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In this paper we developed accurate finite element methods for solving 3-D Poisson–
Nernst–Planck (PNP) equations with singular permanent charges for simulating electrodif-
fusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in
the biomolecules and in the solvent, while the Nernst–Planck equation was defined only in
the solvent. We applied a stable regularization scheme to remove the singular component
of the electrostatic potential induced by the permanent charges inside biomolecules, and
formulated regular, well-posed PNP equations. An inexact-Newton method was used to
solve the coupled nonlinear elliptic equations for the steady problems; while an Adams–
Bashforth–Crank–Nicolson method was devised for time integration for the unsteady elec-
trodiffusion. We numerically investigated the conditioning of the stiffness matrices for the
finite element approximations of the two formulations of the Nernst–Planck equation, and
theoretically proved that the transformed formulation is always associated with an ill-con-
ditioned stiffness matrix. We also studied the electroneutrality of the solution and its rela-
tion with the boundary conditions on the molecular surface, and concluded that a large net
charge concentration is always present near the molecular surface due to the presence of
multiple species of charged particles in the solution. The numerical methods are shown to
be accurate and stable by various test problems, and are applicable to real large-scale bio-
physical electrodiffusion problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electrodiffusion is a rate-limiting step in numerous biological processes, such as ligand–enzyme binding, protein–protein
diffusive encounter. An example is neurotransmission within synapses between adjacent nerve cells [6]. The kinetic prop-
erties of these processes are mostly governed by the multi-scale electrodiffusion of charged molecules in aqueous solution
with various ionic concentrations, molecular charges and complicated solvent–solute interface geometries. The numerical
techniques for quantitatively determining the kinetic parameters generally fall into categories of particle-based and contin-
uum methods. The former includes Monte Carlo (MC) [23], Brownian dynamics (MD) [16] and Langevin dynamics (LD) [40].
These methods trace the trajectories of individual particles in appropriate energy landscape and thus have a nature of
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discrete and stochastic. Consequently they might suffer a divergence when applied to systems with a large amount of par-
ticles. The continuum models, in contrast, focus on the average density distribution of species of charged particles and their
description through unified partial differential equations. It is therefore computationally more efficient to apply the contin-
uum models for simulating multiple species and large systems. Furthermore, continuum electrodiffusion models can be
readily modified to incorporate more types of physical interactions, such as varying molecular surface or flow convection,
by coupling with elasticity equation or the Navier–Stokes equations. These appealing features have made the continuum
electrodiffusion models very useful not only for the quantitative analysis of the biological ion channels [18,20] and cellular
electrophysiology [38,39], but also for investigating ion separation membranes in non-biological applications [45] and the
transport of electrons and holes in semiconductors [28].

In this work we adopt the Poisson–Nernst–Planck equations to describe the electrodiffusion of mobile ions and charged
ligands, all modeled as diffusive particles with vanishing size, in solvated biomolecular systems. Here the electrostatic po-
tential is induced by the mobile ions, charged ligands, and the fixed charges carried by biomolecules. Fig. 1 illustrates a sol-
vated biomolecular system in an open domain X 2 R3. The open subdomain Xm �X represents the biomolecule(s), and the
remaining space Xs ¼ X nXm is filled with aqueous solvent. Domains Xm and Xs are separated by a molecular surface C,
which can be defined as the solvent accessible surface, Gaussian surface [52], or some other appropriately defined sol-
vent-molecular interface that is Lipschitz continuous. The diffusive particles are distributed in Xs. Charged ligands might re-
act with the biomolecules on a part of the molecular surface Ca, for which a suitable boundary condition for the diffusion
equations of the particles is needed. On the non-reactive molecular surface CnCa appropriate boundary condition is needed
to model the vanishing macroscopic flux. In a typical solvated biomolecular system there are multiple species of ions and
ligands; each species may have its own boundary condition on molecular surface. We assume that the exterior boundary
oX is connected to a particle reservoir maintained at constant concentrations, and hence a Dirichlet boundary condition
for particle concentration can be applied. Compared to the pure diffusion [51], or the Nernst–Planck equation (also called
Smoluchowski equation) [50] which characterizes diffusional drift by a given fixed potential, the Poisson–Nernst–Planck
model is able to generate a self-consistent electrostatic potential and the non-equilibrium densities [55]. It is worth noting
that the PNP equations for describing the electrodiffusion around the biomolecules modeled at atomistic level have two un-
ique features, i.e., the presence of the singular permanent charges inside biomolecules and that the biomolecules with highly
irregular surfaces are not penetrable to diffusive particles. These features have to be delicately treated to establish sound
mathematical analysis and highly accurate, efficient numerical treatments for the 3-D PNP equations. Thanks to the rapid
development of X-ray crystallography, nuclear magnetic resonance (NMR), Cryo-electron microscopy techniques and some
accurate structure refinement algorithms, the determination of macromolecular structures with increasing resolution in the
recent decades provides the structural and geometrical basis for these studies.

Mathematical analyses of the Poisson–Nernst–Planck equations have been developed long after the introduction of the
equation by Nernst and Planck [41,42]. The existence and stability for the solutions of the steady PNP equations are estab-
lished by Jerome [29] in studying the steady Van Roostbroeck model for electron flows in semiconductors, via a delicate con-
struction of a Schauder fixed-point mapping. Although this mapping is not shown to be contractive, an alternative pseudo-
monotone mapping is constructed which guarantees the convergence of the Galerkin approximations of the equations. It is
noted that the permanent charges in this study are located in the same domain as the diffusion process, and are assumed to
be in L1 which ensures the H1 \ L1 regularity of the electrostatic potential and the charge densities. Existence and long time
behavior of the unsteady PNP equations are studied in [7]. The analysis and computation of the PNP equations can be further
simplified by reducing the 3-D system to 1-D models. Singular perturbation methods and asymptotic analysis can then be
Fig. 1. 2-D schematic illustration of the computational domain modeling a solvated biomolecular system. The biomolecule(s) is located in domain Xm and
the aqueous solution is in domain Xs. The molecular surface is C. The active reaction center Ca � C is highlighted in red. The circles with plus or minus sign
inside represent the diffusive charged particles which move only in Xs. The singular charges inside molecules are signified by plus or minus sign in Xm. The
minimum distance between the molecular surface C and the exterior boundary @X is much larger than the diameter of the molecule so that approximate
boundary condition for the electrostatics can be applied.
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applied to study the solution properties of these simplified 1-D equations. For example, 1-D steady PNP equations for mod-
eling physiological channels are investigated in [5,33] in the absence of permanent charges by using various singular pertur-
bation theories. The effects of the permanent charges are considered in [1,17], where the permanent charge density is
vanishing in the reservoirs at the two ends of the channel and is constant at the center of the channel. The piecewise constant
form of the permanent charges implies that the electrostatic potential and ionic densities are still differentiable. The reduc-
tion of the dimensionality greatly simplifies the mathematical analysis of the electrodiffusion systems, and the results pro-
vide useful guide lines for the analysis of the corresponding fully 3-D systems at some limit cases. As a trade-off they are
generally unable to reproduce the diffusion and reaction processes that critically depend on the geometry of the system
and complicated boundary conditions.

In contrast to the limited amount of work on the mathematical analysis of the PNP equations for biophysical appli-
cations, numerical computations with the PNP and the PNP-like systems have been widely conducted by computational
physicists and biophysicists. Finite difference methods are particularly popular due to the simplicity in their implemen-
tation, and have been applied to a large extent to 1-D or 3-D ion conduction characteristics of biological ion channels or
other transmembrane pores [8,10,14,18,31]. The lattice nature of the finite difference method makes it difficult to model
the highly irregular surface of the ion channel or the active sites of the enzymes. This difficulty can be readily overcome
by using finite element methods, which have been well developed for simulating semiconductor devices [19,30] and
were recently introduced to simulate the electrodiffusion with realistic molecular structures [49,50]. In many of the
PNP solvers developed thus far such as [8,10,31] the electrostatic part is solved by using well-established finite differ-
ence or finite element Poisson–Boltzmann solvers [3,9,37]. These PB solvers use polynomial interpolations to approxi-
mate the singular charges. When the electrostatic solvation energies are concerned, the errors caused by these
interpolations are generally acceptable [21,22]. However, the singular nature of the permanent charges suggests that
the electrostatic potential and its gradient near the molecular surface is large indeed. Proper treatments of these singular
charges must be devised to solve the electrostatic potential with sufficient accuracy to supply an electric field of high
fidelity to the Nernst–Planck equation. It is proposed [21,13] that the singular component of the electrostatic potential
can be removed through a proper decomposition of the Poisson–Boltzmann equation, and a regular component can be
solved numerically from an elliptic interface problem. The numerical properties of these decomposition schemes are
analyzed [11,27]. In particular, it is shown that an elegant decomposition of potential into a singular component, a har-
monic component and the regular component can significantly improve the accuracy of the total potential, especially the
potential in the solvent region [27].

The objective of the this paper is threefold: to introduce the stable regularization to the numerical solutions of the Pois-
son–Nernst–Planck equations with singular permanent charges; to develop finite element methods for solving the regular
PNP equations with realistic biomolecular structures; and to apply the numerical methods to investigate the properties of
the equations, such as the self-adjoint transformation, conditioning, the electroneutrality assumption and its dependence
on the strength of the electrostatic potential and the boundary conditions. We will show that the electrostatic potential that
couples the Nernst–Planck equation is indeed the regular component. Therefore the framework established in [29] for gen-
eral L2 permanent charges could be utilized to show the well-posedness of the regularized PNP system. An inexact-Newton
method will be used to solve the nonlinear differential equations. Since the Poisson–Nernst–Planck equations can be derived
from the first variations of a free energy functional, the Newton-like methods can produce a convergent solution that cor-
responds to the minimization of the free energy.

The rest of the paper is organized as follows. The Poisson–Nernst–Planck equations are introduced in Section 2 following a
brief history of the equations. Two regularization schemes are then described and their numerical properties are discussed.
The properties of the regular nonlinear equations will be summarized also. Section 3 is devoted to the Galerkin approxima-
tion of the regularized PNP equations. The inexact-Newton method is applied to bilinear weak form of the equations, for both
the steady and the time-dependent problems. Numerical examples are given in Section 4. The accuracy of the method and
the usefulness of two formulations of the Nernst–Planck equation will be examined. We will vary the boundary conditions of
the sample problems to investigate the validity of the electroneutrality. The method will be finally applied to compute the
diffusion of charged ligands in the solution around acetylcholinesterase (AChE) enzyme to demonstrate its usefulness for real
biological problems. The paper ends with a summary in Section 5.
2. Mathematical models

The continuum PNP equations can be derived via different routes. They can be obtained from the microscopic model of
Langevin trajectories in the limit of large damping and absence of correlations of different ionic trajectories [47,40], or from
the variations of the free energy functional that includes the electrostatic free energy and the ideal component of the chem-
ical potential [20]. The former gives the PNP model a sound theoretical basis while the latter provides a flexible framework to
include more physical interactions, most prominently the correlations among particles with finite sizes, into the continuum
model. In this work, we are concentrated in the development of numerical techniques for the standard nonlinear PNP equa-
tions, i.e., we treat all diffusive particles, including mobile ions and charged ligands, as particles with vanishing size. This is a
reasonable assumption in case that the solution is dilute and the characteristic dimension of the space for diffusion is much
larger than the particle size.
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We obtain the PNP equations by coupling the Nernst–Planck equation
@qi

@t
¼ r � Diðrqi þ bqiqir/Þ; x 2 Xs; 1 6 i 6 n; ð1Þ
and the electrostatic Poisson equation with internal interface C ¼ �Xs \ �Xm:
�r � ð�r/Þ � k
X

i

qiqi ¼ qf ; x 2 X; ð2Þ

/m ¼ /s; �m
@/m

@n
¼ �s

@/s

@n
; x 2 C; ð3Þ
where qi(x, t) is the concentration of the ith species particles carrying charge qi, Di(x) is the spatial-dependent diffusion coef-
ficient, and / is the electrostatic potential. The constant b = 1/(kBT) is the inverse Boltzmann energy where kB is the Boltz-
mann constant and T is the absolute temperature. We assume that the dielectric permittivity is a piecewise constant with
� = �m�0 in Xm and � = �s�0 in Xs, where �0 is the dielectric constant of vacuum. This is a standard assumption in most implicit
solvent models [2], and is indispensable to the regularization schemes to be introduced later. The internal dielectric interface
separating the molecules and solvent regions is defined to be the molecular surface, but other definitions of dielectric inter-
face might apply also. Typical values of �m and �s are 2 and 80, respectively. The permanent (fixed) charge distribution
qf ðxÞ ¼
X

j

qjdðx� xjÞ
is an ensemble of singular charges qj located at xj inside biomolecules. The characteristic function k is equal to 1 in Xs and 0
in Xm, suggesting that mobile ions are present only in the solvent region. If the mobile charge density qi(x) in Eq. (2) is as-
sumed to follow the Boltzmann distribution, the equation converts to the nonlinear Poisson–Boltzmann equation. The read-
ers are referred to [34] for detailed discussions on the derivation and relations of these equations. The time-dependence of
the electrostatic potential is seen from the appearance of time-dependent particle concentrations in Eq. (2). The ellipticity of
the steady-state equations suggests that the relaxation of electrostatic potential field in response to the variation of particle
concentrations is instantaneous, similar to the relaxation of pressure in response to varying velocity field of incompressible
flow field. This similarity offers useful guidelines in developing numerical methods for the PNP model, as we shall see in the
next section.

Numerical solution of the electrostatic Poisson equation in the PNP model above warrants appropriate approximation of
the singular charge qf(x). In many finite difference or finite element solvers of the Poisson–Boltzmann equation, the singular
charges are distributed onto the grid points near the singular charges by using spline interpolations. These approximations
work well when the electrostatic potentials are used to compute the electrostatic free energy and other energy quantities
[9,54]. If the gradient of the electrostatic potential is needed, such as the PNP equations studied here, more rigorous treat-
ments of the singular charges are needed. The first approach is proposed by Gilson et al. [21]; they characterize the singular
component of the electrostatic potential through a Poisson equation with singular charges only:
��mD/s ¼ qf ðxÞ; x 2 R3: ð4Þ
Subtracting this singular component from Eq. (2) we get the equation for the regular component:
�r � ð�r/rðx; tÞÞ � k
X

i

qiqiðx; tÞ ¼ 0; x 2 X: ð5Þ
The singular component /s should also be subtracted from the interface conditions (3), generating the following interface
conditions for Eq. (5):
/r
s � /r

m ¼ 0; �s
@/r

s

@n
� �m

@/r
m

@n
¼ ð�m � �sÞ

@/s

@n
; x 2 C: ð6Þ
This approach is applied to solve the Poisson–Boltzmann equation by Zhou et al. [56] to completely remove the self-energy
so that the equation need not to be solved twice for computing the electrostatic energy. The removal of the singular potential
makes it possible for the first time to analyze the Poisson–Boltzmann equation rigorously in Sobolev spaces [11]. However, it
is found that this method suffers a numerical instability that will lead to a substantial error in the numerical solution of the
full potential [27]. This is because that the total potential / is relatively weak while the singular potential /s and the regular
potential are both strong. In particular, the regular potential in Xs is larger than the total potential / by �s/�m � 40 times.
Consequently, when the numerical solution of /r is added to the analytical solution of /s to get the total potential, the rel-
ative numerical error will be amplified by about 40 times. For this reason we will apply a stable decomposition to the PNP
equations in this study. This decomposition is first introduced by Chern et al. for solving the Poisson–Boltzmann equation
with an interface method [13].

We define the singular component /s to be the restriction on Xm of the solution of
��mD/sðxÞ ¼ qf ðxÞ; x 2 R3; ð7Þ
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and the harmonic component /h(x) to be the solution of a Laplace equation:
� D/hðxÞ ¼ 0; x 2 Xm;

/hðxÞ ¼ �/sðxÞ; x 2 C: ð8Þ
It is seen that /s(x) can be given analytically by the sum of Coulomb potentials. This /s(x) is then used to compute the
boundary condition for /h(x), the latter is to be solved numerically from Eq. (8), for which we use a finite element method
in this study. Subtracting these two components from Eq. (2) we get the governing equation for the regular component
/r(x):
�r � ð�r/rðx; tÞÞ � k
X

i

qiqiðx; tÞ ¼ 0; r 2 X; ð9Þ
and the interface conditions
/r
s � /r

m ¼ 0; �s
@/r

s

@n
� �m

@/r
m

@n
¼ �m

@ð/s þ /hÞ
@n

; x 2 C: ð10Þ
It is worth noting that there is no decomposition of the potential in the solvent region, thus /(x) = /r(x) in Xs. Hence the final
regularized Poisson–Nernst–Planck equations consist of the regularized Poisson equation (9) and
@qiðxÞ
@t

¼ r � DiðxÞðrqiðxÞ þ bqiqiðxÞr/rðxÞÞ; x 2 Xs: ð11Þ
To simplify the presentation we use / to denote the electrostatic potential coupled with the Nernst–Planck equation, but
keep in mind that the singular and harmonic components are to be added to get the full potential inside molecules.

Compared to the original model (1)–(3), the regularized PNP equations (7)–(10) have a number of nice properties. First,
the decomposition of electrostatic potential occurs only inside biomolecules, thus the numerical solution of /r in Xs does not
suffer the numerical instability [27]. Second, the singular and harmonic components only need to be solved one time a priori
the coupled solutions of the regularized PNP equations. Indeed, it is the regular potential in solvent region that couples the
Nernst–Planck equation and the regular Poisson equation. The singular and harmonic components serve only for providing a
fixed interface conditions for solving the regular component, which varies with the ionic concentrations. Noticing that the
harmonic component satisfies a Laplace equation, its numerical solution could be further accelerated by taking advantage of
various fast numerical methods for boundary integral equations.

We apply the following boundary conditions for the PNP equations. The approximate Debye law is used to compute the
value of /r = / on the exterior boundary oX:
/ðxÞ ¼
X

j

qje
�jjx�xj j

�sjx� xjj
;

where j ¼ 1=k2
d with kd being the Debye length computed from the bulk concentrations of all species of charged particles. For

all species of particles qi on oX is given by its bulk concentration. A zero macroscopic normal flux
Diðrqi þ bqiqir/Þ � n ¼ 0
is prescribed on the non-reactive molecular surface CnCa with outer normal vector n for all species. For particles that react
with the molecule on the surface Ca we apply the homogeneous Dirichlet boundary condition, i.e.,qi = 0. This models the fact
that the diffusion time scale is much larger than the reactive time scale, and that in the solution there is a sufficient large
number of solute molecules which are able to hydrolyze all ligands that migrate to the reaction centers of solute molecules.
The non-zero flux on the reactive surface makes the particle concentrations described by PNP differ fundamentally from the
Boltzmann distribution, which can be reproduced if the macroscopic flux is vanishing everywhere [45]. As we shall see, reac-
tive molecular surface and multiple species of charged particles make the solution near the surface far from electrically neu-
tral. This might prevent us from using alternative elliptic equation for describing the electrostatics that relies on the
electroneutrality condition [39].

3. Computational algorithms

The numerical methods we shall develop and analyze are focused at three major aspects of the PNP model: the self-
adjointness of the elliptic operator in NP equation; the nonlinearity of the system due to the drift term; and the coupling
between Poisson and NP equations for both steady and unsteady diffusions.

3.1. Self-adjointness of the electrodiffusion operator

It is known that by introducing the Slotboom variables
Di ¼ Die�bqi/; �qi ¼ qie
bqi/; ð12Þ
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the Nernst–Planck equation can be transformed to be
@ð�qie�bqi/Þ
@t

¼ r � ðDr�qÞ: ð13Þ
These transformations, frequently used in solving the PNP equations for semiconductor device simulations [4,28], hence give
rise to a self-adjoint, uniformly elliptic operator in case of a fixed potential. It is anticipated that the discretization in solving
the transformed equation (13) could produce a stiffness matrix with a smaller condition number compared to the original
equation (11) with a non-symmetric elliptic operator, and thus iterative methods applied to the linear system might con-
verge faster. Although this expectation seems reasonable, a large variation of the potential on the molecular surface is often
seen because of the fixed charges of different signs inside molecules. Consequently, the transformed diffusion coefficient D
could vary drastically from its maximum to the minimum, hence the actual condition number of the stiffness matrix for the
self-adjoint formulation (13) may be not as small as we anticipate. Moreover, the application of transformations (12) to the
electrostatic Poisson equation (9) will lead to
�r � ð�r/Þ � k
X

i

qi �qie�bqi/ ¼ 0: ð14Þ
The corresponding operator is thus no longer self-adjoint in contrast to Eq. (9). While Eq. (14) appears identical to the non-
linear Poisson–Boltzmann equation, the actual particle concentrations, nevertheless, do not follow the Boltzmann distribu-
tion if there is a non-zero macroscopic flux inside the domain or on the boundary. In the next section we shall numerically
compare the primitive asymmetric and transformed self-adjoint formulations of the steady-state Nernst–Planck equation
with regard to the condition number of the respective stiffness matrix.

It is worth noting that the Slotboom variables are associated with the weighted inner product in many finite element
approximations of semiconductor NP equations [19], for which exponential fitting techniques are usually used to obtain
numerical solutions free of non-physical spurious oscillations. Although the solutions in our numerical experiments and bio-
physical applications presented below do not show significant non-physical oscillations, these methods can be adopted if
needed.

3.2. Steady-state diffusion

We first consider the finite element solution of the steady-state PNP equations (9) and (11). To this end we define the
solution space
H :¼ fð/;qÞ 2 H1
0ðXÞ � H1

01
ðXsÞ � � � �H1

0n
ðXsÞg ð15Þ
and its finite dimensional subspace
S :¼ fð/;qÞ 2 P1ðXÞ � ðP1ðXsÞÞng; ð16Þ
where the vector q ¼ fqjg
n
j¼1, and P1 is the space consisting of piecewise linear tetrahedral finite elements. Functions in the

space
H1
0i
¼ fv 2 H1ðXsÞ : v ¼ 0 on @X;v ¼ 0 on CDi

g

satisfy the Dirichlet boundary condition on the exterior boundary oX and the essential or Dirichlet boundary condition on
the molecular surface C if there is one. We assume that the finite elements are regular and quasi-uniform. The weak formu-
lation of the problem now is:

Find u = (/,q) 2 S such that
hFðuÞ;vi ¼ 0; 8v ¼ ðw;gÞ 2 S: ð17Þ
Here the nonlinear mapping F: H ´ H* and h�, �i is the standard duality paring between the dual space H* and H. Specif-
ically, the nonlinear weak form hF(u),vi is defined to be
hFðuÞ; vi ¼
ð�r/;rwÞ � ðk

P
i

qiqi;wÞ þ hp;wiC

ðDirqi;rgiÞ þ ðDibqiqir/;rgiÞ

" #
; ð18Þ
where
p ¼ �m
@ð/s þ /hÞ

@n
is the jump in electric displacement defined in Eq. (10), h�, �iC denotes the L2 inner product defined on the interface C, and the
L2 scalar inner product over the domain X or Xs is denoted by (�, �). To solve the nonlinear problem (17) we employ the
damped inexact-Newton method [26] which necessitates the Gâteaux derivative DF(u) defined by the bilinear form
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hDFðuÞw;vi ¼ d
ds
hFðuþ swÞ;vi

����
s¼0
¼

ð�ru;rwÞ � ðk
P

i
qi.i;wÞ

ðDir.i;rgiÞ þ Dibqiðqiruþ .ir/;rgiÞ

" #
; ð19Þ
where w = (u,.). With these well-defined operators the complete algorithm can be given as follows:

Algorithm 3.1.

� Choose the initial approximation u = (/,q), the nonlinear tolerance �, the residual r in approximately solving the linear
system, and the damping factor k.
� Do until jhF(u),v)ij < �.

1. Solve the correction w from hDF(u)w,vi = �hF(u),vi + r.
2. u � u + kw.

A constant damping parameter k = 1 is chosen in this study, with which the convergence is reached in less than 20 steps in
all simulations.

We also consider the finite element solution of transformed PNP equations (13) and (14). For which the solution u ¼ ð/; �qÞ
contains the transformed particle concentrations and nonlinear weak form hF(u),vi is given by
hFðuÞ;vi ¼
ð�r/;rwÞ � ðk

P
i

qi �qie�bqi/;wÞ þ hp;wiC

ðDir�qi;r�giÞ

2
4

3
5; ð20Þ
where v ¼ ðw; �gÞ. Accordingly, the bilinear form now is
hDFðuÞw;vi ¼ d
ds
hFðuþ swÞ;vi

����
s¼0
¼
ð�ru;rwÞ � ðk

P
i
ðqi �.i � bq2

i
�qi/Þe�bqiu;wÞ

ðDiðr�.i þ bqiur�qiÞ;r�giÞ

2
4

3
5; ð21Þ
where w ¼ ðu; �.Þ. The complete algorithm for solving the transformed PNP equations is the same as Algorithm 3.1 but with
hF(u),vi and hDF(u)w,vi defined by (20) and (21), respectively. It is worth noting that the operator DF(u)w defining the lin-
earized equation for solving correction variable w is not self-adjoint regardless of the transformation due to the nonlinearity
of the PNP model.

3.3. Unsteady-state diffusion

For time-dependent problems the elliptic equation for the electrostatic potential and parabolic equations for the particle
concentrations are solved sequentially. The weak form of the unsteady Nernst–Planck equation for ith species of particle is
hFðqiÞ;vi ¼
Z

Xs

Diðrqi þ bqiqir/rÞ � rv þ @qi

@t
v

� �
dx; 8v 2 H1

0i
ðXsÞ: ð22Þ
Various schemes can be used for the time discretization of this equation. For example, Prohl and Schmuck proposed conver-
gent schemes based on different types of fixed-point mappings [43]. Due to the nonlinearity of the equation, the application
of these and high order methods such as a third-order Runge–Kutta method or its combination with the exponential time
differencing (ETD) method [15,36] demands solving the electrostatic potential multiple times in each step of time evolution.
To reduce the computational cost and maintain the stability, we adopt the Crank–Nicolson method for the time discretiza-
tion. This gives rise to the following semi-discrete equation at tn+1/2 for n > 0:
hFðqnþ1=2
i Þ;vi ¼

Z
Xs

Di r
qnþ1

i þ qn
i

2
þ bqi

qnþ1
i þ qn

i

2
r/nþ1=2

� �
� rv þ qnþ1

i � qn
i

Dt
v

� �
dx ð23Þ
for a constant time increment Dt. Here the electrostatic potential /n+1/2 is solved from the Poisson equation (9) with particle
concentrations at tn+1/2 computed with an Adams–Bashforth scheme
�r � ð�r/nþ1=2Þ � k
X

i

qi
3qn

i � qn�1
i

2
¼ 0: ð24Þ
We then use the inexact-Newton approach presented above to solve qnþ1
i from the equation
hFðqnþ1=2
i Þ;vi ¼ 0: ð25Þ
To this end we need the Gâteaux derivative DFðqnþ1
i Þ, which is now defined by
hDFðqnþ1=2
i Þw;vi ¼ d

ds
hFðqnþ1=2

i þ swÞ;vi
����
s¼0
¼
Z

Xs

1
2

Di rw � rv þ bqiwr/nþ1
2

� �
þ w

Dt
v

� �
dx; ð26Þ
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where w 2 H1
0i

. The solutions of (25) and (26) follow Algorithm 3.1 with residual r = 0. Since Eq. (23) is linear in qnþ1
i , only one

solution of w is needed for an arbitrary initial guess of qnþ1
i at each time step. The application of the inexact-Newton method

here makes it easy to modify the computer codes developed for this linear problem to solve the nonlinear Nernst–Planck
equations with finite particle sizes, such as that in [32]. We note that a similar Adams–Bashforth–Crank–Nicolson (ABCN)
method was used for solving the Navier–Stokes equations and ensuring the velocity field divergence-free [44,53]. The
extrapolation of source term at tn, tn�1 in Eq. (24) is similar to the construction of the pressure Poisson equation at tn+1/2

in those studies.

3.4. Finite element implementation and mesh generation

The numerical implementation of Algorithm 3.1 for solving Eqs. (17), (25) and the Poisson Eq. (24) is carried out using
FETK, an expandable collection of the adaptive finite element method (AFEM) software libraries [25]. Standard linear finite
element spaces and Galerkin approximation are adopted in these solutions.

The mesh generation technique for the solvated biomolecular system is similar to that described in our former work [35].
We start with a triangulated molecular surface mesh generated by MSMS [46]. This initial surface mesh is then post-pro-
cessed to remove the degenerate triangles and improve the regularity and uniformity of the mesh. The improved surface
mesh and the spherical exterior boundary mesh are supplied to TETGEN [48] to finally generate a quality tetrahedral mesh
through adaptive 3-D delaunay triangulation. While the Poisson equation and the NP equations are solved in different do-
mains, only one file of the mesh in the entire X and conforming to C is input to FETK. The mesh of �Xs is extracted by a
subprogram.

4. Numerical experiments and biophysical applications

4.1. Conditioning of the Nernst–Planck equation

The elliptic operator in the transformed Nernst–Planck equation (13) is self-adjoint but its advantages in the numerical
solution over the primitive formulation remain to be shown. Here we shall examine the conditioning of the stiffness matrices
resulting from the discretization of the two elliptic equations
r � ðDirqi þ Dibqiqir/Þ ¼ 0; ð27Þ
r � ðDir�qiÞ ¼ 0; ð28Þ
where D and �q are defined in (12). The function / is chosen to be the electrostatic potential induced by a charged unit sphere,
i.e.,
/ ¼ Q=ð�srÞ;
where Q is the charge located at the center of the sphere and r is the distance to the center. We consider the diffusion of a
single species of particles in the spherical annulus Xs between r = 1 and r = 4, with various boundary conditions on the sur-
face of the unit sphere. The magnitude of the potential / is varied by adjusting the singular charge Q. We note that this po-
tential is given and is not consistent with the particle concentration. The condition numbers of the sparse stiffness matrices
are computed by using the MATLAB function condest.

Fig. 2 plots the variation of the condition number of the stiffness matrix for two formulations with different charge Q and
boundary conditions on r = 1. It is obvious that the transformed formulation is related to a larger condition number for all
combination of boundary conditions and particle charges. Indeed, the stiffness matrix A for the transformed Nernst–Planck
equation (28) is
A ¼ KA ¼ diagðe�bq/p1 ; e�bq/p2 ; . . . ; e�bq/pn ÞA; ð29Þ
where A is the stiffness matrix for the Laplace equation �r � ðDr�qÞ ¼ 0, and diag(�) is the diagonal matrix. /pj
is the elec-

trostatic potential at the jth node of the mesh in Xs, and is positive in our problem since Q > 0. The condition number of
A is determined by the discretization of Xs and the finite element space used, and is independent of the permanent charge
Q and the potential /. We then have the following estimate for the upper bound of the condition number of A:
kðAÞ ¼ kKAk � kðKAÞ�1k 6 ðkKk � kK�1kÞðkAk � kA�1kÞ 6 kðKÞkðAÞ ¼
maxpj

fe�bq/pj g
minpj

fe�bq/pj g
kðAÞ: ð30Þ
Because of the inverse proportional decay of the potential / with the distance r, the exponential factor e�bq/ varies signif-
icantly from the sphere surface to the exterior boundary. Consequently, if the diffusive particles carry negative unit charge,
the exponential factor near the unit sphere will be very large compared to that close to the exterior boundary. In other words,
maxpj
fe�bq/pj g

minpj
fe�bq/pj g

¼ ebQ=�s

ebQ=ð4�sÞ
ð31Þ
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Fig. 2. Change of condition number of the stiffness matrix with the permanent charge Q (in the unit of elementary change). The curves marked with squares
are for the reactive boundary condition on the sphere and the curves marked with triangles are for the non-reactive boundary. A: primitive formulation and
negatively charged particle; B: primitive formulation and positively charged particle; C: transformed formulation and negatively charged particle; D:
transformed formulation and positively charged particle. More sampling points of the charge Q are used when local extrema of condition number are
detected in charts A and B.
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suggesting the condition number of the stiffness matrix will be large. Similarly, if the diffusion particles carry unit positive
charge, the exponential factor near the unit sphere will be very small compared to that close oX, i.e.,
maxpj
fe�bq/pj g

minpj
fe�bq/pj g

¼ e�bQ=ð4�sÞ

e�bQ=�s
; ð32Þ
indicating that the condition number of the matrix will be large also. The exponential growth of above two ratios with Q will
cause a correspondingly growth of the condition number for large permanent charge as seen in the charts C and D.

The partial charge carried by any atom in a biomolecule is generally smaller than 2 (i.e., two fold of the elementary
charge), suggesting that we do not have large Q in most real biophysical problems. But the ratio in Eq. (30) can still be ex-
tremely large if there are positive and negative permanent charges presented inside biomolecules. To prove this numerically
we choose / to be the electrostatic potential induced by a molecule comprising of two unit spheres located at (1.5,0,0) and
(�1.5,0,0) respectively. A solvent probe of radius of 1.4 is chosen and thus the molecular surface is formed by two spherical
caps connected by a circular reentrant surface. The left sphere carries a charge Q at its center while the right one carries a
charge �Q. The radius of the exterior sphere is 4. Fig. 3 shows the distribution of / for Q = 2 on the x–y plane and on the
surface of molecule. It is seen that /max > 5 and /min < �5, and hence
Fig. 3. Electrostatic potential on the x–y plane (left) and on the surface of a model molecule (right).
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maxpj
fe�bq/pj g

minpj
fe�bq/pj g

>
e5b

e�5b
¼ 1:9269� 107; ð33Þ
assuming that q = ±1 and a value b = 1.6774 at room temperature T = 300 K. This justifies the quick growth of the condition
number for the transformed formulation as shown in Fig. 4. Since any biomolecule carries both positive and negative
charges, the transformed formulation will always lead to an ill-conditioned stiffness matrix. For this reason we shall use
the primitive formulation in all the following computations. It is also seen that the reactive boundary condition is always
associated with a smaller condition number than the non-reactive boundary condition. We note that the transformation
with Slotboom variables is associated with the weighted inner product in many finite element approximations of semicon-
ductor NP equations [19]. Exponential fitting techniques or other up-winding techniques are usually necessary for obtaining
numerical solutions free of non-physical spurious oscillations. Although the solutions in our numerical experiments and bio-
physical applications presented below do not show significant non-physical oscillations, these stabilization methods can be
adopted if needed.

4.2. Steady-state diffusion: numerical accuracy and electroneutrality

Due to the intrinsic nonlinearity of the equation, the analytical solutions for the steady-state PNP equations are not avail-
able in general, even for the simplest problems such as the electrodiffusion in the spherical annulus exterior to a charged
sphere. Here we choose two examples to examine the accuracy of our algorithm. The first example is to solve the
Nernst–Planck system for the concentration of a single species at a given potential /(r) = Q/(�sr) in a spherical annulus:
� 1
r2

d
dr

r2D
dq
dr
� bqq

Q
�sr2

� �� �
¼ 0; r1 < r < r2

qðr1Þ ¼ 0; qðr2Þ ¼ q0;

ð34Þ
where q0 is the bulk concentration. Note here we are applying a reactive boundary condition on the whole sphere r = r1. The
analytical solution for Eq. (34) is
qðrÞ ¼ q0
e�bwðrÞ � e�bwðr1Þ

e�bwðr2Þ � e�bwðr1Þ
; where wðrÞ ¼ qQ

�sr
: ð35Þ
The reactive rate constant kr is then computed from the flux J(r) on the reactive surface via
�kr �
R

SA
JðrÞdsðrÞ
q0

¼ 4pr2
1Jðr1Þ
q0

¼ 4pDwðr1Þr1
�e�bwðr1Þ

e�bwðr2Þ � e�bwðr1Þ
; ð36Þ
where SA is the reactive surface. In this case we choose r1 = 1, r2 = 40, �s = 78�0, q0 = 50 mM, D = 78,000 Å/ls,q = �1, Q = 1, and
thus the exact kr = 2.5315 � 1011 M�1 min�1. Table 1 lists the relative L2 errors of the computed particle concentration, the
asymptotic order of error reduction and the reaction rate constants. These results demonstrate that our finite element meth-
od is convergent for this problem, with an asymptotic rate of convergence close to 2 as anticipated for a linear finite element
method. It is also noticed that the errors in the computed reactive rate constant are large for all the mesh sizes considered.
This is related to the very large gradient of concentration close the reactive surface, as seen in Fig. 5 where the exact and
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Table 1
Accuracy of the numerical solutions for Eq. (34).

hmax 3.277 1.821 0.965 0.574 0.297
L2 2.872(�3) 9.747(�4) 2.908(�4) 1.152(�4) 3.271(�4)
Order 1.84 1.90 1.78 1.91
kr 1.373(11) 1.806(11) 2.149(11) 2.378(11) 2.519(11)
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Fig. 5. The exact and computed concentration profiles for the Nernst–Planck equation in the spherical annulus 1 < r < 40 for a given potential. The x-axis is
truncated at r = 10 in the illustration. hmax = 3.277.
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computed concentration profiles are plotted. Physically, this large gradient is induced by the electrostatic attraction of the
negatively charged particles to the positively charged sphere. In this study we use finite element meshes refined toward the
molecular surface to improve the local numerical resolution. Other higher order methods can also be introduced to this prob-
lem to resolve this large gradient and improve the numerical accuracy.

The second example is to solve the full steady-state PNP equations for two species of particles, one carries charge �1 and
the other has charge +1, in the same spherical annulus as in the last example. We prescribe the flux J(r) = 0 for both species
on the unit sphere, and the particle concentrations on the exterior boundary are set to be the respective bulk concentrations.
The macroscopic flux of either species of particles is therefore zero everywhere in the domain, and thus the PNP model shall
produce the nonlinear Poisson–Boltzmann equation and the particle concentrations shall follow the Boltzmann distribution.
This criterion is used to examine the numerical solutions of the PNP equations. We would note that there is no analytical
solution of the potential available for the nonlinear Poisson–Boltzmann equation. Rather, we will compare the computed
concentration profiles of the PNP equations and those predicted by using the Boltzmann distribution and the computed elec-
trostatic potential.

In particular, let the numerical solutions of the potential and the particle concentration be / and q, and the exact solu-
tions of them be /̂ and q̂, respectively. Let the particle concentration computed from the solved potential / be ~q, then the
error we are measuring is q� ~q. It follows that for any Sobolev norm k�k we have
Table 2
L2 error

hmax

L2(q
kq� ~qk 6 kq� q̂k þ kq̂� ~qk ¼ kq� q̂k þ kq0e�qb/̂ � q0e�qb/k 6 kq� q̂k þ kq0e�qb/̂k1ke�qbð/�/̂Þ � 1k

� kq� q̂k þ kq0e�qb/̂k1kqbð/� /̂Þk ¼ kq� q̂k þ Ck/� /̂k;
where the constant C is independent of the numerical methods. This estimate suggests that the error we are measuring has
the same rate of convergence as the error of solutions of the PNP equations. Table 2 shows that the rate with respect to L2

norm is about 1, which is close to the one predicted for the linear elliptic interface problems in [12]. Fig. 6 plots the computed
particle concentration and that predicted by the Boltzmann distribution. The flattening of the profile close to r = 1 indicates
the vanishing concentration due to the electrostatic repulsion and the vanishing macroscopic flux as prescribed by the
boundary condition.

We move to the investigation of the electroneutrality and its relation to the boundary conditions. For this purpose we first
consider three diffusion problems in the spherical annulus 1 6 r 6 40: (1) 50 mM:50 mM symmetrical solution without reac-
tion on sphere; (2) 50 mM:50 mM symmetrical solution with the negatively charged particles reactive on sphere; and (3)
s between the computed particle concentrations and those predicted by the Boltzmann distribution.

3.277 1.821 0.965 0.574 0.297
) 1.715(�2) 9.437(�3) 5.095(�3) 2.726(�3) 1.280(�3)
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Fig. 6. Computed concentration profiles and the Boltzmann distribution for particles with q = 1. hmax = 3.277.
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Fig. 7. Profiles of net charge concentrations in mM (milli-mol/L) for three solutions. A: symmetrical solution with reactive negatively charged particles; B:
symmetrical solution without interaction (blue) and 2:1:1 asymmetrical solution (red).

6990 B. Lu et al. / Journal of Computational Physics 229 (2010) 6979–6994
50 mM:25 mM:25 mM asymmetrical solution with the third species of particle reactive on sphere. Here the ratios refer to
the bulk concentrations of particles. In the third problem the first species of particles is positively charged and the other
two are negatively charged. The computed net charge concentration
1 For
qnetðrÞ ¼
X

i

qiqi
is plotted in Fig. 7 for all three solutions.
Chart A shows that near the reactive surface the net charge concentration is close to zero. This is a result of the depletion

of positively charged particle due to the electrostatic repulsion and the depletion of negative charged particle due to the
reaction boundary conditions qi = 0. On the other hand, the electrostatic attraction causes the aggregation of the negatively
charged particles toward the sphere, as can be seen at the peak of excessive negative charges. The balance oppositely charged
particles are gradually built with the increase of distance to the unit sphere. If the negatively charged particles are non-reac-
tive, these particles will aggregate near the unit sphere, which in turn gives rise to a large concentration of negative charged
particles as shown in the blue1 profiles in chart B. If only a part of the negatively charged particles are reactive, very large
concentration of the non-reactive negatively charged particles is still seen in the red profile of the chart B. It is also seen that
the two profiles in chart B are very close, suggesting that part of the negatively charged particles being reactive does not
significantly change the electroneutrality of the solution. This is not surprising since the non-reactive negatively charged
particles can still be attracted to the sphere to generate a large concentration.

Noticing that the observations above are made from the solutions of different problems, we now consider a model prob-
lem defined in the spherical annulus 1 6 r 6 4 with both reactive and non-reactive boundary conditions, on r = 1, as shown in
Fig. 8. The unit sphere with a unit positive charge at its center models the molecular surface. The reactive boundary is the
spherical cap to the right of the plane x = 0.9165, and the remaining spherical surface is non-reactive. We consider a 1:1 sym-
metric solution with bulk concentrations being 50 mM. Fig. 8 features the aggregation of the negatively charged particles on
the non-reactive molecular surface as well as the depletion of these particles on the reactive surface. The net charge concen-
interpretation of color in Figs. 1-10, the reader is referred to the web version of this article.



Fig. 8. Left: The surface mesh of the unit sphere on the background of the mesh (pink) of the exterior sphere. The non-reactive boundary is colored cyan and
the reactive boundary is colored red. Right: Concentration of the reactive particle on the x–y plane.
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tration along x-axis is plotted in Fig. 9, where in the right chart we observe the neutrality close to x = 1 due to the reactive
boundary condition and the peak of the excessive negative charge. We also compute the problem with a 2:1:1 solution de-
fined as above. The appearance of non-reactive negative charges completely changes the neutrality close to x = 1, since these
charges will be attracted to the entire surface including the reactive surface and aggregate. Consequently for x 2 [1,4] we
shall observe a profile similar to the left chart of Fig. 9. In a biological solution there are many species of non-reactive par-
ticles carrying charges of the same sign as the reactive particles, and therefore a large concentration near the charged molec-
ular surface is always present.

4.3. Accuracy for solving the unsteady-state diffusion

To examine the accuracy of the time integration method we design a problem that has the essential features of the PNP
and admits an analytical solution:
�r � ð�sr/Þ ¼ qqþ f ðrÞ; ð37Þ
@q
@t
¼ r � ðDrqþ bqqr/Þ þ gðrÞ: ð38Þ
This equation is solved in the spherical annulus 1 6 r 6 4. The analytical solutions for / and q are prescribed to be
/ ¼ r2

�s
e�dt ; ð39Þ

q ¼ qe�bqr2=�s e�dt: ð40Þ
These two analytical solutions determine the functions f(r), g(r) and the Dirichlet boundary conditions for both equations. A
very fine mesh with 40,859 unknowns is used to ensure that the error due to the time discretization is dominant in the
numerical approximation. The equations are integrated to t = 200 with various time increments Dt and fixed parameter
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Fig. 9. Profiles of the net charge concentration of reactive particles in mM along x-axis. Left: �4 6 x 6 �1. Right: 1 6 x 6 4.



Table 3
Numerical error and asymptotic order of convergence for time integration.

Dt e/ Order eq Order

2 5.33(�3) 1.16(�2)
1 1.47(�3) 1.86 3.65(�3) 1.67
0.5 3.86(�4) 1.93 9.33(�4) 1.97
0.25 1.02(�4) 1.92 2.52(�4) 1.89

Fig. 10. The discretized molecular surface of AChE with the region around the reaction center colored red (left); The electrostatic potential on the surface
(middle) and the surface potential around the reaction center (right).
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d = 0.01. The relative L2 errors are collected in Table 3, which features a convergence of approximately second-order for both
variables. This agrees with the convergence of the ABCN scheme applied for solving the Navier–Stokes equations [44]. It is
worth noting that here we are using large time increments in time integration; the convergence properties we observed in
this study agree with the theoretical analysis [24] which proves that the ABCN for time-dependent Navier–Stokes equations
is almost unconditionally stable.

4.4. Biophysical applications

Finally we apply the regularized PNP solver to compute the reaction rate constant of neurotransmitter acetylcholine
(ACh) at the reaction center of the enzyme acetylcholinesterase (AChE). The steady-state diffusion problems for this has been
studied by using the Smoluchowski equation [50] and a hybrid finite element/boundary element method [35,55]. In the lat-
ter approach the boundary element method is used to solve the singular component of the electrostatic potential. We treat
the ACh molecules as particles with +1 charge. The computation domain is chosen to be a ball with a radius 400 Å centered at
the geometric center of the AChE molecule. We consider two other species of non-reactive particles, one with +1 charge and
the other with �1 charge. The boundary conditions for these two species of particles are therefore Ji(r) = 0 on the whole sur-
face of AChE. The reaction center of the AChE is signified in Fig. 10 in red where qi = 0 is set for ACh as the reactive boundary
conditions, and on the rest surface the Ji(r) = 0 is prescribed. The bulk concentrations of all three species of particles are set to
be 50 mM. The same mesh as that in [55] is used in this study. The electrostatic potential on the surface of AChE is shown in
Fig. 10 along with the surface mesh and a close view of the potential around the reaction center. The surface potential is
smooth overall and the negative potential near the reaction center is well reproduced. The reaction rate constant is
1.72 � 1011, which well matches that computed by using the hybrid finite element/boundary element method [55]. It is seen
that the value of electrostatic potential ranges from �10 to 3. This confirms that a large variation of the potential / can be
seen in real solvated biomolecular system and thus the transformed formulation of the Nernst–Planck is inappropriate in real
applications because its ill-conditioned stiffness matrix.

5. Conclusions

We have developed a finite element method for solving the Poisson–Nernst–Planck (PNP) equations with permanent
charges. The electrostatic Poisson equations is regularized by analytically removing the singular component of the electro-
static potential from the numerical solution. A harmonic component is defined inside biomolecules to partially compensate
the removed singular component such that the remaining electrostatic component is continuous on the molecular surface.
This remaining regular component is governed by an elliptic interface problem, with interface conditions computed once
only from the singular and the harmonic components. It is shown that the diffusion in the solvent region is completely
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drifted by the regular component, which gives rise to regularized Poisson–Nernst–Planck equations. An inexact-Newton
method was used to solve the regular PNP for steady diffusion. For unsteady diffusion we proposed a second-order
Adams–Bashforth–Crank–Nicolson method for time integration. Due to the limited availability of the analytical solutions
to 3-D PNP, we constructed various test problems to examine the accuracy and the stability of the proposed finite element
methods and time integration scheme.

We numerically compare the usefulness of the primitive and transformed formulations of the Nernst–Planck equation, by
studying the conditioning of the associated stiffness matrices. It is shown that the transformed formulation is always related
to a large condition number of the stiffness matrix. This can be caused by a large magnitude of the permanent charge, or
more generally the existence of both positive and negative charges inside molecules. The primitive formulation of the
Nernst–Planck equation is therefore preferred in real simulation although its differential operator is not self-adjoint. Further-
more, we find that given the co-existence of multiple species of charged particles in a biological solution the reactive bound-
ary condition has negligible effects on the electroneutrality of the solution. There are always sufficient non-reactive charged
particles being attracted to the reactive surface to generate a high density of net charge. We currently use locally refined
mesh to resolve these large gradients of concentrations, while numerical schemes of high resolution are always in demand
for this purpose.

It is noticed that the regularized electrostatic Poisson equation appears like a Laplace equation inside molecules. This sug-
gests that we can readily map the solution of this Laplace equation to the molecular surface, and eventually cast the regular
PNP equations to be integro-differential equations with appropriate Dirichlet–Neumann mapping. The integration of this
new formulation with the inexact-Newton approach and the advantage of the overall algorithm are to be explored. In case
that the electrodiffusion occurs in solvated system with moving molecules specialized finite element methods could be
introduced to solve the equations on a fixed mesh having varying intersections with moving molecular surfaces. Applications
of the proposed method to electrodiffusion in real biophysical problems, possibly with effects of finite particle sizes, are also
underway.
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