (34):

‖en+1‖A ≤ ‖I − BA‖A‖en‖A ≤ ‖I − BA‖n+1
A ‖e0‖A. (35)

The spectral radius ρ(E) of the error propagator E is called the convergence
factor for Algorithm 33, whereas the norm of the error propagator ‖E‖ is referred
to as the contraction number (with respect to the particular choice of norm ‖ · ‖).
Define the A-condition number of an invertible operator M by extending the
standard notion to the A-inner-product:

κA(M) = ‖M‖A‖M−1‖A.

It can be shown that if M is A-self-adjoint, then:

κA(M) =
λmax(M)

λmin(M)
.

UCSD Center for Computational Mathematics Slide 57/111 September 11, 2008

Complexity of linear methods
To reduce the initial error ‖e0‖A by the factor ε, then equation (35) implies this is
guaranteed if

‖E‖n+1
A ≤ ε.

Taking logarithms of both sides and solving for n, the maximum number of
iterations required to reach the desired tolerance is

n ≥ | ln ε|
| ln ‖E‖A|

. (36)

If the bound on the norm is of the form in Lemma 59, then to achieve a tolerance
of ε after n iterations will require:

n ≥ | ln ε|∣∣∣ln(1− 2
1+κA(BA)

)∣∣∣ =
| ln ε|∣∣∣ln(κA(BA)−1
κA(BA)+1

)∣∣∣ . (37)

Using the approximation:

ln

(
a− 1

a + 1

)
= ln

(
1 + (−1/a)

1− (−1/a)

)
= 2

[(
−1

a

)
+

1

3

(
−1

a

)3

+
1

5

(
−1

a

)5

+ · · ·

]
<
−2

a
,

UCSD Center for Computational Mathematics Slide 58/111 September 11, 2008

Iterative methods for solving linear equations
we have | ln[(κA(BA)− 1)/(κA(BA) + 1)]| > 2/κA(BA), so:

n ≥ 1

2
κA(BA)| ln ε|+ 1.

The maximum number of iterations required ε is then

n = O (κA(BA)| ln ε|) .

If a single iteration of the method costs O(N) operations, the complexity to solve
the problem is O(κA(BA)N| ln ε|).
If ‖E‖A or κA(BA) independent of N, complexity is near optimal O(N| ln ε|).
We have made use of the following classical result:

Lemma: If A and B are SPD, then

ρ(I − αBA) = ‖I − αBA‖A < 1.

if and only if α ∈ (0, 2/ρ(BA)). Convergence is optimal when
α = 2/[λmin(BA) + λmax(BA)], giving

ρ(I − αBA) = ‖I − αBA‖A = 1− 2

1 + κA(BA)
< 1.

UCSD Center for Computational Mathematics Slide 59/111 September 11, 2008

Preconditioned conjugate gradient methods

Given some (method for applying) B ≈ A−1, we can either formulate a linear
method or employ a CG method.
(A preconditioned CG method)

Let u0 ∈ H be given, r 0 = f − Au0, s0 = Br 0, p0 = s0.
Do i = 0, 1, . . . until convergence:

αi = (r i , s i)/(Api , pi)
ui+1 = ui + αi p

i

r i+1 = r i − αi Api

s i+1 = Br i+1

βi+1 = (r i+1, s i+1)/(r i , s i)
pi+1 = s i+1 + βi+1pi

End do.

The error at each CG iteration be written as a polynomial in BA times the initial
error:

e i+1 = [I − BApi (BA)]e0,

where pi ∈ Pi , the space of polynomials of degree i .

UCSD Center for Computational Mathematics Slide 60/111 September 11, 2008

Preconditioned conjugate gradient methods
At each step the energy norm ‖e i+1‖A = ‖u − ui+1‖A is minimized over the
Krylov subspace:

Vi+1(BA,Br 0) = span {Br 0, (BA)Br 0, (BA)2Br 0, . . . , (BA)i Br 0}.

Thus,
‖e i+1‖A = min

pi∈Pi

‖[I − BApi (BA)]e0‖A.

Using some simple well-known properties of the scaled and shifted Chebyshev
polynomials, the following contraction bound is easily derived:

‖e i+1‖A ≤ 2


√

λmax(BA)
λmin(BA) − 1√
λmax(BA)
λmin(BA) + 1

i+1

‖e0‖A = 2 δi+1
cg ‖e0‖A, (38)

δcg =

√
κA(BA)− 1√
κA(BA) + 1

= 1− 2

1 +
√
κA(BA)

.

Theorem: If A and B are SPD, and ‖I − BA‖A ≤ δ < 1, then δcg < δ.

UCSD Center for Computational Mathematics Slide 61/111 September 11, 2008

Preconditioned conjugate gradient methods

Proof is by noting κA(BA) > 1, so δcg < δopt ≤ δ follows from:

δopt = 1− 2

1 + κA(BA)
, δcg = 1− 2

1 +
√
κA(BA)

.

UCSD Center for Computational Mathematics Slide 62/111 September 11, 2008

Complexity of CG methods
The cost to reduce the energy norm of the error below a tolerance ε can be
determined using δcg and (38).
To achieve a tolerance of ε after n iterations will require:

2 δn+1
cg = 2

(√
κA(BA)− 1√
κA(BA) + 1

)n+1

< ε.

Dividing by 2 and taking natural logarithms yields:

n ≥
∣∣∣ln ε

2

∣∣∣ · ∣∣∣∣∣ln
(√

κA(BA)− 1√
κA(BA) + 1

)∣∣∣∣∣
−1

.

Using the approximation:

ln

(
a− 1

a + 1

)
= 2

[(
−1

a

)
+

1

3

(
−1

a

)3

+
1

5

(
−1

a

)5

+ · · ·

]
<
−2

a
,

we have | ln[(κ
1/2
A (BA)− 1)/(κ

1/2
A (BA) + 1)]| > 2/κ

1/2
A (BA), and:

n ≥ 1

2
κ

1/2
A (BA)

∣∣∣ln ε
2

∣∣∣+ 1.

UCSD Center for Computational Mathematics Slide 63/111 September 11, 2008

Complexity of CG methods
We then have that the maximum number of iterations required to reach an error
on the order of the tolerance ε is:

n = O
(
κ

1/2
A (BA)

∣∣∣ln ε
2

∣∣∣) .
If the cost of each iteration is O(N), which holds in the case of sparse matrices

generated by FEM, the complexity to solve the problem is O(κ
1/2
A (BA)N| ln[ε/2]|).

If κ
1/2
A (BA) can be bounded independently of the problem size N, then the

complexity becomes (near) optimal order O(N| ln[ε/2]|).
Complexities of various methods: to force ||u − un|| < ε for model problems:

Method 2D 3D

Gaussian elimination (GE) O(N3) O(N3)

Banded GE O(N2) O(N2.33)

Sparse GE O(N1.5) O(N2)

Jacobi/Gauss-Seidel iteration O(N2 ln N) O(N1.67 ln N)

SOR O(N1.5 ln N) O(N1.33 ln N)

Conjugate gradients (CG) O(N1.5) ln N) O(N1.33 ln N)

Preconditioned CG O(N1.25 ln N) O(N1.17 ln N)
Multilevel methods O(N ln N) O(N ln N)
Nested multilevel methods O(N) O(N)

UCSD Center for Computational Mathematics Slide 64/111 September 11, 2008

Nonlinear approximation: BPX and HB methods
Problem: Local refinement driven by a posteriori error estimation forces ML
methods to be sub-optimal, due to slow dimension growth in space hierarchy:

Worse than linear storage requirements.

Worse than linear computational complexity for a single iteration.

Solution: Change multilevel algorithm to work only at new DOF in each space;
result is HB-Method [Bank-Dupont-Yserentant, 1986]. Regains linear space and
time complexity, per iteration.
New Problem: κA(BA) grows like O(N log N) in 2D, much worse in 3D.
Potential Solutions:

BPX Preconditioner: Optimality shown by Oswald, Xu, others in
quasi-uniform case; 2D local refinement optimal due to Dahmen-Kunoth.

Stabilized HB: Optimality shown by Vassilevski-Wang in 2D/3D
quasi-uniform case.

Dahmen-Kunoth BPX result extended to 3D/n-D local refinement in [AH].

Vassilevski-Wang result extended to 2D/3D/n-D local refinement in [AH].

We will discuss briefly the 3D BPX results in [AH].

UCSD Center for Computational Mathematics Slide 65/111 September 11, 2008

Linear complexity methods for nonlinear approximation
Given an SPD A ∈ L(X ,X), where {X , (·, ·), ‖ · ‖ = (·, ·)1/2} is a Hilbert space,
we wish to solve the operator equation for u:

Au = f .

The SPD operator A defines a second inner-product (·, ·)A = (A·, ·) on X ,

inducing a second norm ‖ · ‖A = (·, ·)1/2
A .

Some (method for applying) B ≈ A−1 to v ∈ H, we can either:

1 Use a linear method: un+1 = un − αBAun + αBf = (I − αBA)un + αBf .

2 Use CG on preconditioned BAu = Bf .

Linear method iterations to reach ε (with optimal α):

k ≥ 1

2
κA(BA)| ln ε|+ 1, so that : k = O (κA(BA)| ln ε|) . (or worse!)

CG iterations to reach ε:

k ≥ 1

2
κ

1/2
A (BA)| ln ε

2
|+ 1. so that : k = O

(
κ

1/2
A (BA)| ln ε

2
|
)
. (or better!)

UCSD Center for Computational Mathematics Slide 66/111 September 11, 2008

Apparently we need to estimate condition numbers
If any of the following (equivalent) norm equivalences hold,

c1(Au, u) ≤ (ABAu, u) ≤ c2(Au, u),

c1(Bu, u) ≤ (BABu, u) ≤ c2(Bu, u),

c1(A−1u, u) ≤ (Bu, u) ≤ c2(A−1u, u),

c1(B−1u, u) ≤ (Au, u) ≤ c2(B−1u, u),

c−1
2 (Au, u) ≤ (B−1u, u) ≤ c−1

1 (Au, u),

c−1
2 (Bu, u) ≤ (A−1u, u) ≤ c−1

1 (Bu, u),

then by simple spectral theory arguments one has

κA(BA) ≤ c−1
1 c2.

The following notation is useful, where x , y ∈ R and c ∈ R a universal constant:

x . y if x ≤ cy ,

x & y if y ≤ cx ,

x h y if
1

c
y ≤ x ≤ cy (i.e., x . y and x & y).

UCSD Center for Computational Mathematics Slide 67/111 September 11, 2008

Spaces from approximation theory that will arise
Besov and approximation spaces arise naturally in modern approximation theory:

Bs
p,q(M) =

{
u : ‖u‖Bs

p,q(M) <∞
}
, As

p,q(M) =
{

u : ‖u‖As
p,q(M) <∞

}
,

where
‖u‖Bs

p,q(M) = ‖u‖Lp(M) + |u|Bs
p,q(M),

|u|Bs
p,q(M) = ‖{2sjωk (f , 2−j ,M)p}j∈N0‖lq ,

‖u‖As
p,q(M) = ‖{2sj‖(Qj − Qj−1)u‖Lp(M)}j∈N0‖lq , Q−1 = 0, Q∞ = I .

with ωk (f , t,M)p =
∑
|h|≤t

‖∆k
hf ‖Lp(Mh,k),

(∆k
hf)(x) =

k∑
r=0

(
k

r

)
(−1)k−r f (x + rh), x , h ∈ Rd ,

Mh,k = {x ∈ Rd : [x , x + kh] ⊂M}.

Connection to Sobolev spaces:

W s,p(M) = Bs
p,p(M), p ≥ 1, s > 0, when s is not an integer,

Hs(M) = Bs
2,2(M), ∀s > 0.

UCSD Center for Computational Mathematics Slide 68/111 September 11, 2008

The BPX preconditioner
Let the Hilbert space X contain a multilevel hierarchy of Hilbert spaces:

S0 ⊆ S1 ⊆ . . . ⊆ SJ = X ⊂ Hk (Ω), dim(X) <∞,
with Sk inheriting Hilbert space structure from X . Subspaces S̃j arise naturally:

Sj \ Sj−1 ⊆ S̃j ⊆ Sj .

Let Q̃j be set of local projection (orthogonal and idempotent) operators:

Q̃j : L2(Ω) 7→ S̃j , j = 0, . . . , J, Q̃−1 = 0, Q̃J = I .

The BPX preconditioner can be defined as e.g.:

B̄u =
J∑

j=0

λ−1
j Q̃j u, Bu =

J∑
j=0

R̃j Q̃j u.

Note : B̄−1u =
J∑

j=0

λj Q̃j u


Here, R̃j : S̃j 7→ S̃j is a local smoothing operator satisfying:

λ−1
j ‖v‖ h (R̃j v , v), v ∈ S̃j . (39)

Natural assumption on λj : There exists β > 1 such that

λj+1 h βλj , j = 0, . . . , J − 1. (λj h h−2
j , λj = 2j , etc.) (40)

UCSD Center for Computational Mathematics Slide 69/111 September 11, 2008

Multilevel splittings and the slice norm
In classical approximation theory one considers multilevel splittings of the form:

u =
J∑

j=0

(Q̃j − Q̃j−1)u.

The approximation or slice operator has the form (with e.g. λj = 2j):

Cu =
J∑

j=0

λj (Q̃j − Q̃j−1)u, C−1u =
J∑

j=0

λ−1
j (Q̃j − Q̃j−1)u.

The approximation (or slice) norm can then be written as:

(Cu, u) = ‖u‖2
C = ‖u‖2

A1
2,2(Ω).

Theorem: [Classical; see e.g. AH] The slice norm and BPX preconditioners
are spectrally equivalent:

(C−1u, u) h (B̄u, u) h (Bu, u).

Proof: Orthogonality of Q̃k and assumptions (39) and (40).

UCSD Center for Computational Mathematics Slide 70/111 September 11, 2008

Proof.

(More detailed version of the proof.)

(C−1u, u) =
J∑

j=0

λ−1
j ((Q̃j − Q̃j−1)u, u)

=
J∑

j=0

λ−1
j (Q̃j u, u)−

J−1∑
j=0

λ−1
j+1(Q̃j u, u)

h
J∑

j=0

λ−1
j (Q̃j u, u)−

J−1∑
j=0

1

β
λ−1

j (Q̃j u, u)

= λ−1
J (Q̃J u, u) +

J−1∑
j=0

(1− 1

β
)λ−1

j (Q̃j u, u)

h λ−1
J (Q̃J u, u) +

J−1∑
j=0

λ−1
j (Q̃j u, u)

=
J∑

j=0

λ−1
j (Q̃j u, u) = (B̄u, u).

(B̄u, u) =
J∑

j=0

λ−1
j (Q̃j u, Q̃j u) h

J∑
j=0

(R̃j Q̃j u, Q̃j u) =
J∑

j=0

(R̃j Q̃j u, u) = (Bu, u).
UCSD Center for Computational Mathematics Slide 71/111 September 11, 2008

Fundamental norm equivalence in multilevel theory
If one can establish that ‖u‖A1

2,2(Ω) h ‖u‖H1(Ω), then one has:

(Cu, u) = ‖u‖2
A1

2,2(Ω) h ‖u‖2
H1(Ω) h (Au, u),

where e.g. (Au, v) =
∫

Ω
aij∂i u∂j v + buv dx . This in turn gives the chain:

(A−1u, u) h (C−1u, u) h (B̄u, u) h (Bu, u).

By earlier remarks, this gives exactly what we want:

κA(BA) = O(1).

Therefore, fundamental to multilevel approximation theory is the equivalence:

‖u‖A1
2,2(Ω) h ‖u‖H1(Ω), (41)

for given projection operators Q̃j and resulting approximation space norm:

‖u‖2
A1

2,2(Ω) = (Cu, u) = (
J∑

j=0

2j (Q̃j − Q̃j−1)u, u)L2(Ω).

How does one establish (41)?

UCSD Center for Computational Mathematics Slide 72/111 September 11, 2008

Jackson and Bernstein inequalities
If one can establish a Bernstein inequality of the form:

ω2(u, t,Ω)p ≤ c(min{1, t2J})β‖u‖Lp(Ω), ∀u ∈ SJ ,

then one can show As
p,q ↪→ Bs

p,q, 0 < s < β, which implies

‖u‖Bs
p,q(Ω) . ‖u‖As

p,q(Ω).

Similarly, if one can establish a Jackson inequality of the form:

ESJ
(f)p = inf

g∈SJ

‖f − g‖Lp(Ω) ≤ cω2(f , 2−J ,Ω)p, f ∈ Lp(Ω),

then one can show Bs
p,q ↪→ As

p,q, 0 < s < 2, which implies

‖u‖As
p,q(Ω) . ‖u‖Bs

p,q(Ω).

Together this gives

‖u‖As
p,q(Ω) . ‖u‖Bs

p,q(Ω) . ‖u‖As
p,q(Ω).

Using the fact that Hs = Bs
2,2, ∀s > 0, we finally have:

‖u‖A1
2,2(Ω) h ‖u‖H1(Ω).

UCSD Center for Computational Mathematics Slide 73/111 September 11, 2008

Jackson and Bernstein on locally adapted 3D meshes

It is not difficult to see that Jackson cannot hold on locally adapted meshes
(although Bernstein continues to hold).

Dahmen and Kunoth (1992) showed for special types of 2D local refinement:

c1

ṽ
(2)
J

‖u‖As
p,q(Ω) ≤ ‖u‖Bs

p,q(Ω) ≤ c2‖u‖As
p,q(Ω), u ∈ SJ , (42)

with ṽ
(2)
J = O(1) as J →∞. With Hs = Bs

2,2, ∀s > 0, this yields again

‖u‖A1
2,2(Ω) h ‖u‖H1(Ω).

In [AH], we extend the Dahmen-Kunoth analysis framework to cover several 3D
local mesh refinement algorithms.

In particular, we establish (42) for finite element hierarchies built from practical
octa-section and bisection-based 3D local refinement algorithms.

Key technical hurdle is the construction of a stable scaled Riesz basis for the
resulting locally adapted 3D finite element spaces; requires proving a number of
geometrical properties of the local refinement schemes.

UCSD Center for Computational Mathematics Slide 74/111 September 11, 2008

Some examples using FETK (Finite Element ToolKit)

FETK (MALOC + MC + SG) is a general FE ToolKit for geometric PDE.

Developed collaboratively over a number of years, it has the following structure:

(
Geomview

on local UNIX
domain socket
on remote host (on remote host

domain socket
on local UNIX)

(

MC on remote host

and application headers,

remote INET sockets
and INET sockets to
connects local UNIX)

)

ANSI−C Manifold Code

(

Platform (UNIX, Linux, WinNT,

MC on local host

SG

SGps

MCbridge

MC

MALOC (abstractions of datatypes, I/O, etc)

)
Object−oriented C Abstraction Layer;

MacOS X, etc)

E.g., PBE, elasticity, etc

Application-specific codes such as APBS and GPDE are built on top of FETK.

UCSD Center for Computational Mathematics Slide 75/111 September 11, 2008

The MALOC, PUNC, and SG components of FETK
FETK is released under the LGPL, and can be found at: www.FETK.org.
FETK is written almost entirely in Clean-C (the intersection of ISO-C and ISO-C++),

with some pieces in C++, Java, and FORTRAN.
The FETK build environment is GNU autoconf.

MALOC: Minimal Abstraction Layer for Object-Oriented C.

MALOC is essentially a portability layer that FETK (and all downstream applications) use to obtain platform-
independent access to ISO-C/C++, signals, sockets (UNIX and INET), OpenGL. It also has some additional
class libraries that provide low-level datastructures and algorithms that are commonly needed for implementing
numerical methods generally, and finite element methods in particular. (E.g., a logged replacement for
malloc/free, dynamic sets/arrays, etc.)

PUNC: Portable Understructure for Numerical Computing.

PUNC is collection of commonly needed standard low-level numerical libraries such as BLAS, LAPACK,
ARPACK, and SUPERLU. It also contains a few less-standard libraries such as CgCode and PMG, as well as
the f2c linkage headers. The autoconf installation procedure looks for installed versions of these libraries, and
only builds them if installed versions cannot be found.

SG: Socket Graphics.

SG is very light-weight polygon display tool for looking at finite element meshes and functions on such meshes.
It can take various types of input (OFF, BH, OpenInventor, PDB, BREP, and other inputs), from various
sources (file, pipe, UNIX or INET sockets). It can generate high-quality postscript images from any displayed
scene, using the feedback buffer in OpenGL together with a simple linear programming algorithm which finds
a feasible point in the sense of scene paintable using the Painter’s algorithm.

UCSD Center for Computational Mathematics Slide 76/111 September 11, 2008

The MC component of FETK

MC, the finite element kernel of FETK, allows for the adaptive treatment of nonlinear
elliptic systems of tensor equations on 2- and 3-manifolds.

MC has the following features:

Abstraction of the elliptic system: PDE defined only through the nonlinear weak
form 〈F (u), v〉 over the domain manifold, along with the associated bilinear
linearization form 〈DF (u)w , v〉.
Abstraction of the domain manifold: Domain specified via polyhedral
representation of topology, with set of user-interpreted coordinate labels (possibly
consisting of multiple charts).

Dimension-independence: The same code paths are taken for both 2D and 3D
problems, by employing the simplex as the fundamental topological object.

These abstractions are inherited by application codes built on top of FETK.

UCSD Center for Computational Mathematics Slide 77/111 September 11, 2008

The RInged VERtex datastructure in MC

The topology datastructure in MC is the RIVER (RInged VERtex):

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

ω

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

ω

UCSD Center for Computational Mathematics Slide 78/111 September 11, 2008

The GAMer component of FETK
The GAMer component of FETK is essentially a toolchain that combines some surface
meshing and improvement algorithms with TRIANGLE and TETGEN.

UCSD Center for Computational Mathematics Slide 79/111 September 11, 2008

GAMer: Multiscale surface and volume meshing

UCSD Center for Computational Mathematics Slide 80/111 September 11, 2008

Adaptive vs. non-adaptive: cheaper/more accurate

UCSD Center for Computational Mathematics Slide 81/111 September 11, 2008

Adaptive vs. non-adaptive: cheaper/more accurate

UCSD Center for Computational Mathematics Slide 82/111 September 11, 2008

Collaborations with McCammon Group in Chemistry

(Joint work with N. Baker, A. McCammon, and F. Wang)

Charged groups are displayed as red spheres, other atoms as blue lines or by a protein backbone tube.

A=DNA 36-mer, B=fasciculin-2, C=HIV integrase, D=AChE. Figure courtesy of N. Baker.

UCSD Center for Computational Mathematics Slide 83/111 September 11, 2008

Electrostatic Potential of Fasciculin-2

Potential contours from solution to linear PBE for FAS2 shown with a slice through the finite element mesh. Solution was

computed using the adaptive finite element software MC.

UCSD Center for Computational Mathematics Slide 84/111 September 11, 2008

Rhibosome example (Ph.D. work of N. Baker)

UCSD Center for Computational Mathematics Slide 85/111 September 11, 2008

Rhibosome example (Ph.D. work of N. Baker)

UCSD Center for Computational Mathematics Slide 86/111 September 11, 2008

Microtubule example (Ph.D. work of N. Baker)

UCSD Center for Computational Mathematics Slide 87/111 September 11, 2008

Parallel solution algorithm example

UCSD Center for Computational Mathematics Slide 88/111 September 11, 2008

Spectrally partitioned coarse mesh

UCSD Center for Computational Mathematics Slide 89/111 September 11, 2008

Subdomain adaptivity around the interior domain holes

UCSD Center for Computational Mathematics Slide 90/111 September 11, 2008

The two subdomain solutions

UCSD Center for Computational Mathematics Slide 91/111 September 11, 2008

A more complex example: some isosurfaces

UCSD Center for Computational Mathematics Slide 92/111 September 11, 2008

Adaptive Methods + Parallel Computers = Big Mess
An ideal parallel adaptive algorithm:

Allow use of sequential adaptive FE codes with parallel computers.

Avoid “load balancing” problems inherent with adaptive methods.

Scale “well” with # processors, with low (or no) communication costs.

Proposed Algorithm from [BH] to decouple geometric PDE on manifolds:

1 Solve entire problem on coarse mesh, compute a posteriori estimates.

2 Bisect (spectral/inertial) mesh to achieve equal error via estimates.

3 Give coarse solution and mesh to a number of computers.

4 Each computer solves entire problem adaptively AND independently,
restricting refinement to “subdomain”.

5 A final global solution is formed by (pick one):

a. forming a global mesh and doing Schwarz iteration [BH].
b. using mortar elements [Bank and Lu].
c. evaluating via partition of unity [H1,H2].

UCSD Center for Computational Mathematics Slide 93/111 September 11, 2008

Decoupling Algorithm: Observations &Claims

Observations:

Steps 1 and 2 can be done on all processors, requiring only a sequential
adaptive solver. This avoids the need for Step 3 (initial “broadcast” of
coarse problem).

Step 4 requires again only a sequential adaptive solver, where the error
estimator is multiplied by a small constant outside a selected subdomain.

Any choice of Step 5abc can be done in both 2D and 3D.

The communication requirements are extremely low (except Step 5ab).

Claims:

1 The load balancing problem is approximately solved a priori.
I.e., the final adapted mesh which is distributed over the processors is nearly
load-balanced. (Good empirical evidence.)

2 Step 5c can produce a solution which is (asymptotically) as good in a
certain sense as steps 5a and/or 5b, in some special situations (below...)

UCSD Center for Computational Mathematics Slide 94/111 September 11, 2008

An Example: Large-deformation elasticity
ϕ

Ω Ω

x xϕ

ϕ

x
Γ

Γ

0

1

ϕ(x) : Ω 7→ R3, ∇ϕ(x) : Ω 7→M3; deformation & deformation gradient

C = ∇ϕT∇ϕ, E = 1
2 (C − I) : Ω 7→ S3; RCG & GSV strains

Σ(x) = Σ̂(x,∇ϕ(x)) : Ω 7→ S3; Second Piola stress
(Σ̌(E) = λ(trE)I + 2µE .)

Cauchy equations (via Piola-transformation) for (ϕ1, ϕ2, ϕ3):

−∇ · (∇ϕ(x)Σ(x)) = f (x) in Ω,

n(x) · (∇ϕ(x)Σ(x)) = g(x) on Γ1,

ϕ(x) = ϕ0(x) on Γ0 = Γ− Γ1

UCSD Center for Computational Mathematics Slide 95/111 September 11, 2008

Tetrahedralized solid and its spectral bisection

UCSD Center for Computational Mathematics Slide 96/111 September 11, 2008

Local subdomain adaptivity: domains 1 through 6

UCSD Center for Computational Mathematics Slide 97/111 September 11, 2008

Local subdomain adaptivity: domains 7 through 12

UCSD Center for Computational Mathematics Slide 98/111 September 11, 2008

Local subdomain adaptivity: domains 13 through 16

UCSD Center for Computational Mathematics Slide 99/111 September 11, 2008

Babuška & Melenk’s Partition of Unity Method (PUM)
Let Ω ⊂ Rd be an open set and let {Ωi} be an open cover of Ω with a bounded
local overlap property: For all x ∈ Ω, there exists a constant M such that

sup
i
{ i | x ∈ Ωi } ≤ M.

A Lipschitz partition of unity {φi} subordinate to cover {Ωi} satisfies:∑
i

φi (x) ≡ 1, ∀x ∈ Ω,

φi ∈ C k (Ω) ∀i , (k ≥ 0),

supp φi ⊂ Ωi , ∀i ,

‖φi‖L∞(Ω) ≤ C∞, ∀i ,

‖∇φi‖L∞(Ω) ≤
CG

diam(Ωi)
, ∀i .

The partition of unity method (PUM) forms uap =
∑

i φi vi ∈ V ⊂ H1(Ω) from
the global PUM space V =

∑
i φi Vi , where the Vi are local approximation spaces:

Vi ⊂ C k (Ω ∩ Ωi) ⊂ H1(Ω ∩ Ωi), ∀i , (k ≥ 0).

UCSD Center for Computational Mathematics Slide 100/111 September 11, 2008

Approximation properties of PUM

Lemma: Let w ,wi ∈ H1(Ω) with supp wi ⊆ Ω ∩ Ωi . Then∑
i

‖w‖2
Hk (Ωi)

≤ M‖w‖2
Hk (Ω), k = 0, 1

‖
∑

i

wi‖2
Hk (Ω) ≤ M

∑
i

‖wi‖2
Hk (Ω∩Ωi)

, k = 0, 1

Theorem: [Babuška and Melenk 1997] If the local spaces Vi have the
following approximation properties:

‖u − vi‖L2(Ω∩Ωi) ≤ ε0(i), ‖∇(u − vi)‖L2(Ω∩Ωi) ≤ ε1(i), ∀i ,

then the following a priori global error estimates hold:

‖u − uap‖L2(Ω) ≤
√

MC∞

(∑
i

ε2
0(i)

)1/2

,

‖∇(u − uap)‖L2(Ω) ≤
√

2M

(∑
i

(
CG

diam(Ωi)

)2

ε2
1(i) + C 2

∞ε
2
0(i)

)1/2

.

Proof Outline: Via Lemma with wi = φi (u − vi) and u − uap =
∑

i wi .

UCSD Center for Computational Mathematics Slide 101/111 September 11, 2008

B-H + PUM = PPUM

The Parallel Partition of Unity Method (PPUM) builds a PUM approximation
uap =

∑
i φi vi where the vi are taken from the local B-H spaces:

Vi = Xi V
g
i ⊂ C k (Ω ∩ Ωi) ⊂ H1(Ω ∩ Ωi), ∀i , (k ≥ 0),

where Xi is the characteristic function for Ωi , and where

V g
i ⊂ C k (Ω) ⊂ H1(Ω), ∀i , (k ≥ 0).

The global spaces V g
i are built from locally enriching an initial coarse global

space V0. The PUM space V is then

V =

{
v | v =

∑
i

φi vi , vi ∈ Vi

}

=

{
v | v =

∑
i

φiXi v
g
i =

∑
i

φi v
g
i , v g

i ∈ V g
i

}
⊂ H1(Ω).

UCSD Center for Computational Mathematics Slide 102/111 September 11, 2008

Global error in the PPUM approximation
PUM solves a PDE via Galerkin in global PUM space (cf. Griebel/Schweitzer):

Find uap ∈ V such that 〈F (uap), v〉 = 0, ∀v ∈ V .

PPUM instead builds uap =
∑

i φi ui =
∑

i φi u
g
i , where ug

i satisfies:

Find ug
i ∈ V g

i such that 〈F (ug
i), v g

i 〉 = 0, ∀v g
i ∈ V g

i .

Babuška/Melenk a priori PUM estimates require:

‖u − ui‖L2(Ω∩Ωi) = ‖u − ug
i ‖L2(Ω∩Ωi) ≤ ε0(i),

‖∇(u − ui)‖L2(Ω∩Ωi) = ‖∇(u − ug
i)‖L2(Ω∩Ωi) ≤ ε1(i).

Such local estimates hold for general classes of nonlinear Poisson-like problems
(Xu/Zhou 1998, Nitsche/Schatz 1974, Schatz/Wahlbin 1977,1995):

‖u − ug
i ‖H1(Ωi∩Ω) ≤ C

(
inf

v 0
i ∈V 0

i

‖u − v 0
i ‖H1(Ω0

i ∩Ω) + ‖u − ug
i ‖L2(Ω)

)
where

V 0
i ⊂ C k (Ω0

i ∩Ω) ⊂ H1(Ωi∩Ω), Ωi ⊂⊂ Ω0
i , Ωij = Ω0

i

⋂
Ω0

i , |Ωij | ≈ |Ωi | ≈ |Ωj |.

UCSD Center for Computational Mathematics Slide 103/111 September 11, 2008

Global PPUM approximation error: Two-level case
If u ∈ H1+α(Ω), α > 0, and quasi-uniform meshes of sizes h and H > h used for
Ω0

i and Ω\Ω0
i (resp), then:

‖u−ug
i ‖H1(Ωi∩Ω) =

(
‖u − ug

i ‖
2
L2(Ωi∩Ω) + ‖∇(u − ug

i)‖2
L2(Ωi∩Ω)

)1/2

≤ C1hα+C2H1+α.

I.e., ε0(i) = ε1(i) = C1hα + C2H1+α.

Theorem: [H1] If diam(Ωi) ≥ 1/Q > 0 ∀i , then the global solution ubh

produced by the PPUM Algorithm satisfies the following global bounds:

‖u − ubh‖L2(Ω) ≤
√

PMC∞
(
C1hα + C2H1+α

)
,

‖∇(u − ubh)‖L2(Ω) ≤
√

2PM(Q2C 2
G + C 2

∞)
(
C1hα + C2H1+α

)
,

where P = number of local spaces Vi . Further, if H ≤ hα/(1+α) then:

‖u − ubh‖L2(Ω) ≤
√

PMC∞max{C1,C2}hα,

‖∇(u − ubh)‖L2(Ω) ≤
√

2PM(Q2C 2
G + C 2

∞) max{C1,C2}hα.

Proof Outline: Tracing the constants through the PUM framework.

UCSD Center for Computational Mathematics Slide 104/111 September 11, 2008

Duality-based Decomposition: Approximation Theory

Theorem: [H2] Let {φi} be a partition of unity subordinate to a cover {Ωi}. If
ψ is the Riesz-representer for a linear functional l(u), then the functional of the
error in the PPUM approximation upp satisfies

l(u − upp) = −
p∑

k=1

〈F (ug
i), ωi 〉,

where ug
i are the solutions to the B-H subspace problems, and where the ωi are

the solutions to the following global dual problems with localized data:

Find ωi ∈ H1
0 (Ω) such that (ATωi , v)L2(Ω) = (φiψ, v)L2(Ω), ∀v ∈ H1

0 (Ω).

Moreover, if the local residual F (ug
i), weighted by the localized dual solution ωi ,

satisfies the following error tolerance in each subspace:

|〈F (ug
i), ωi 〉| <

ε

p
, i = 1, . . . , p

then the linear functional of the global error u − upp satisfies

|l(u − upp)| < ε.

UCSD Center for Computational Mathematics Slide 105/111 September 11, 2008

Approximation Theory for Duality-based Approach

Proof Outline: With l(u − upp) = (u − upp, ψ)L2(Ω), the localized representation
comes from:

(u − upp, ψ)L2(Ω) = (

p∑
k=1

φi u −
p∑

i=1

φi u
g
i , ψ)L2(Ω) =

p∑
k=1

(φi (u − ug
i), ψ)L2(Ω∩Ωi).

Each term in the sum can be written in terms of the local nonlinear residual
F (ug

i) as follows:

(φi (u − ug
i), ψ)L2(Ω∩Ωi) = (u − ug

i , φiψ)L2(Ω∩Ωi)

= (u − ug
i ,A

Tωi)L2(Ω)

= (A(u − ug
i), ωi)L2(Ω)

= −(F (ug
i), ωi)L2(Ω).

This gives then

|(u − upp, ψ)L2(Ω)| ≤
p∑

k=1

|〈F (ug
i), ψ〉| <

p∑
k=1

ε

p
= ε.

UCSD Center for Computational Mathematics Slide 106/111 September 11, 2008

Example: initial mesh and a partition function

Mesh

UCSD Center for Computational Mathematics Slide 107/111 September 11, 2008

The dual solution on an adapted mesh

Mesh

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y

Dual Solution Component 1

x

ph
i 1

UCSD Center for Computational Mathematics Slide 108/111 September 11, 2008

Another dual solution and adapted mesh

Mesh

0
0.5

1
1.5

2 0

2

4

6

8

10

−2

0

2

4

6

8

10

12

14

x 10
−3

y

Dual Solution Component 1

x

ph
i 1

UCSD Center for Computational Mathematics Slide 109/111 September 11, 2008

Properties of Duality-based PPUM Algorithms
Typical duality-based PPUM Algorithm (cf. [H2]):

Solve entire problem on coarse mesh, compute a posteriori estimates.

Bisect (spectral/inertial) mesh to achieve equal error via estimates.

Give coarse solution and mesh to a number of computers.

Each computer solves entire problem adaptively AND independently, solving
localized dual problems with partition function data.

A processor stops when local tolerance is achieved locally.

Global solution built via partition of unity; global quality guaranteed.

Comments:

The constants C∞ and CG do not impact the error estimates.

No a priori large overlap assumptions of unknown size.

No a priori local estimates needed.

Not restricted to elliptic or to linear problems; general decomposition.

UCSD Center for Computational Mathematics Slide 110/111 September 11, 2008

Pointers to People/Papers/Software (www.FETK.org)
[LYZHM] B. Lu, Y. Zhou, M. Holst, and J.A. McCammon, Recent Progress in Numerical Methods for the

Poisson-Boltzmann Equation in Biophysical Applications, Comm. Comput. Phys., Vol. 3 (2008), No. 5, pp. 973-1009.
[YHCM] Z. Yu, M. Holst, Y. Cheng, and J.A. McCammon, Feature-Preserving Adaptive Mesh Generation for Molecular

Shape Modeling and Simulation, Journal of Molecular Graphics and Modeling, Vol. 26 (2008), pp. 1370-1380.
[YLHMM] Y. Zhou, B. Lu, G.A. Huber, M. Holst and J.A. McCammon, Continuum Simulations of Acetylcholine

Consumption by Acetylcholinesterase: A Poisson-Nernst-Planck Approach, J. Phys. Chem. B, Vol. 112 (2008), pp.
270-275.

[YHM] Y. Zhou, M. Holst, and J.A. McCammon, Nonlinear elastic modeling of macromolecular conformational change
induced by electrostatic forces, J. Math. Anal. Appl., Vol. 340 (2008), No. 1, pp. 135-164.

[BSJHM] N. Baker, D. Sept, S. Joseph, M. Holst, and J. A. McCammon, Electrostatics of nanosystems: Application to
microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 10037–10041.

[HBW] M. Holst, N. Baker, and F. Wang, Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I:
algorithms and examples, J. Comput. Chem., 21 (2000), pp. 1319–1342.

[CHX2] L. Chen, MH, and J. Xu, The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J.
Numer. Anal., Vol. 45 (2007), No. 6, pp. 2298–2320.

[CHX1] L. Chen, MH, and J. Xu, Convergence and optimality of adaptive mixed finite element methods. To appear in Math.
Comp.

[ABM] B. Aksoylu, S. Bond, and M. Holst, An Odyssey into Local Refinement and Multilevel Preconditioning III:
Implementation and Numerical Experiments, SIAM J. Sci. Comput., Vol. 25 (2003), No. 2, pp. 478-498.

[AH] B. Aksoylu and MH, Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J.
Numer. Anal., Vol. 44 (2006), No. 3, pp. 1005–1025.

[EHL] D. Estep, MH, and M. Larson, Generalized Green’s Functions and the Effective Domain of Influence. SIAM J. Sci.
Comput., Vol. 26 (2005), No. 4, pp. 1314–1339.

[BH] R. Bank and M. Holst, A New Paradigm for Parallel Adaptive Meshing Algorithms. SIAM Review, Vol. 45 (2003),
No. 2, pp. 291-323.

[H1] MH, Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Mathematics, 15
(2001), pp. 139–191.

Acknowledgments:
NSF: ITR 0225630 (CTBP: Center for Theoretical Biological Physics)
NIH: P41RR08605 (NBCR: National Biomedical Computation Resource)
NSF: CAREER 9875856, DMS 0411723, DMS 0715146 (Numerical geometric PDE)
DOE: DE-FG02-05ER25707, DE-FG02-04ER25620 (Multiscale methods)

UCSD Center for Computational Mathematics Slide 111/111 September 11, 2008

	Outline
	The mathematics of coarse-grain modeling: Partial Differential Equations (PDE)
	PDE with variational structure: functionals, stationary points
	Detailed example: The Poisson-Boltzmann equation
	PDE discretization techniques: finite difference, box, spectral, finite element
	Finite Element Methods (FEM): Basic approximation theory
	FEM Example: The Poisson-Boltzmann equation
	Adaptive FEM (AFEM): Error estimates driving refinement techniques
	Fast solvers for AFEM: Low/optimal space/time complexity methods
	FETK: Overview
	FETK example: The Poisson-Boltzmann equation
	FETK parallel algorithms: Two-scale decoupling methods

