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1. Introduction

This report contains a collection of notes on abstract additive and multiplicative Schwarz methods for self-
adjoint positive linear operator equations. We examine closely one of the most elegant and useful modern
convergence theories for these methods, following the recent work in the finite element multigrid and domain
decomposition literature. Our motivation is to fully understand the structure of the existing theory, and
then to examine whether generalizations can be constructed, suitable for analyzing algebraic multigrid and
algebraic domain decomposition methods (as well as other methods), when no finite element structure is
available.

We stress that this report is essentially a collection of existing results presented in a unified way, so is
not intended for journal publication. (These are basically my class notes for the second half of AMa204 at
Caltech, the iterative methods portion of my finite element class in which we focus on iterative methods with
multilevel structure.) However, using the approach of generalizing the Schwarz framework, it is possible to
show some weak results for broad classes of fully algebraic domain decomposition and multigrid methods.
Stronger results with rate (and complexity) estimation currently requires additional finite element structure
as in other approaches.

Simple numerical experiments indicate that there should be a stronger theory for purely algebraic multi-
grid and domain decomposition methods [22, 23]. Although the Schwarz-like frameworks described in this
report seem to be viable approaches, there have been no successful attempts at finding such a theory. To
briefly explain the difficulty in formulating such a theory, consider the following. The convergence theory
of algebraic multigrid and algebraic domain decomposition (and many other similar methods) for solving a
linear operator equation Au = f can be reduced (as we will see) to the validity of the following splitting
assumption:

Assumption 1.1. Given any v ∈ H, there exists subspaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk and a

particular splitting v =
∑J

k=1 Ikvk, vk ∈ Vk, such that

J
∑

k=1

‖Ikvk‖2
A ≤ S0‖v‖2

A, ∀v ∈ H,

for some splitting constant S0 > 0. The space H is the “fine” space in which the solution to the discrete
problem is desired, and the subspaces (or more generally, associated spaces) Hk are the spaces in which
computation is actually done in a decomposed manner. The spaces Vk ⊂ Hk are additional spaces which
represent in some sense a degree of freedom in the analysis, in that the splitting assumption above need
involve only the smaller subspaces Vk rather than Hk. This assumption is then a statement of whether the
space H can be split into subspaces Hk or Vk in a stable way, where the constant S0 represents the stability
of the splitting.

There operators Ik are “prolongation” operators which map the associated spaces into the fine space,
examples of which would be multigrid interpolation operators. The A-norm in the assumption is necessarily
defined by the system operator A, and for a fully algebraic method, the operator A has no structure for one
to exploit other than the fact that is often self-adjoint and positive. Often A arises from the discretization of
a self-adjoint differential operator equation, containing coefficients which jump by orders of magnitude across
interfaces in the underlying domain, which results in the matrix A having arbitrarily large or small entries.
To complicate matters, in the case of algebraic multigrid, the prolongation operators are often constructed
from the system operator A by various techniques (stencil compression, etc., cf. [13]), so that the entries of
each Ik can also vary by orders of magnitude.

In this report, we will examine the general theoretical structure of these types of methods, to understand
exactly how these theories can be reduced assumptions like the one above. (Bounding the splitting constant
S0 in the above assumption for fully algebraic methods remains an open question, although some progress
has been made recently for methods which have at least some underlying finite element structure [11].) Our
approach here will be quite similar (and owes much) to [44], with the following exceptions. We first develop a
separate and complete theory for products and sums of operators, without reference to subspaces, and then
use this theory to formulate a Schwarz theory based on subspaces. In addition, we develop the Schwarz theory
allowing for completely general prolongation and restriction operators, so that the theory is not restricted
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INTRODUCTION 2

to the use of inclusion and projection as the transfer operators (a similar Schwarz framework with general
transfer operators was constructed recently by Hackbusch [19]). The resulting theoretical framework is useful
for analyzing specific algebraic methods, such as algebraic multigrid and algebraic domain decomposition,
without requiring the use of finite element spaces (and their associated transfer operators of inclusions and
projection). The framework may also be useful for analyzing methods based on transforms to other spaces
not naturally thought of as subspaces, such as methods based on successive wavelet or other transforms.

We also show quite clearly how the basic product/sum and Schwarz theories must be modified and
refined to analyze the effects of using a global operator, or of using additional nested spaces as in the case
of multigrid-type methods. In addition, we present (adding somewhat to the length of an already lengthy
report) a number of (albeit simple but useful) results in the product/sum and Schwarz theory frameworks
which are commonly used in the literature, the proofs of which are often difficult to locate (for example, the
relationship between the usual condition number of an operator and its generalized or A-condition number).
The result is a consistent and self-contained theoretical framework for analyzing abstract linear methods for
self-adjoint positive linear operator equations, based on subspace-decomposition ideas.

Outline.

As a brief outline, we begin in §2 with a review of the basic theory of self-adjoint operators (or symmetric
matrices), the idea of a linear iterative method, and some key ideas about conjugate gradient acceleration
of linear methods. While most of this material is well-known, it seems to be scattered around the literature,
and many of the simple proofs seem unavailable or difficult to locate. Therefore, we have chosen to present
this background material in an organized way at the beginning of the report.

In §3, we present an approach for bounding the norms and condition numbers of products and sums
of self-adjoint operators on a Hilbert space, derived from work due to Björstad and Mandel [6], Dryja and
Widlund [16], Bramble et al. [9], Xu [44], and others. This particular approach is quite general in that we
establish the main norm and condition number bounds without reference to subspaces; each of the three
required assumptions for the theory involve only the operators on the original Hilbert space. Therefore, this
product/sum operator theory may find use in other applications without natural subspace decompositions.
Later in the report, the product and sum operator theory is applied to the case when the operators correspond
to corrections in subspaces of the original space, as in multigrid and domain decomposition methods.

In §4, we consider abstract Schwarz methods based on subspaces, and apply the general product and
sum operator theory to these methods. The resulting theory, which is a variation of that presented in [44]
and [16], rests on the notion of a stable subspace splitting of the original Hilbert space (cf. [36, 37]). Although
the derivation here is presented in a somewhat different, algebraic language, many of the intermediate results
we use have appeared previously in the literature in other forms (we provide references at the appropriate
points). In contrast to earlier approaches, we develop the entire theory employing general prolongation and
restriction operators; the use of inclusion and projection as prolongation and restriction are represented in
this approach as a special case.

In §5 and §6, we apply the theory derived earlier to domain decomposition methods and to multigrid
methods, and in particular to their algebraic forms. Since the theoretical framework allows for general
prolongation and restriction operators, the theory is applicable to methods for general algebraic equations
(coming from finite difference or finite volume discretization of elliptic equations) for which strong theories
are currently lacking. Although the algebraic multigrid and domain decomposition results do not give useful
convergence or complexity estimates, the theory does show convergence for a broad class of methods. We also
indicate how the convergence estimates for multigrid and domain decomposition methods may be improved
(giving optimal estimates), following the recent work of Björstad and Mandel, Dryja and Widlund, Bramble
et al., and Xu, and others, which requires some of the additional structure provided in the finite element
setting.

In addition to the references cited directly in the text below, the material here owes much to the following
sources: [5, 6, 7, 8, 14, 16, 19, 31, 32, 33, 43, 44].



2. Linear operator equations

In this section, we first review the theory of self-adjoint linear operators on a Hilbert space. The results
required for the analysis of linear methods, as well as conjugate gradient methods, are summarized. We
then develop carefully the theory of classical linear methods for operators equations. The conjugate gradient
method is then considered, and the relationship between the convergence rate of linear methods as precon-
ditioners and the convergence rate of the resulting preconditioned conjugate gradient method is explored in
some detail.

As a motivation, consider that if either the box-method or the finite element method is used to discretize
the second order linear elliptic partial differential equation Lu = f , a set of linear algebraic equations results,
which we denote as:

Akuk = fk.(1)

The subscript k denotes the discretization level, with larger k corresponding to a more refined mesh, and
with an associated mesh parameter hk representing the diameter of the largest element or volume in the
mesh Ωk. For a self-adjoint strongly elliptic partial differential operator, the matrix Ak produced by the box
or finite element method is SPD. In this work, we are interested in linear iterations for solving the matrix
equation (1) which have the general form:

un+1
k = (I − BkAk)un

k + Bkfk,(2)

where Bk is an SPD matrix approximating A−1
k in some sense. The classical stationary linear methods fit

into this framework, as well as domain decomposition methods and multigrid methods.

2.1. Linear operators and spectral theory

In this section we compile some material on self-adjoint linear operators in finite-dimensional spaces which
will be used throughout the work.

Let H, H1, and H2 be a real finite-dimensional Hilbert spaces equipped with the inner-product (·, ·)
inducing the norm ‖ · ‖ = (·, ·)1/2. Since we are concerned only with finite-dimensional spaces, a Hilbert
space H can be thought of as the Euclidean space R

n; however, the preliminary material below and the
algorithms we develop are phrased in terms of the unspecified space H, so that the algorithms may be
interpreted directly in terms of finite element spaces as well. This is necessary to set the stage for our
discussion of multigrid and domain decomposition theory later in the work.

If the operator A : H1 7→ H2 is linear, we denote this as A ∈ L(H1,H2). The adjoint of a linear operator
A ∈ L(H,H) with respect to (·, ·) is the unique operator AT satisfying (Au, v) = (u, AT v) , ∀u, v ∈ H. An
operator A is called self-adjoint or symmetric if A = AT ; a self-adjoint operator A is called positive definite
or simply positive, if (Au, u) > 0 , ∀u ∈ H, u 6= 0.

If A is self-adjoint positive definite (SPD) with respect to (·, ·), then the bilinear form A(u, v) = (Au, v)
defines another inner-product on H, which we sometimes denote as (·, ·)A = A(·, ·) to emphasize the fact that
it is an inner-product rather than simply a bilinear form. The A-inner-product then induces the A-norm

‖ · ‖A = (·, ·)1/2
A . For each inner-product the Cauchy-Schwarz inequality holds:

|(u, v)| ≤ (u, u)1/2(v, v)1/2, |(u, v)A| ≤ (u, u)
1/2
A (v, v)

1/2
A , ∀u, v ∈ H.

The adjoint of an operator M with respect to (·, ·)A, the A-adjoint, is the unique operator M ∗ satisfying
(Mu, v)A = (u, M∗v)A , ∀u, v ∈ H. From this definition it follows that

M∗ = A−1MT A .(3)

An operator M is called A-self-adjoint if M = M ∗, and A-positive if (Mu, u)A > 0 , ∀u ∈ H, u 6= 0.
If N ∈ L(H1,H2), then the adjoint satisfies NT ∈ L(H2,H1), and relates the inner-products in H1 and

H2 as follows:
(Nu, v)H2

= (u, NT v)H1
, ∀u ∈ H1 , ∀v ∈ H2 .

3



LINEAR OPERATOR EQUATIONS 4

Since it is usually clear from the arguments which inner-product is involved, we shall drop the subscripts on
inner-products (and norms) throughout the paper, except when necessary to avoid confusion.

For the operator M we denote the eigenvalues satisfying Mui = λiui for eigenfunctions ui 6= 0 as λi(M).
The spectral theory for self-adjoint linear operators states that the eigenvalues of the self-adjoint operator
M are real and lie in the closed interval [λmin(M), λmax(M)] defined by the Raleigh quotients:

λmin(M) = min
u6=0

(Mu, u)

(u, u)
, λmax(M) = max

u6=0

(Mu, u)

(u, u)
.

Similarly, if an operator M is A-self-adjoint, then the eigenvalues are real and lie in the interval defined by
the Raleigh quotients generated by the A-inner-product:

λmin(M) = min
u6=0

(Mu, u)A

(u, u)A
, λmax(M) = max

u6=0

(Mu, u)A

(u, u)A
.

We denote the set of eigenvalues as the spectrum σ(M) and the largest of these in absolute value as the
spectral radius as ρ(M) = max(|λmin(M)|, |λmax(M)|). For SPD (or A-SPD) operators M , the eigenvalues
of M are real and positive, and the powers M s for real s are well-defined through the spectral decomposition;
see for example §79 and §82 in [20]. Finally, recall that a matrix representing the operator M with respect
to any basis for H has the same eigenvalues as the operator M .

Linear operators on finite-dimensional spaces are always bounded, and these bounds define the operator
norms induced by the norms ‖ · ‖ and ‖ · ‖A:

‖M‖ = max
u6=0

‖Mu‖
‖u‖ , ‖M‖A = max

u6=0

‖Mu‖A

‖u‖A
.

A well-known property is that if M is self-adjoint, then ρ(M) = ‖M‖. This property can also be shown
to hold for A-self-adjoint operators. The following lemma can be found in [2] (as Lemma 4.1), although the
proof there is for A-normal matrices rather than A-self-adjoint operators.

Lemma 2.1. If A is SPD and M is A-self-adjoint, then ‖M‖A = ρ(M).

Proof. We simply note that

‖M‖A = max
u6=0

‖Mu‖A

‖u‖A
= max

u6=0

(AMu, Mu)1/2

(Au, u)1/2
= max

u6=0

(AM∗Mu, u)1/2

(Au, u)1/2
= λ1/2

max(M
∗M),

since M∗M is always A-self-adjoint. Since by assumption M itself is A-self-adjoint, we have that M ∗ = M ,

which yields: ‖M‖A = λ
1/2
max(M∗M) = λ

1/2
max(M2) = (maxi[λ

2
i (M)])1/2 = max[|λmin(M)|, |λmax(M)|] =

ρ(M).

2.2. The basic linear method

In this section, we introduce the basic linear method which we study and use in the remainder of the work.
Assume we are faced with the operator equation Au = f , where A ∈ L(H,H) is SPD, and we desire

the unique solution u. Given a preconditioner (approximate inverse) B ≈ A−1, consider the equivalent
preconditioned system BAu = Bf . The operator B is chosen so that the simple linear iteration:

u1 = u0 − BAu0 + Bf = (I − BA)u0 + Bf,

which produces an improved approximation u1 to the true solution u given an initial approximation u0, has
some desired convergence properties. This yields the following basic linear iterative method which we study
in the remainder of this work:

Algorithm 2.1. (Basic Linear Method for solving Au = f)

un+1 = un + B(f − Aun) = (I − BA)un + Bf.
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Subtracting the iteration equation from the identity u = u−BAu + Bf yields the equation for the error
en = u − un at each iteration:

en+1 = (I − BA)en = (I − BA)2en−1 = · · · = (I − BA)n+1e0.(4)

The convergence of Algorithm 2.1 is determined completely by the spectral radius of the error propagation
operator E = I − BA.

Theorem 2.2. The condition ρ(I−BA) < 1 is necessary and sufficient for convergence of Algorithm 2.1.

Proof. See for example Theorem 10.11 in [27] or Theorem 7.1.1 in [35].

Since |λ|‖u‖ = ‖λu‖ = ‖Mu‖ ≤ ‖M‖ ‖u‖ for any norm ‖·‖, it follows that ρ(M) ≤ ‖M‖ for all norms ‖·‖.
Therefore, ‖I−BA‖ < 1 and ‖I−BA‖A < 1 are both sufficient conditions for convergence of Algorithm 2.1.
In fact, it is the norm of the error propagation operator which will bound the reduction of the error at each
iteration, which follows from (4):

‖en+1‖A ≤ ‖I − BA‖A‖en‖A ≤ ‖I − BA‖n+1
A ‖e0‖A.(5)

The spectral radius ρ(E) of the error propagator E is called the convergence factor for Algorithm 2.1, whereas
the norm of the error propagator ‖E‖ is referred to as the contraction number (with respect to the particular
choice of norm ‖ · ‖).

2.3. Properties of the error propagation operator

In this section, we establish some simple properties of the error propagation operator of an abstract linear
method. We note that several of these properties are commonly used, especially in the multigrid literature,
although the short proofs of the results seem difficult to locate. The particular framework we construct here
for analyzing linear methods is based on the recent work of Xu [44], on the recent papers on multigrid and
domain decomposition methods referenced therein, and on the text by Varga [39].

An alternate sufficient condition for convergence of the basic linear method is given in the following
lemma, which is similar to Stein’s Theorem (Theorem 7.1.8 in [35], or Theorem 6.1, page 80 in [45]).

Lemma 2.3. If E∗ is the A-adjoint of E, and I−E∗E is A-positive, then it holds that ρ(E) ≤ ‖E‖A < 1.

Proof. By hypothesis, (A(I − E∗E)u, u) > 0 ∀u ∈ H. This implies that (AE∗Eu, u) < (Au, u) ∀u ∈ H, or
(AEu, Eu) < (Au, u) ∀u ∈ H. But this last inequality implies that

ρ(E) ≤ ‖E‖A = max
u6=0

(AEu, Eu)

(Au, u)
< 1.

We now state three very simple lemmas that we use repeatedly in the following sections.
Lemma 2.4. If A is SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Simply note that: (ABAx, y) = (BAx, Ay) = (Ax, BT Ay) ∀x, y ∈ H. The lemma follows since
BA = BT A if and only if B = BT .

Lemma 2.5. If A is SPD, then I − BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Begin by noting that: (A(I −BA)x, y) = (Ax, y)− (ABAx, y) = (Ax, y)− (Ax, (BA)∗y) = (Ax, (I −
(BA)∗)y), ∀x, y ∈ H. Therefore, E∗ = I − (BA)∗ = I − BA = E if and only if BA = (BA)∗. But by
Lemma 2.4, this holds if and only if B is self-adjoint, so the result follows.

Lemma 2.6. If A and B are SPD, then BA is A-SPD.

Proof. By Lemma 2.4, BA is A-self-adjoint. Also, we have that:

(ABAu, u) = (BAu, Au) = (B1/2Au, B1/2Au) > 0 ∀u 6= 0, u ∈ H.

Therefore, BA is also A-positive, and the result follows.
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We noted above that the property ρ(M) = ‖M‖ holds in the case that M is self-adjoint with respect to
the inner-product inducing the norm ‖ ·‖. If B is self-adjoint, the following theorem states that the resulting
error propagator E = I − BA has this property with respect to the A-norm.

Theorem 2.7. If A is SPD and B is self-adjoint, then ‖I − BA‖A = ρ(I − BA).

Proof. By Lemma 2.5, I − BA is A-self-adjoint, and by Lemma 2.1 the result follows.

The following simple lemma, similar to Lemma 2.3, will be very useful later in the work.
Lemma 2.8. If A and B are SPD, and E = I−BA is A-non-negative, then it holds that ρ(E) = ‖E‖A <

1.

Proof. By Lemma 2.5, E is A-self-adjoint, and by assumption E is A-non-negative, and so from §2.1 we see
that E must have real non-negative eigenvalues. By hypothesis, (A(I −BA)u, u) ≥ 0 ∀u ∈ H, which implies
that (ABAu, u) ≤ (Au, u) ∀u ∈ H. By Lemma 2.6, BA is A-SPD, and we have that

0 < (ABAu, u) ≤ (Au, u) ∀u ∈ H, u 6= 0,

which implies that 0 < λi(BA) ≤ 1 ∀λi ∈ σ(BA). Thus, since λi(E) = λi(I − BA) = 1 − λi(BA) ∀i, we
have that

ρ(E) = max
i

λi(E) = 1 − min
i

λi(BA) < 1.

Finally, by Theorem 2.7, we have ‖E‖A = ρ(E) < 1.

The following simple lemma relates the contraction number bound to two simple inequalities; it is a standard
result which follows directly from the spectral theory of self-adjoint linear operators.

Lemma 2.9. If A is SPD and B is self-adjoint, and E = I − BA is such that:

−C1(Au, u) ≤ (AEu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then ρ(E) = ‖E‖A ≤ max{C1, C2}.
Proof. By Lemma 2.5, E = I − BA is A-self-adjoint, and by the spectral theory outlined in §2.1, the
inequality above simply bounds the most negative and most positive eigenvalues of E with −C1 and C2,
respectively. The result then follows by Theorem 2.7.

Corollary 2.10. If A and B are SPD, then Lemma 2.9 holds for some C2 < 1.

Proof. By Lemma 2.6, BA is A-SPD, which implies that the eigenvalues of BA are real and positive by the
discussion in §2.1. By Lemma 2.5, E = I − BA is A-self-adjoint, and therefore has real eigenvalues. The
eigenvalues of E and BA are related by λi(E) = λi(I −BA) = 1− λi(BA) ∀i, and since λi(BA) > 0 ∀i, we
must have that λi(E) < 1 ∀i. Since C2 in Lemma 2.9 bounds the largest positive eigenvalue of E, we have
that C2 < 1.

We now define the A-condition number of an invertible operator M by extending the standard notion to
the A-inner-product:

κA(M) = ‖M‖A‖M−1‖A.

In the next section we show (Lemma 2.12) that if M is an A-self-adjoint operator, then in fact the following
simpler expression holds:

κA(M) =
λmax(M)

λmin(M)
.

The generalized condition number κA is employed in the following lemma, which states that there is an
optimal relaxation parameter for a basic linear method, and gives the best possible convergence estimate for
the method employing the optimal parameter. This lemma has appeared many times in the literature in one
form or another; cf. [36].

Lemma 2.11. If A and B are SPD, then

ρ(I − αBA) = ‖I − αBA‖A < 1.

if and only if α ∈ (0, 2/ρ(BA)). Convergence is optimal when α = 2/[λmin(BA) + λmax(BA)], giving

ρ(I − αBA) = ‖I − αBA‖A = 1 − 2

1 + κA(BA)
< 1.



LINEAR OPERATOR EQUATIONS 7

Proof. Note that ρ(I −αBA) = maxλ |1−αλ(BA)|, so that ρ(I −αBA) < 1 if and only if α ∈ (0, 2/ρ(BA)),
proving the first part. Taking α = 2/[λmin(BA) + λmax(BA)], we have

ρ(I − αBA) = max
λ

|1 − αλ(BA)| = max
λ

(1 − αλ(BA))

= max
λ

(

1 − 2λ(BA)

λmin(BA) + λmax(BA)

)

= 1 − 2λmin(BA)

λmin(BA) + λmax(BA)
= 1 − 2

1 + λmax(BA)
λmin(BA)

.

Since BA is A-self-adjoint, by Lemma 2.12 we have that κA(BA) = λmax(BA)/λmin(BA), so that if α =
2/[λmin(BA) + λmax(BA)], then

ρ(I − αBA) = ‖I − αBA‖A = 1 − 2

1 + κA(BA)
.

To show this is optimal, we must solve minα[maxλ |1−αλ|], where α ∈ (0, 2/λmax). Note that each α defines
a polynomial of degree zero in λ, namely Po(λ) = α. Therefore, we can rephrase the problem as

P opt
1 (λ) = min

Po

[

max
λ

|1 − λPo(λ)|
]

.

It is well-known that the scaled and shifted Chebyshev polynomials give the solution to this “mini-max”
problem:

P opt
1 (λ) = 1 − λP opt

o =
T1

(

λmax+λmin−2λ
λmax−λmin

)

T1

(

λmax+λmin

λmax−λmin

) .

Since T1(x) = x, we have simply that

P opt
1 (λ) =

λmax+λmin−2λ
λmax−λmin

λmax+λmin

λmax−λmin

= 1 − λ

(

2

λmin + λmax

)

,

showing that in fact αopt = 2/[λmin + λmax].

Remark 2.1. Theorem 2.7 will be exploited later since ρ(E) is usually much easier to compute numerically
than ‖E‖A, and since it is the energy norm ‖E‖A of the error propagator E which is typically bounded in
various convergence theories for iterative processes.

Note that if we wish to reduce the initial error ‖e0‖A by the factor ε, then equation (5) implies that this
will be guaranteed if

‖E‖n+1
A ≤ ε.

Taking natural logarithms of both sides and solving for n (where we assume ε < 1), we see that the number
of iterations required to reach the desired tolerance, as a function of the contraction number, is given by:

n ≥ | ln ε|
| ln ‖E‖A|

.(6)

If the bound on the norm is of the form in Lemma 2.11, then to achieve a tolerance of ε after n iterations
will require:

n ≥ | ln ε|
∣

∣

∣ln
(

1 − 2
1+κA(BA)

)∣

∣

∣

=
| ln ε|

∣

∣

∣ln
(

κA(BA)−1
κA(BA)+1

)∣

∣

∣

.(7)

Using the approximation:

ln

(

a − 1

a + 1

)

= ln

(

1 + (−1/a)

1− (−1/a)

)

= 2

[

(−1

a

)

+
1

3

(−1

a

)3

+
1

5

(−1

a

)5

+ · · ·
]

<
−2

a
,
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we have | ln[(κA(BA) − 1)/(κA(BA) + 1)]| > 2/κA(BA). Thus, we can guarantee (7) holds by enforcing:

n ≥ 1

2
κA(BA)| ln ε| + 1.

Therefore, the number of iterations required to reach an error on the order of the tolerance ε is then:

n = O (κA(BA)| ln ε|) .

If a single iteration of the method costs O(N) arithmetic operators, then the overall complexity to solve
the problem is O(| ln ‖E‖A|−1N | ln ε|), or O(κA(BA)N | ln ε|). If the quantity ‖E‖A can be bounded less than
one independent of N , or if κA(BA) can be bounded independent of N , then the complexity is near optimal
O(N | ln ε|).

Note that if E is A-self-adjoint, then we can replace ‖E‖A by ρ(E) in the above discussion. Even when
this is not the case, ρ(E) is often used above in place of ‖E‖A to obtain an estimate, and the quantity
R∞(E) = − ln ρ(E) is referred to as the asymptotic convergence rate (see page 67 of [39], or page 88 of [45]).

In [39], the average rate of convergence of m iterations is defined as the quantity R(Em) = − ln(‖Em‖1/m),
the meaning of which is intuitively clear from equation (5). As noted on page 95 in [39], since ρ(E) =
limm→∞ ‖Em‖1/m for all bounded linear operators E and norms ‖ · ‖ (Theorem 7.5-5 in [28]), it follows that
limm→∞ R(Em) = R∞(E).

While R∞(E) is considered the standard measure of convergence of linear iterations (it is called the
“convergence rate” in [45], page 88), this is really an asymptotic measure, and the convergence behavior
for the early iterations may be better monitored by using the norm of the propagator E directly in (6);
an example is given on page 67 of [39] for which R∞(E) gives a poor estimate of the number of iterations
required.

2.4. Conjugate gradient acceleration of linear methods

Consider now the linear equation Au = f in the space H. The conjugate gradient method was developed by
Hestenes and Stiefel [21] for linear systems with symmetric positive definite operators A. It is common to
precondition the linear system by the SPD preconditioning operator B ≈ A−1, in which case the generalized
or preconditioned conjugate gradient method [12] results. Our purpose in this section is to briefly examine
the algorithm, its contraction properties, and establish some simple relationships between the contraction
number of a basic linear preconditioner and that of the resulting preconditioned conjugate gradient algorithm.
These relationships are commonly used, but some of the short proofs seem unavailable.

In [3], a general class of conjugate gradient methods obeying three-term recursions is studied, and it is
shown that each instance of the class can be characterized by three operators: an inner product operator
X , a preconditioning operator Y , and the system operator Z. As such, these methods are denoted as
CG(X ,Y ,Z). We are interested in the special case that X = A, Y = B, and Z = A, when both B and A are
SPD. Choosing the Omin [3] algorithm to implement the method CG(A,B,A), the preconditioned conjugate
gradient method results:

Algorithm 2.2. (Preconditioned Conjugate Gradient Algorithm)

Let u0 ∈ H be given.
r0 = f − Au0, s0 = Br0, p0 = s0.
Do i = 0, 1, . . . until convergence:

αi = (ri, si)/(Api, pi)
ui+1 = ui + αip

i

ri+1 = ri − αiApi

si+1 = Bri+1

βi+1 = (ri+1, si+1)/(ri, si)
pi+1 = si+1 + βi+1p

i

End do.

If the dimension of H is n, then the algorithm can be shown to converge in n steps since the preconditioned
operator BA is A-SPD [3]. Note that if B = I , then this algorithm is exactly the Hestenes and Stiefel
algorithm.
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Since we wish to understand a little about the convergence properties of the conjugate gradient method,
and how these will be effected by a linear method representing the preconditioner B, we will briefly review
a well-known conjugate gradient contraction bound. To begin, it is not difficult to see that the error at each
iteration of Algorithm 2.2 can be written as a polynomial in BA times the initial error:

ei+1 = [I − BApi(BA)]e0,

where pi ∈ Pi, the space of polynomials of degree i. At each step the energy norm of the error ‖ei+1‖A =
‖u− ui+1‖A is minimized over the Krylov subspace:

Vi+1(BA, Br0) = span {Br0, (BA)Br0, (BA)2Br0, . . . , (BA)iBr0}.

Therefore, it must hold that:
‖ei+1‖A = min

pi∈Pi

‖[I − BApi(BA)]e0‖A.

Since BA is A-SPD, the eigenvalues λj ∈ σ(BA) of BA are real and positive, and the eigenvectors vj of BA
are A-orthonormal. By expanding e0 =

∑n
j=1 αjvj , we have:

‖[I − BApi(BA)]e0‖2
A = (A[I − BApi(BA)]e0, [I − BApi(BA)]e0)

= (A[I − BApi(BA)](

n
∑

j=1

αjvj), [I − BApi(BA)](

n
∑

j=1

αjvj))

= (
n
∑

j=1

[1 − λjpi(λj)]αjλjvj ,
n
∑

j=1

[1 − λjpi(λj)]αjvj) =
n
∑

j=1

[1 − λjpi(λj)]
2α2

jλj

≤ max
λj∈σ(BA)

[1 − λjpi(λj)]
2

n
∑

j=1

α2
jλj = max

λj∈σ(BA)
[1 − λjpi(λj)]

2
n
∑

j=1

(Aαjvj , αjvj)

= max
λj∈σ(BA)

[1 − λjpi(λj)]
2(A

n
∑

j=1

αjvj ,

n
∑

j=1

αjvj) = max
λj∈σ(BA)

[1 − λjpi(λj)]
2‖e0‖2

A.

Thus, we have that

‖ei+1‖A ≤
(

min
pi∈Pi

[

max
λj∈σ(BA)

|1 − λjpi(λj)|
])

‖e0‖A.

The scaled and shifted Chebyshev polynomials Ti+1(λ), extended outside the interval [−1, 1] as in the
Appendix A of [4], yield a solution to this mini-max problem. Using some simple well-known relationships
valid for Ti+1(·), the following contraction bound is easily derived:

‖ei+1‖A ≤ 2





√

λmax(BA)
λmin(BA) − 1

√

λmax(BA)
λmin(BA) + 1





i+1

‖e0‖A = 2 δi+1
cg ‖e0‖A.(8)

The ratio of the extreme eigenvalues of BA appearing in the bound is often mistakenly called the (spectral)
condition number κ(BA); in fact, since BA is not self-adjoint (it is A-self-adjoint), this ratio is not in general
equal to the condition number (this point is discussed in great detail in [2]). However, the ratio does yield
a condition number in a different norm. The following lemma is a special case of Corollary 4.2 in [2].

Lemma 2.12. If A and B are SPD, then

κA(BA) = ‖BA‖A‖(BA)−1‖A =
λmax(BA)

λmin(BA)
.(9)
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Proof. For any A-SPD M , it is easy to show that M−1 is also A-SPD, so that from §2.1 both M and M−1

have real, positive eigenvalues. From Lemma 2.1 it then holds that:

‖M−1‖A = ρ(M−1) = max
u6=0

(AM−1u, u)

(Au, u)
= max

u6=0

(AM−1/2u, M−1/2u)

(AMM−1/2u, M−1/2u)

= max
v 6=0

(Av, v)

(AMv, v)
=

[

min
v 6=0

(AMv, v)

(Av, v)

]−1

= λmin(M)−1.

By Lemma 2.6, BA is A-SPD, which together with Lemma 2.1 implies that ‖BA‖A = ρ(BA) = λmax(BA).
From above we have that ‖(BA)−1‖A = λmin(BA)−1, implying that the A-condition number is given as the
ratio of the extreme eigenvalues of BA as in equation (9).

More generally, it can be shown that if the operator D is C-normal for some SPD inner-product operator C,
then the generalized condition number given by κC(D) = ‖D‖C‖D−1‖C is equal to the ratio of the extreme
eigenvalues of the operator D. A proof of this fact is given in Corollary 4.2 of [2], along with a detailed
discussion of this and other relationships for more general conjugate gradient methods. The conjugate
gradient contraction number δcg can now be written as:

δcg =

√

κA(BA) − 1
√

κA(BA) + 1
= 1 − 2

1 +
√

κA(BA)
.

The following lemma is used in the analysis of multigrid and other linear preconditioners (it appears for
example as Proposition 5.1 in [43]) to bound the condition number of the operator BA in terms of the
extreme eigenvalues of the linear preconditioner error propagator E = I −BA. We have given our own short
proof of this result for completeness.

Lemma 2.13. If A and B are SPD, and E = I − BA is such that:

−C1(Au, u) ≤ (AEu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then the above must hold with C2 < 1, and it follows that:

κA(BA) ≤ 1 + C1

1 − C2
.

Proof. First, since A and B are SPD, by Corollary 2.10 we have that C2 < 1. Since (AEu, u) = (A(I −
BA)u, u) = (Au, u) − (ABAu, u), ∀u ∈ H, it is immediately clear that

−C1(Au, u) − (Au, u) ≤ −(ABAu, u) ≤ C2(Au, u) − (Au, u), ∀u ∈ H.

After multiplying by -1, we have

(1 − C2)(Au, u) ≤ (ABAu, u) ≤ (1 + C1)(Au, u), ∀u ∈ H.

By Lemma 2.6, BA is A-SPD, and it follows from §2.1 that the eigenvalues of BA are real and positive, and
lie in the interval defined by the Raleigh quotients of §2.1, generated by the A-inner-product. From above,
we see that the interval is given by [(1 − C2), (1 + C1)], and by Lemma 2.12 the result follows.

The next corollary appears for example as Theorem 5.1 in [43].
Corollary 2.14. If A and B are SPD, and BA is such that:

C1(Au, u) ≤ (ABAu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then the above must hold with C1 > 0, and it follows that:

κA(BA) ≤ C2

C1
.

Proof. This follows easily from the argument used in the proof of Lemma 2.13.



LINEAR OPERATOR EQUATIONS 11

The following corollary, which relates the contraction property of a linear method to the condition number
of the operator BA, appears without proof as Proposition 2.2 in [44].

Corollary 2.15. If A and B are SPD, and ‖I − BA‖A ≤ δ < 1, then

κA(BA) ≤ 1 + δ

1 − δ
.(10)

Proof. This follows immediately from Lemma 2.13 with δ = max{C1, C2}.

We comment briefly on an interesting implication of Lemma 2.13, which was apparently first noticed
in [43]. It seems that even if a linear method is not convergent, for example if C1 > 1 so that ρ(E) > 1,
it may still be a good preconditioner. For example, if A and B are SPD, then by Corollary 2.10 we always
have C2 < 1. If it is the case that C2 << 1, and if C1 > 1 does not become too large, then κA(BA)
will be small and the conjugate gradient method will converge rapidly. A multigrid method will often
diverge when applied to a problem with discontinuous coefficients unless special care is taken. Simply using
conjugate gradient acceleration in conjunction with the multigrid method often yields a convergent (even
rapidly convergent) method without employing any of the special techniques that have been developed for
these problems; Lemma 2.13 may be the explanation for this behavior.

The following result from [44] connects the contraction number of the linear method used as the pre-
conditioner to the contraction number of the resulting conjugate gradient method, and it shows that the
conjugate gradient method always accelerates a linear method.

Theorem 2.16. If A and B are SPD, and ‖I − BA‖A ≤ δ < 1, then δcg < δ.

Proof. An abbreviated proof appears in [44]; we fill in the details here for completeness. Assume that the
given linear method has contraction number bounded as ‖I − BA‖A < δ. Now, since the function:

√

κA(BA) − 1
√

κA(BA) + 1

is an increasing function of κA(BA), we can use the result of Lemma 2.13, namely κA(BA) ≤ (1+δ)/(1−δ),
to bound the contraction rate of preconditioned conjugate gradient method as follows:

δcg ≤
(

√

κA(BA) − 1
√

κA(BA) + 1

)

≤

√

1+δ
1−δ − 1

√

1+δ
1−δ + 1

·

√

1+δ
1−δ − 1

√

1+δ
1−δ − 1

=

1+δ
1−δ − 2

√

1+δ
1−δ + 1

1+δ
1−δ − 1

=
1 −

√
1 − δ2

δ
.

Note that this last term can be rewritten as:

δcg ≤ 1 −
√

1 − δ2

δ
= δ

(

1

δ2
[1 −

√

1 − δ2]

)

.

Now, since 0 < δ < 1, clearly 1 − δ2 < 1, so that 1 − δ2 > (1 − δ2)2. Thus,
√

1 − δ2 > 1 − δ2, or
−
√

1 − δ2 < δ2 − 1, or finally 1 −
√

1 − δ2 < δ2. Therefore, (1/δ2)
[

1 −
√

1 − δ2
]

< 1, or

δcg ≤ δ

(

1

δ2

[

1 −
√

1 − δ2
]

)

< δ.

A more direct proof follows by recalling from Lemma 2.11 that the best possible contraction of the linear
method, when provided with an optimal parameter, is given by:

δopt = 1 − 2

1 + κA(BA)
,

whereas the conjugate gradient contraction is

δcg = 1 − 2

1 +
√

κA(BA)
.

Assuming B 6= A−1, we always have κA(BA) > 1, so we must have that δcg < δopt ≤ δ.
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Remark 2.2. This result implies that it always pays in terms of an improved contraction number to use
the conjugate gradient method to accelerate a linear method; the question remains of course whether the
additional computational labor involved will be amortized by the improvement. This is not clear from the
above analysis, and seems to be problem-dependent in practice.

Remark 2.3. Note that if a given linear method requires a parameter α as in Lemma 2.11 in order to be
competitive, one can simply use the conjugate gradient method as an accelerator for the method without a
parameter, avoiding the possibly costly estimation of a good parameter α. Theorem 2.16 guarantees that
the resulting method will have superior contraction properties, without requiring the parameter estimation.
This is exactly why additive multigrid and domain decomposition methods (which we discuss in more detail
later) are used almost exclusively as preconditioners for conjugate gradient methods; in contrast to the
multiplicative variants, which can be used effectively without a parameter, the additive variants always
require a good parameter α to be effective, unless used as preconditioners.

To finish this section, we remark briefly on the complexity of Algorithm 2.2. If a tolerance of ε is required,
then the computational cost to reduce the energy norm of the error below the tolerance can be determined
from the expression above for δcg and from equation (8). To achieve a tolerance of ε after n iterations will
require:

2 δn+1
cg = 2

(

√

κA(BA) − 1
√

κA(BA) + 1

)n+1

< ε.

Dividing by 2 and taking natural logarithms (and assuming ε < 1) yields:

n ≥
∣

∣ln ε
2

∣

∣

∣

∣

∣

∣

ln

(√
κA(BA)−1√
κA(BA)+1

)∣

∣

∣

∣

.(11)

Using the approximation:

ln

(

a − 1

a + 1

)

= ln

(

1 + (−1/a)

1− (−1/a)

)

= 2

[

(−1

a

)

+
1

3

(−1

a

)3

+
1

5

(−1

a

)5

+ · · ·
]

<
−2

a
,

we have | ln[(κ
1/2
A (BA) − 1)/(κ

1/2
A (BA) + 1)]| > 2/κ

1/2
A (BA). Thus, we can ensure (11) holds by enforcing:

n ≥ 1

2
κ

1/2
A (BA)

∣

∣

∣ln
ε

2

∣

∣

∣+ 1.

Therefore, the number of iterations required to reach an error on the order of the tolerance ε is:

n = O
(

κ
1/2
A (BA)

∣

∣

∣ln
ε

2

∣

∣

∣

)

.

If the cost of each iteration is O(N), which will hold in the case of the sparse matrices generated by standard
discretizations of elliptic partial differential equations, then the overall complexity to solve the problem is

O(κ
1/2
A (BA)N | ln[ε/2]|). If the preconditioner B is such that κ

1/2
A (BA) can be bounded independently of the

problem size N , then the complexity becomes (near) optimal order O(N | ln[ε/2]|).
We make some final remarks regarding the idea of spectral equivalence.
Definition 2.1. The SPD operators B ∈ L(H,H) and A ∈ L(H,H) are called spectrally equivalent if

there exists constants C1 > 0 and C2 > 0 such that:

C1(Au, u) ≤ (Bu, u) ≤ C2(Au, u), ∀u ∈ H.

In other words, B defines an inner-product which induces a norm equivalent to the norm induced by the
A-inner-product. If a given preconditioner B is spectrally equivalent to A−1, then the condition number of
the preconditioned operator BA is uniformly bounded.

Lemma 2.17. If the SPD operators B and A−1 are spectrally equivalent, then:

κA(BA) ≤ C2

C1
.
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Proof. By hypothesis, we have that C1(A
−1u, u) ≤ (Bu, u) ≤ C2(A

−1u, u), ∀u ∈ H. But this can be written
as: C1(A

−1/2u, A−1/2u) ≤ (A1/2BA1/2A−1/2u, A−1/2u) ≤ C2(A
−1/2u, A−1/2u), or:

C1(ũ, ũ) ≤ (A1/2BA1/2ũ, ũ) ≤ C2(ũ, ũ), ∀ũ ∈ H.

Now, since BA = A−1/2(A1/2BA1/2)A1/2, we have that BA is similar to the SPD operator A1/2BA1/2.
Therefore, the above inequality bounds the extreme eigenvalues of BA, and as a result the lemma follows
by Lemma 2.12.

Remark 2.4. Of course, since all norms on finite-dimensional spaces are equivalent (which follows from the
fact that all linear operators on finite-dimensional spaces are bounded), the idea of spectral equivalence
is only important in the case of infinite-dimensional spaces, or when one considers how the equivalence
constants behave as one increases the sizes of the spaces. This is exactly the issue in multigrid and domain
decomposition theory: as one decreases the mesh size (increases the size of the spaces involved), one would
like the quantity κA(BA) to remain nicely bounded (in other words, one would like the equivalence constants
to remain constant or grow only slowly). A discussion of these ideas appears in [36].



3. The theory of products and sums of operators

In this section, we present an approach for bounding the norms and condition numbers of products and sums
of self-adjoint operators on a Hilbert space, derived from work due to Dryja and Widlund [16], Bramble et
al. [9], and Xu [44]. This particular approach is quite general in that we establish the main norm and condition
number bounds without reference to subspaces; each of the three required assumptions for the theory involve
only the operators on the original Hilbert space. Therefore, this product/sum operator theory may find use
in other applications without natural subspace decompositions. Later in the paper, the product and sum
operator theory is applied to the case when the operators correspond to corrections in subspaces of the
original space, as in multigrid and domain decomposition methods.

3.1. Basic product and sum operator theory

Let H be a real Hilbert space equipped with the inner-product (·, ·) inducing the norm ‖ · ‖ = (·, ·)1/2. Let
there be given an SPD operator A ∈ L(H,H) defining another inner-product on H, which we denote as

(·, ·)A = (A·, ·). This second inner-product also induces a norm ‖ · ‖A = (·, ·)1/2
A . We are interested in general

product and sum operators of the form

E = (I − TJ)(I − TJ−1) · · · (I − T1),(12)

P = T1 + T2 + · · · + TJ ,(13)

for some A-self-adjoint operators Tk ∈ L(H,H). If E is the error propagation operator of some linear
method, then the convergence rate of this linear method will be governed by the norm of E. Similarly, if a
preconditioned linear operator has the form of P , then the convergence rate of a conjugate gradient method
employing this system operator will be governed by the condition number of P .

The A-norm is convenient here, as it is not difficult to see that P is A-self-adjoint, as well as Es = EE∗.
Therefore, we will be interested in deriving bounds of the form:

‖E‖2
A ≤ δ < 1, κA(P ) =

λmax(P )

λmin(P )
≤ γ.(14)

The remainder of this section is devoted to establishing some minimal assumptions on the operators Tk

in order to derive bounds of the form in equation (14). If we define Ek = (I −Tk)(I −Tk−1) · · · (I −T1), and
define E0 = I and EJ = E, then we have the following relationships.

Lemma 3.1. The following relationships hold for k = 1, . . . , J :

(1) Ek = (I − Tk)Ek−1

(2) Ek−1 − Ek = TkEk−1

(3) I − Ek =
∑k

i=1 TiEi−1

Proof. The first relationship is obvious from the definition of Ek, and the second follows easily from the first.
Taking E0 = I , and summing the second relationship from i = 1 to i = k gives the third.

Regarding the operators Tk, we make the following assumption:
Assumption 3.1. The operators Tk ∈ L(H,H) are A-self-adjoint, A-non-negative, and

ρ(Tk) = ‖Tk‖A ≤ ω < 2, k = 1, . . . , J.

Note that this implies that 0 ≤ λi(Tk) ≤ ω < 2, k = 1, . . . , J .
The following simple lemma, first appearing in [9], will often be useful at various points in the analysis

of the product and sum operators.
Lemma 3.2. Under Assumption 3.1, it holds that

(ATku, Tku) ≤ ω(ATku, u), ∀u ∈ H.

14
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Proof. Since Tk is A-self-adjoint, we know that ρ(Tk) = ‖Tk‖A, so that

ρ(Tk) = max
v 6=0

(ATkv, v)

(Av, v)
≤ ω < 2,

so that (ATkv, v) ≤ ω(Av, v), ∀v ∈ H. But this gives (ATku, Tku) = (AT
1/2
k Tku, T

1/2
k u) = (ATkT

1/2
k u, T

1/2
k u)

= (ATkv, v) ≤ ω(Av, v) = ω(AT
1/2
k u, T

1/2
k u) = ω(ATku, u), ∀u ∈ H.

The next lemma, also appearing first in [9], will be a key tool in the analysis of the product operator.
Lemma 3.3. Under Assumption 3.1, it holds that

(2 − ω)
J
∑

k=1

(ATkEk−1v, Ek−1v) ≤ ‖v‖2
A − ‖EJv‖2

A.

Proof. Employing the relationships in Lemma 3.1, we can rewrite the following difference as

‖Ek−1v‖2
A − ‖Ekv‖2

A = (AEk−1v, Ek−1v) − (AEkv, Ekv)

= (AEk−1v, Ek−1v) − (A[I − Tk]Ek−1v, [I − Tk]Ek−1v)

= 2(ATkEk−1v, Ek−1v) − (ATkEk−1v, TkEk−1v)

By Lemma 3.2 we have (ATkEk−1v, TkEk−1v) ≤ ω(ATkEk−1v, Ek−1v), so that

‖Ek−1v‖2
A − ‖Ekv‖2

A ≥ (2 − ω)(ATkEk−1v, Ek−1v).

With E0 = I , by summing from k = 1 to k = J we have:

‖v‖2
A − ‖EJv‖2

A ≥ (2 − ω)
J
∑

k=1

(ATkEk−1v, Ek−1v).

We now state four simple assumptions which will, along with Assumption 3.1, allow us to give norm and
condition number bounds by employing the previous lemmas. These four assumptions form the basis for the
product and sum theory, and the remainder of our work will chiefly involve establishing conditions under
which these assumptions are satisfied.

Assumption 3.2. (Splitting assumption) There exists C0 > 0 such that

‖v‖2
A ≤ C0

J
∑

k=1

(ATkv, v), ∀v ∈ H.

Assumption 3.3. (Composite assumption) There exists C1 > 0 such that

‖v‖2
A ≤ C1

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Assumption 3.4. (Product assumption) There exists C2 > 0 such that

J
∑

k=1

(ATkv, v) ≤ C2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Assumption 3.5. (Sum assumption) There exists C3 > 0 such that

J
∑

k=1

(ATkv, v) ≤ C3‖v‖2
A, ∀v ∈ H.

Lemma 3.4. Under Assumptions 3.2 and 3.4, Assumption 3.3 holds with C1 = C0C2.
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Proof. This is immediate, since

‖v‖2
A ≤ C0

J
∑

k=1

(ATkv, v) ≤ C0C2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Remark 3.5. In what follows, it will be necessary to satisfy Assumption 3.3 for some constant C1. Lemma 3.4
provides a technique for verifying Assumption 3.3 by verifying Assumptions 3.2 and 3.4 separately. In certain
cases it will still be necessary to verify Assumption 3.3 directly.

The following theorems provide a fundamental framework for analyzing product and sum operators,
employing only the five assumptions previously stated. A version of the product theorem similar to the one
below first appeared in [9]. Theorems for sum operators were established early by Dryja and Widlund [14]
and Björstad and Mandel [6].

Theorem 3.5. Under Assumptions 3.1 and 3.3, the product operator (12) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C1
.

Proof. To prove the result, it suffices to show that

‖Ev‖2
A ≤

(

1 − 2 − ω

C1

)

‖v‖2
A, ∀v ∈ H,

or that

‖v‖2
A ≤ C1

2 − ω

(

‖v‖2
A − ‖Ev‖2

A

)

, ∀v ∈ H.

By Lemma 3.3 (which required only Assumption 3.1), it is enough to show

‖v‖2
A ≤ C1

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

But, by Assumption 3.3 this result holds, and the theorem follows.

Corollary 3.6. Under Assumptions 3.1, 3.2, and 3.4, the product operator (12) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C0C2
.

Proof. This follows from Theorem 3.5 and Lemma 3.4.

Theorem 3.7. Under Assumptions 3.1, 3.2, and 3.5, the sum operator (13) satisfies:

κA(P ) ≤ C0C3.

Proof. This result follows immediately from Assumptions 3.2 and 3.5, since P =
∑J

k=1 Tk is A-self-adjoint
by Assumption 3.1, and since

1

C0
(Av, v) ≤

J
∑

k=1

(ATkv, v) = (APv, v) ≤ C3(Av, v), ∀v ∈ H.

This implies that C−1
0 ≤ λi(P ) ≤ C3, and by Lemma 2.12 it holds that κA(P ) ≤ C0C3.
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The constants C0 and C1 in Assumptions 3.2 and 3.3 will depend on the specific application; we will
discuss estimates for C0 and C1 in the following sections. The constants C2 and C3 in Assumptions 3.4
and 3.5 will also depend on the specific application; however, we can derive bounds which grow with the
number of operators J , which will always hold without additional assumptions. Both of these default or
worst case results appear essentially in [9]. First, we recall the Cauchy-Schwarz inequality in R

n, and state
a useful corollary.

Lemma 3.8. If ak, bk ∈ R, k = 1, . . . , n, then it holds that

(

n
∑

k=1

akbk

)2

≤
(

n
∑

k=1

a2
k

)(

n
∑

k=1

b2
k

)

.

Proof. See for example [25].

Corollary 3.9. If ak ∈ R, k = 1, . . . , n, then it holds that

(

n
∑

k=1

ak

)2

≤ n

n
∑

k=1

a2
k.

Proof. This follows easily from Lemma 3.8 by taking bk = 1 for all k.

Lemma 3.10. Under only Assumption 3.1, we have that Assumption 3.4 holds, where:

C2 = 2 + ω2J(J − 1).

Proof. We must show that

J
∑

k=1

(ATkv, v) ≤ [2 + ω2J(J − 1)]

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

By Lemma 3.1, we have that

(ATkv, v) = (ATkv, Ek−1v) + (ATkv, [I − Ek−1]v) = (ATkv, Ek−1v) +

k−1
∑

i=1

(ATkv, TiEi−1v)

≤ (ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2 +

k−1
∑

i=1

(ATkv, Tkv)1/2(ATiEi−1v, TiEi−1v)1/2.

By Lemma 3.2, we have

(ATkv, v) ≤ (ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2 + ω(ATkv, v)1/2
k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2,

or finally

(ATkv, v) ≤
[

(ATkEk−1v, Ek−1v)1/2 + ω

k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2

]2

.(15)

Employing Corollary 3.9 for the two explicit terms in the inequality (15) yields:

(ATkv, v) ≤ 2



(ATkEk−1v, Ek−1v) + ω2

[

k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2

]2


 .

Employing Corollary 3.9 again for the k − 1 terms in the sum yields

(ATkv, v) ≤ 2

[

(ATkEk−1v, Ek−1v) + ω2(k − 1)

k−1
∑

i=1

(ATiEi−1v, Ei−1v)

]

.
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Summing the terms, and using the fact that the Tk are A-non-negative, we have

J
∑

k=1

(ATkv, v) ≤ 2

[

J
∑

k=1

{

(ATkEk−1v, Ek−1v) + ω2(k − 1)

k−1
∑

i=1

(ATiEi−1v, Ei−1v)

}]

≤ 2

[

1 + ω2
J
∑

i=1

(i − 1)

]

J
∑

k=1

(ATkEk−1v, Ek−1v).

Since
∑J

i=1 i = (J + 1)J/2, we have that the lemma follows.

Lemma 3.11. Under only Assumption 3.1, we have that Assumption 3.5 holds, where:

C3 = ωJ.

Proof. By Assumption 3.1, we have

J
∑

k=1

(ATkv, v) ≤
J
∑

k=1

(ATkv, Tkv)1/2(Av, v)1/2 ≤
J
∑

k=1

ω(Av, v) = ωJ‖v‖2
A,

so that C3 = ωJ .

Remark 3.6. Note that since Lemmas 3.10 and 3.11 provide default (worst case) estimates for C2 and C3 in
Assumptions 3.4 and 3.5, due to Lemma 3.4 it suffices to estimate only C0 in Assumption 3.2 in order to
employ the general product and sum operator theorems (namely Corollary 3.6 and Theorem 3.7).

3.2. The interaction hypothesis

We now consider an additional assumption, which will be natural in multigrid and domain decomposition
applications, regarding the “interaction” of the operators Tk. This assumption brings together more closely
the theory for the product and sum operators. The constants C2 and C3 in Assumptions 3.4 and 3.5 can
both be estimated in terms of the constants C4 and C5 appearing below, which will be determined by
the interaction properties of the operators Tk. We will further investigate the interaction properties more
precisely in a moment. This approach to quantifying the interaction of the operators Tk is similar to that
taken in [44].

Assumption 3.6. (Interaction assumption - weak) There exists C4 > 0 such that

J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤ C4

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Assumption 3.7. (Interaction assumption - strong) There exists C5 > 0 such that

J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤ C5

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Remark 3.7. We introduce the terminology “weak” and “strong” because in the weak interaction assumption
above, the interaction constant C4 is defined by considering the interaction of a particular operator Tk only
with operators Ti with i < k; note that this implies an ordering of the operators Tk, and different orderings
may produce different values for C4. In the strong interaction assumption above, the interaction constant
C5 is defined by considering the interaction of a particular operator Tk with all operators Ti (the ordering
of the operators Tk is now unimportant).

The interaction assumptions can be used to bound the constants C2 and C3 in Assumptions 3.4 and 3.5.
Lemma 3.12. Under Assumptions 3.1 and 3.6, we have that Assumption 3.4 holds, where:

C2 = (1 + C4)
2.
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Proof. Consider
J
∑

k=1

(ATkv, v) =
J
∑

k=1

{(ATkv, Ek−1v) + (ATkv, [I − Ek−1]v)}(16)

=

J
∑

k=1

(ATkv, Ek−1v) +

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v).

For the first term, the Cauchy-Schwarz inequalities give

J
∑

k=1

(ATkv, Ek−1v) ≤
J
∑

k=1

(ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2

≤
(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

For the second term, we have by Assumption 3.6 that

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) ≤ C4

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

Thus, together we have

J
∑

k=1

(ATkv, v) ≤ (1 + C4)

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

,

which yields
J
∑

k=1

(ATkv, v) ≤ (1 + C4)
2

J
∑

k=1

(ATkEk−1v, Ek−1v).

Lemma 3.13. Under Assumptions 3.1 and 3.7, we have that Assumption 3.5 holds, where:

C3 = C5.

Proof. Consider first that ∀v ∈ H, Assumption 3.7 implies

‖
J
∑

k=1

Tkv‖2
A =

J
∑

k=1

J
∑

i=1

(ATkv, Tiv) ≤ C5

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

i=1

(ATiv, v)

)1/2

= C5

J
∑

k=1

(ATkv, v).

If P =
∑J

k=1 Tk, then we have shown that (APv, Pv) ≤ C5(APv, v), ∀v ∈ H, so that

(APv, v) ≤ (APv, Pv)1/2(Av, v)1/2 ≤ C
1/2
5 (APv, v)1/2(Av, v)1/2, ∀v ∈ H.

This implies that (APv, v) ≤ C5‖v‖2
A, ∀v ∈ H, which proves the lemma.

The constants C4 and C5 can be further estimated, in terms of the following two interaction matrices.
An early approach employing an interaction matrix appears in [9]; the form appearing below is most closely
related to that used in [19] and [44]. The idea of employing a strictly upper-triangular interaction matrix to
improve the bound for the weak interaction property is due to Hackbusch [19]. The default bound for the
strictly upper-triangular matrix is also due to Hackbusch [19].
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Definition 3.1. Let Ξ be the strictly upper-triangular part of the interaction matrix Θ ∈ L(RJ , RJ),
which is defined to have as entries Θij the smallest constants satisfying:

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J, ∀u, v ∈ H.

The matrix Θ is symmetric, and 0 ≤ Θij ≤ 1, ∀i, j. Also, we have that Θ = I + Ξ + ΞT .

Lemma 3.14. It holds that ‖Ξ‖2 ≤ ρ(Θ). Also, ‖Ξ‖2 ≤
√

J(J − 1)/2 and 1 ≤ ρ(Θ) ≤ J .

Proof. Since Θ is symmetric, we know that ρ(Θ) = ‖Θ‖2 = maxx6=0 ‖Θx‖2/‖x‖2. Now, given any x ∈ R
J ,

define x̄ ∈ R
J such that x̄i = |xi|. Note that ‖x‖2

2 =
∑J

i=1 |xi|2 = ‖x̄‖2
2, and since 0 ≤ Θij ≤ 1, we have that

‖Θx‖2
2 =

J
∑

i=1





J
∑

j=1

Θijxj





2

≤
J
∑

i=1





J
∑

j=1

Θij |xj |





2

= ‖Θx̄‖2
2.

Therefore, it suffices to consider only x ∈ R
J with xi ≥ 0. For such an x ∈ R

J , it is clear that ‖Ξx‖2 ≤ ‖Θx‖2,
so we must have that

‖Ξ‖2 = max
x6=0

‖Ξx‖2

‖x‖2
≤ max

x6=0

‖Θx‖2

‖x‖2
= ‖Θ‖2 = ρ(Θ).

The worst case estimate ‖Ξ‖2 ≤
√

J(J − 1)/2 follows easily, since 0 ≤ Ξij ≤ 1, and since:

[ΞT Ξ]ij =

J
∑

k=1

[ΞT ]ikΞkj =

J
∑

k=1

ΞkiΞkj =

min{i−1,j−1}
∑

k=1

ΞkiΞkj ≤ min{i − 1, j − 1}.

Thus, we have that

‖Ξ‖2
2 = ρ(ΞT Ξ) ≤ ‖ΞT Ξ‖1 = max

j

{

J
∑

i=1

| [ΞT Ξ]ij |
}

≤
J
∑

i=1

(i − 1) =
J(J − 1)

2
.

It remains to show that 1 ≤ ρ(Θ) ≤ J . The upper bound follows easily since we know that 0 ≤ Θij ≤ 1,
and so that ρ(Θ) ≤ ‖Θ‖1 = maxj{

∑

i |Θij |} ≤ J . Regarding the lower bound, recall that the trace of a
matrix is equal to the sum of it’s eigenvalues. Since all diagonal entries of Θ are unity, the trace is simply
equal to J . If all the eigenvalues of Θ are unity, we are done. If we suppose there is at least one eigenvalue
λi < 1 (possibly negative), then in order for the J eigenvalues of Θ to sum to J , there must be a corresponding
eigenvalue λj > 1. Therefore, ρ(Θ) ≥ 1.

We now have the following lemmas.
Lemma 3.15. Under Assumption 3.1 we have that Assumption 3.6 holds, where:

C4 ≤ ω‖Ξ‖2.

Proof. Consider
J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤
J
∑

k=1

J
∑

i=1

Ξik‖Tkuk‖A‖Tivi‖A = (Ξx,y)2,

where x,y ∈ R
J , xk = ‖Tkuk‖A, yi = ‖Tivi‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J . Now,
we have that

(Ξx,y)2 ≤ ‖Ξ‖2‖x‖2‖y‖2 = ‖Ξ‖2

(

J
∑

k=1

(ATkuk, Tkuk)

)1/2( J
∑

i=1

(ATivi, Tivi)

)1/2

≤ ω‖Ξ‖2

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

.
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Finally, this gives

J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤ ω‖Ξ‖2

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Lemma 3.16. Under Assumption 3.1 we have that Assumption 3.7 holds, where:

C5 ≤ ωρ(Θ).

Proof. Consider
J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤
J
∑

k=1

J
∑

i=1

Θik‖Tkuk‖A‖Tivi‖A = (Θx,y)2,

where x,y ∈ R
J , xk = ‖Tkuk‖A, yi = ‖Tivi‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J . Now,
since Θ is symmetric, we have that

(Θx,y)2 ≤ ρ(Θ)‖x‖2‖y‖2 = ρ(Θ)

(

J
∑

k=1

(ATkuk, Tkuk)

)1/2( J
∑

i=1

(ATivi, Tivi)

)1/2

≤ ωρ(Θ)

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

.

Finally, this gives

J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤ ωρ(Θ)

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

This leads us finally to
Lemma 3.17. Under Assumption 3.1 we have that Assumption 3.4 holds, where:

C2 = (1 + ω‖Ξ‖2)
2.

Proof. This follows from Lemmas 3.12 and 3.15.

Lemma 3.18. Under Assumption 3.1 we have that Assumption 3.5 holds, where:

C3 = ωρ(Θ).

Proof. This follows from Lemmas 3.13 and 3.16.

Remark 3.8. Note that Lemmas 3.17 and 3.14 reproduce the worst case estimate for C2 given in Lemma 3.10,
since:

C2 = (1 + ω‖Ξ‖2)
2 ≤ 2(1 + ω2‖Ξ‖2

2) ≤ 2 + ω2J(J − 1).

In addition, Lemmas 3.18 and 3.14 reproduce the worst case estimate of C3 = ωρ(Θ) ≤ ωJ given in
Lemma 3.11.
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3.3. Allowing for a global operator

Consider the product and sum operators

E = (I − TJ)(I − TJ−1) · · · (I − T0),(17)

P = T0 + T1 + · · · + TJ ,(18)

where we now include a special operator T0, which we assume may interact with all of the other operators. For
example, T0 might later represent some “global” coarse space operator in a domain decomposition method.
Note that if such a global operator is included directly in the analysis of the previous section, then the bounds
on ‖Ξ‖2 and ρ(Θ) necessarily depend on the number of operators; thus, to develop an optimal theory, we
must exclude T0 from the interaction hypothesis. This was recognized early in the domain decomposition
community, and the modification of the theory in the previous sections to allow for such a global operator
has been achieved mainly by Widlund and his co-workers. We will follow essentially their approach in this
section.

In the following, we will use many of the results and assumptions from the previous section, where we now
explicitly require that the k = 0 term always be included; the only exception to this will be the interaction
assumption, which will still involve only the k 6= 0 terms. Regarding the minor changes to the results of the
previous sections, note that we must now define E−1 = I , which modifies Lemma 3.1 in that

I − Ek =

k
∑

i=0

TiEi−1,

the sum beginning at k = 0. We make the usual Assumption 3.1 on the operators Tk (now including T0

also), and we then have the results from Lemmas 3.2 and 3.3. The main assumptions for the theory are as in
Assumptions 3.2, 3.4, and 3.5, with the additional term k = 0 included in each assumption. The two main
results in Theorems 3.5 and 3.7 are unchanged. The default bounds for C2 and C3 given in Lemmas 3.10
and 3.11 now must take into account the additional operator T0:

C2 = 2 + ω2J(J + 1), C3 = ω(J + 1).

The remaining analysis becomes now somewhat different from the case when T0 is not present. First, we
will quantify the interaction properties of the remaining operators Tk for k 6= 0 exactly as was done earlier,
except that we must now employ the strong interaction assumption (Assumption 3.7) for both the product
and sum theories. (In the previous section, we were able to use only the weak interaction assumption for the
product operator.) This leads us to the following two lemmas.

Lemma 3.19. Under Assumptions 3.1 (including T0), 3.6 (excluding T0), and 3.7 (excluding T0), we
have that Assumption 3.4 (including T0) holds, where:

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Proof. Beginning with Lemma 3.1 we have that

J
∑

k=0

(ATkv, v) = (AT0v, v) +

J
∑

k=1

{(ATkv, Ek−1v) + (ATkv, [I − Ek−1]v)}

=

J
∑

k=0

(ATkv, Ek−1v) +

J
∑

k=1

k−1
∑

i=0

(ATkv, TiEi−1v)

=

J
∑

k=0

(ATkv, Ek−1v) +

J
∑

k=1

(ATkv, T0v) +

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) = S1 + S2 + S3.(19)

We now estimate S1, S2, and S3 separately. For S1, we employ the Cauchy-Schwarz inequality to obtain

S1 =

J
∑

k=0

(ATkv, Ek−1v) ≤
J
∑

k=0

(ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2
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≤
(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

To bound S2, we employ Assumption 3.7 as follows:

S2 =
J
∑

k=1

(ATkv, T0v) ≤ ‖
J
∑

k=1

Tkv‖A‖T0v‖A =

(

J
∑

k=1

J
∑

i=1

(ATkv, Tiv)

)1/2

(AT0v, T0v)1/2

≤ ω1/2C
1/2
5

(

J
∑

k=1

(ATkv, v)

)1/2

(AT0v, v)1/2

≤ ω1/2C
1/2
5

(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

We now bound S3, employing Assumption 3.6 as

S3 =

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) ≤ C4

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

≤ C4

(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

Putting the bounds for S1, S2, and S3 together, dividing (19) by
∑J

k=1(ATkv, v) and squaring, yields

J
∑

k=0

(ATkv, v) ≤ [1 + ω1/2C
1/2
5 + C4]

2
J
∑

k=0

(ATkEk−1v, Ek−1v).

Therefore, Assumption 3.4 holds, where:

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Results similar to the next lemma are used in several recent papers on domain decomposition [16]; the
proof is quite simple once the proof of Lemma 3.13 is available.

Lemma 3.20. Under Assumptions 3.1 (including T0) and 3.7 (excluding T0), we have that Assumption 3.5
(including T0) holds, where:

C3 = ω + C5.

Proof. The proof of Lemma 3.13 gives immediately
∑J

k=1(ATkv, v) ≤ C5‖v‖2
A. Now, since (AT0v, v) ≤

ω‖v‖2
A, we simply add in the k = 0 term, yielding

J
∑

k=0

(ATkv, v) ≤ (ω + C5)‖v‖2
A.

We finish the section by relating the constants C2 and C3 (required for Corollary 3.6 and Theorem 3.7) to
the interaction matrices. The constants C4 and C5 are estimated by using the interaction matrices exactly
as before, since the interaction conditions still involve only the operators Tk for k 6= 0.

Lemma 3.21. Under Assumption 3.1 we have that Assumption 3.4 holds, where:

C2 ≤ 6[1 + ω2ρ(Θ)2].
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Proof. From Lemma 3.19 we have that

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Now, from Lemmas 3.15 and 3.16, and since ω < 2, it follows that

C2 = [1 + ω1/2C
1/2
5 + C4]

2 ≤ [1 +
√

2(ωρ(Θ))1/2 + ω‖Ξ‖2]
2.

Employing first Lemma 3.14 and then Corollary 3.9 twice, we have

C2 ≤ [1 +
√

2(ωρ(Θ))1/2 + ωρ(Θ)]2 ≤ 3[1 + 2ωρ(Θ) + ω2ρ(Θ)2]

= 3[1 + ωρ(Θ)]2 ≤ 6[1 + ω2ρ(Θ)2].

Lemma 3.22. Under Assumption 3.1 we have that Assumption 3.5 holds, where:

C3 ≤ ω(ρ(Θ) + 1).

Proof. From Lemmas 3.20 and 3.16 it follows that

C3 = ω + C5 ≤ ω + ωρ(Θ) = ω(ρ(Θ) + 1).

Remark 3.9. It is apparently possible to establish a sharper bound [10, 16] than the one given above in
Lemma 3.21, the improved bound having the form

C2 = 1 + 2ω2ρ(Θ)2.

This result is stated and used in several recent papers on domain decomposition, e.g., in [16], but the proof
of the result has apparently not been published. A proof of a similar result is established for some related
nonsymmetric problems in [10].

3.4. Main results of the theory

The main theory may be summarized in the following way. We are interested in norm and condition number
bounds of the product and sum operators:

E = (I − TJ)(I − TJ−1) · · · (I − T0),(20)

P = T0 + T1 + · · · + TJ .(21)

The necessary assumptions for the theory are as follows.
Assumption 3.8. (Operator norms) The operators Tk ∈ L(H,H) are A-self-adjoint, A-non-negative,

and
ρ(Tk) = ‖Tk‖A ≤ ω < 2, k = 0, . . . , J.

Assumption 3.9. (Splitting constant) There exists C0 > 0 such that

‖v‖2
A ≤ C0

J
∑

k=0

(ATkv, v), ∀v ∈ H.

Definition 3.2. (Interaction matrices) Let Ξ be the strictly upper-triangular part of the interaction
matrix Θ ∈ L(RJ , RJ), which is defined to have as entries Θij the smallest constants satisfying:

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J.

The main theorems are as follows.
Theorem 3.23. (Product operator) Under Assumptions 3.8 and 3.9, the product operator (20) satisfies:

‖E‖2
A ≤ 1− 2 − ω

C0(6 + 6ω2ρ(Θ)2)
.
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Proof. Assumptions 3.8 and 3.9 are clearly equivalent to Assumptions 3.1 and 3.2, and by Lemma 3.21 we
know that Assumption 3.4 must hold with C2 = [6 + 6ω2ρ(Θ)2]. The theorem then follows by application of
Corollary 3.6.

Theorem 3.24. (Sum operator) Under Assumptions 3.8 and 3.9, the sum operator (21) satisfies:

κA(P ) ≤ C0ω(ρ(Θ) + 1).

Proof. Assumptions 3.8 and 3.9 are clearly equivalent to Assumptions 3.1 and 3.2, and by Lemma 3.22 we
know that Assumption 3.5 must hold with C3 = ω(1 + ρ(Θ)). The theorem then follows by application of
Theorem 3.7.

For the case when there is not a global operator T0 present, set T0 ≡ 0 in the above definitions and
assumptions. Note that this implies that all k = 0 terms in the assumptions and definitions are ignored.
The main theorems are now modified as follows.

Theorem 3.25. (Product operator) If T0 ≡ 0, then under Assumptions 3.8 and 3.9, the product opera-
tor (20) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C0(1 + ω‖Ξ‖2)2
.

Proof. Assumptions 3.8 and 3.9 are clearly equivalent to Assumptions 3.1 and 3.2, and by Lemma 3.17 we
know that Assumption 3.4 must hold with C2 = (1 + ω‖Ξ‖)2. The theorem then follows by application of
Corollary 3.6.

Theorem 3.26. (Sum operator) If T0 ≡ 0, then under Assumptions 3.8 and 3.9, the sum operator (21)
satisfies:

κA(P ) ≤ C0ωρ(Θ).

Proof. Assumptions 3.8 and 3.9 are clearly equivalent to Assumptions 3.1 and 3.2, and by Lemma 3.18
we know that Assumption 3.5 must hold with C3 = ωρ(Θ). The theorem then follows by application of
Theorem 3.7.

Remark 3.10. We see that the product and sum operator theory now rests completely on the estimation
of the constant C0 in Assumption 3.9 and the bounds on the interaction matrices. (The bound involving
ω in Assumption 3.8 always holds for any reasonable method based on product and sum operators.) We
will further reduce the estimate of C0 to simply the estimate of a “splitting” constant, depending on the
particular splitting of the main space H into subspaces Hk, and to an estimate of the effectiveness of the
approximate solver in the subspaces.

Remark 3.11. Note that if we cannot estimate ‖Ξ‖2 or ρ(Θ), then we can still use the above theory since we
have worst case estimates from Lemmas 3.15 and 3.16, namely:

‖Ξ‖2 ≤
√

J(J − 1)/2 < J, ρ(Θ) ≤ J.

In the case of the nested spaces in multigrid methods, it may be possible to analyze ‖Ξ‖2 through the
use of strengthened Cauchy-Schwarz inequalities, showing in fact that ‖Ξ‖2 = O(1). In the case of domain
decomposition methods, it will always be possible to show that ‖Ξ‖2 = O(1) and ρ(Θ) = O(1), due to the
local nature of the domain decomposition projection operators.



4. Abstract Schwarz theory

In this section, we consider abstract Schwarz methods based on subspaces, and apply the general product and
sum operator theory to these methods. The resulting theory, which is a variation of that presented in [44]
and [16], rests on the notion of a stable subspace splitting of the original Hilbert space (cf. [36, 37]). Although
the derivation here is presented in a somewhat different, algebraic language, many of the intermediate results
we use have appeared previously in the literature in other forms (we provide references at the appropriate
points). In contrast to earlier approaches, we develop the entire theory employing general prolongation and
restriction operators; the use of inclusion and projection as prolongation and restriction are represented in
this approach as a special case.

4.1. The Schwarz methods

Consider now a Hilbert space H, equipped with an inner-product (·, ·) inducing a norm ‖ · ‖ = (·, ·)1/2.
Let there be given an SPD operator A ∈ L(H,H) defining another inner-product on H, which we denote

as (·, ·)A = (A·, ·). This second inner-product also induces a norm ‖ · ‖A = (·, ·)1/2
A . We are also given an

associated set of spaces

H1,H2, . . . ,HJ , dim(Hk) ≤ dim(H), IkHk ⊆ H, H =
J
∑

k=1

IkHk,

for some operators Ik : Hk 7→ H, where we assume that null(Ik) = {0}. This defines a splitting of H into
the subspaces IkHk, although the spaces Hk alone may not relate to the largest space H in any natural way
without the operator Ik. No requirements are made on the associated spaces Hk beyond the above, so that
they are not necessarily nested, disjoint, or overlapping.

Associated with each space Hk is an inner-product (·, ·)k inducing a norm ‖ · ‖k = (·, ·)1/2
k , and an SPD

operator Ak ∈ L(Hk ,Hk), defining a second inner-product (·, ·)Ak
= (Ak ·, ·)k and norm ‖ · ‖Ak

= (·, ·)1/2
Ak

.
The spaces Hk are related to the finest space H through the prolongation Ik defined above, and also through
the restriction operator, defined as the adjoint of Ik relating the inner-products in H and Hk:

(Ikvk, v) = (vk, IT
k v)k, IT

k : H 7→ Hk.

It will always be completely clear from the arguments of the inner-product (or norm) which particular inner-
product (or norm) is implied; i.e., if the arguments lie in H then either (·, ·) or (A·, ·) is to be used, whereas
if the arguments lie in Hk, then either (·, ·)k or (Ak ·, ·)k is to be used. Therefore, we will leave off the
implied subscript k from the inner-products and norms in all of the following discussions, without danger of
confusion. Finally, we assume the existence of SPD linear operators Rk ∈ L(Hk,Hk), such that Rk ≈ A−1

k .
Definition 4.1. The operator Ak ∈ L(Hk ,Hk) is called variational with respect to A ∈ L(H,H) if, for

a fixed operator Ik ∈ L(Hk ,H), it holds that:

Ak = IT
k AIk .

If the operators Ak are each variational with A, then the operator Ak in space Hk is in some sense a
representation of the operator A in the space Hk. For example, in a multigrid or domain decomposition
algorithm, the operator IT

k may correspond to an orthogonal projector, and Ik to the natural inclusion of a
subspace into the whole space.

Regarding the operators Rk, a natural condition to impose is that they correspond to some convergent
linear methods in the associated spaces, the necessary and sufficient condition for which would be (by
Theorem 2.7):

ρ(I − RkAk) = ‖I − RkAk‖A < 1, k = 1, · · · , J.

Note that if Rk = A−1
k , this is trivially satisfied. More generally, Rk ≈ A−1

k , corresponding to some classical
linear smoothing method (in the case of multigrid), or some other linear solver.

26
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An abstract multiplicative Schwarz method, employing associated space corrections in the spaces Hk,
has the form:

Algorithm 4.1. (Abstract Multiplicative Schwarz Method – Implementation Form)

un+1 = MS(un, f)

where the operation uNEW = MS(uOLD, f) is defined as:

Do k = 1, . . . , J
rk = IT

k (f − AuOLD)
ek = Rkrk

uNEW = uOLD + Ikek

uOLD = uNEW

End do.

Note that the first step through the loop in MS(·, ·) gives:

uNEW = uOLD + I1e1 = uOLD + I1R1I
T
1 (f − AuOLD) = (I − I1R1I

T
1 A)uOLD + I1R1I

T
1 f.

Continuing in this fashion, and by defining Tk = IkRkIT
k A, we see that after the full loop in MS(·, ·) the

solution transforms according to:

un+1 = (I − TJ)(I − TJ−1) · · · (I − T1)u
n + Bf,

where B is a quite complicated combination of the operators Rk, Ik , IT
k , and A. By defining Ek = (I−Tk)(I−

Tk−1) · · · (I − T1), we see that Ek = (I − Tk)Ek−1. Therefore, since Ek−1 = I −Bk−1A for some (implicitly
defined) Bk−1, we can identify the operators Bk through the recursion Ek = I−BkA = (I −Tk)Ek−1, giving

BkA = I − (I − Tk)Ek−1 = I − (I − Bk−1A) + Tk(I − Bk−1A) = Bk−1A + Tk − TkBk−1A

= Bk−1A + IkRkIT
k A − IkRkIT

k ABk−1A =
[

Bk−1 + IkRkIT
k − IkRkIT

k ABk−1

]

A,

so that Bk = Bk−1 + IkRkIT
k − IkRkIT

k ABk−1. But this means the above algorithm is equivalent to:
Algorithm 4.2. (Abstract Multiplicative Schwarz Method – Operator Form)

un+1 = un + B(f − Aun) = (I − BA)un + Bf

where the multiplicative Schwarz error propagator E is defined by:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1), Tk = IkRkIT
k A, k = 1, . . . , J.

The operator B ≡ BJ is defined implicitly, and obeys the recursion:

B1 = I1R1I
T
1 , Bk = Bk−1 + IkRkIT

k − IkRkIT
k ABk−1, k = 2, . . . , J.

An abstract additive Schwarz method, employing corrections in the spaces Hk, has the form:
Algorithm 4.3. (Abstract Additive Schwarz Method – Implementation Form)

un+1 = MS(un, f)

where the operation uNEW = MS(uOLD, f) is defined as:

r = f − AuOLD

Do k = 1, . . . , J
rk = IT

k r
ek = Rkrk

uNEW = uOLD + Ikek

End do.
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Since each loop iteration depends only on the original approximation uOLD, we see that the full correction
to the solution can be written as the sum:

un+1 = un + B(f − Aun) = un +

J
∑

k=1

IkRkIT
k (f − Aun),

where the preconditioner B has the form B =
∑J

k=1 IkRkIT
k , and the error propagator is E = I − BA.

Therefore, the above algorithm is equivalent to:
Algorithm 4.4. (Abstract Additive Schwarz Method – Operator Form)

un+1 = un + B(f − Aun) = (I − BA)un + Bf

where the additive Schwarz error propagator E is defined by:

E = I − BA = I −
J
∑

k=1

Tk, Tk = IkRkIT
k A, k = 1, . . . , J.

The operator B is defined explicitly as B =
∑J

k=1 IkRkIT
k .

4.2. Subspace splitting theory

We now consider the framework of §4.1, employing the abstract results of §3.4. First, we prove some simple
results about projectors, and the relationships between the operators Rk on the spaces Hk and the resulting
operators Tk = IkRkIT

k A on the space H. We then consider the “splitting” of the space H into subspaces
IkHk, and the verification of the assumptions required to apply the abstract theory of §3.4 is reduced to
deriving an estimate of the “splitting constant”.

Recall that an orthogonal projector is an operator P ∈ L(H,H) having a closed subspace V ⊆ H as its
range (on which P acts as the identity), and having the orthogonal complement of V , denoted as V⊥ ⊆ H,
as its null space. By this definition, the operator I − P is also clearly a projector, but having the subspace
V⊥ as range and V as null space. In other words, a projector P splits a Hilbert space H into a direct sum
of a closed subspace and its orthogonal complement as follows:

H = V ⊕ V⊥ = PH⊕ (I − P )H.

The following lemma gives a useful characterization of a projection operator; note that this characterization
is often used as an equivalent alternative definition of a projection operator.

Lemma 4.1. Let A ∈ L(H,H) be SPD. Then the operator P ∈ L(H,H) is an A-orthogonal projector if
and only if P is A-self-adjoint and idempotent (P 2 = P ).

Proof. See [28], Theorem 9.5-1, page 481.

Lemma 4.2. Assume dim(Hk) ≤ dim(H), Ik : Hk 7→ H, null(Ik) = {0}, and that A is SPD. Then

Qk = Ik(IT
k Ik)−1IT

k , Pk = Ik(IT
k AIk)−1IT

k A,

are the unique orthogonal and A-orthogonal projectors onto IkHk.

Proof. By assuming that null(Ik) = {0}, we guarantee that both null(IT
k Ik) = {0} and null(IT

k AIk) = {0},
so that both Qk and Pk are well-defined. It is easily verified that Qk is self-adjoint and Pk is A-self-adjoint,
and it is immediate that Q2

k = Qk and that P 2
k = Pk . Clearly, Qk : H 7→ IkHk, and Pk : H 7→ IkHk, so that

by Lemma 4.1 these operators are orthogonal and A-orthogonal projectors onto IkHk. All that remains is to
show that these operators are unique. By definition, a projector onto a subspace IkHk acts as the identity
on IkHk, and as the zero operator on (IkHk)⊥. Therefore, any two projectors Pk and P̃k onto IkHk must
act identically on the entire space H = IkHk ⊕ (IkHk)⊥, and therefore Pk = P̃k. Similarly, Qk is unique.

We now make the following natural assumption regarding the operators Rk ≈ A−1
k .

Assumption 4.1. The operators Rk ∈ L(Hk ,Hk) are SPD. Further, there exists a subspace Vk ⊆ Hk,
and parameters 0 < ω0 ≤ ω1 < 2, such that



ABSTRACT SCHWARZ THEORY 29

(a) ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk ⊆ Hk, k = 1, . . . , J ,
(b) (AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J .

This implies that on the subspace Vk ⊆ Hk, it holds that 0 < ω0 ≤ λi(RkAk), k = 1, . . . , J , whereas on
the entire space Hk, it holds that λi(RkAk) ≤ ω1 < 2, k = 1, . . . , J .

There are several consequences of the above assumption which will be useful later.
Lemma 4.3. Assumption 4.1(b) implies that 0 < λi(RkAk) ≤ ω1, and ρ(I−RkAk) = ‖I−RkAk‖Ak

< 1.

Proof. Since R and A are SPD by assumption, we have by Lemma 2.6 that RA is A-SPD. By Assump-
tion 4.1(b), the Rayleigh quotients are bounded above by ω1, so that

0 < λi(RA) ≤ ω1.

Thus,
ρ(I − RA) = max

i
|λi(I − RA)| = max

i
|1 − λi(RA)|.

Clearly then ρ(I − RA) < 1 since 0 < ω1 < 2.

Lemma 4.4. Assumption 4.1(b) implies that (Akvk, vk) ≤ ω1(R
−1
k vk, vk), ∀vk ∈ Hk.

Proof. We drop the subscripts for ease of exposition. By Assumption 4.1(b), (ARAv, v) ≤ ω1(Av, v), so that
ω1 bounds the Raleigh quotients generated by RA. Since RA is similar to R1/2AR1/2, we must also have
that

(R1/2AR1/2v, v) ≤ ω1(v, v).

But this implies
(AR1/2v, R1/2v) ≤ ω1(R

−1R1/2v, R1/2v),

or (Aw, w) ≤ ω1(R
−1w, w), ∀w ∈ H.

Lemma 4.5. Assumption 4.1(b) implies that Tk = IkRkIT
k A is A-self-adjoint and A-non-negative, and

ρ(Tk) = ‖Tk‖A ≤ ω1 < 2.

Proof. That Tk = IkRkIT
k A is A-self-adjoint and A-non-negative follows immediately from the symmetry of

Rk and Ak. To show the last result, we employ Lemma 4.4 to obtain

(ATkv, Tkv) = (AIkRkIT
k Av, IkRkIT

k Av) = (IT
k AIkRkIT

k Av, RkIT
k Av)

= (AkRkIT
k Av, RkIT

k Av) ≤ ω1(R
−1
k RkIT

k Av, RkIT
k Av) = ω1(I

T
k Av, RkIT

k Av)

= ω1(AIkRkIT
k Av, v) = ω1(ATkv, v).

Now, from the Schwarz inequality, we have

(ATkv, Tkv) ≤ ω1(ATkv, v) ≤ ω1(ATkv, Tkv)1/2(Av, v)1/2,

or that
(ATkv, Tkv)1/2 ≤ ω1(Av, v)1/2,

which implies that ‖Tk‖A ≤ ω1 < 2.

The key idea in all of the following theory involves the splitting of the original Hilbert space H into a
collection of subspaces IkVk ⊆ IkHk ⊆ H. It will be important for the splitting to be stable in a certain
sense, which we state as the following assumption.

Assumption 4.2. Given any v ∈ H =
∑J

k=1 IkHk, IkHk ⊆ H, there exists subspaces IkVk ⊆ IkHk ⊆
H =

∑J
k=1 IkVk, and a particular splitting v =

∑J
k=1 Ikvk, vk ∈ Vk, such that

J
∑

k=1

‖Ikvk‖2
A ≤ S0‖v‖2

A,
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for some splitting constant S0 > 0.
The following key lemma (in the case of inclusion and projection as prolongation and restriction) is

sometimes referred to as Lions’ Lemma [29], although the multiple-subspace case is essentially due to Wid-
lund [41].

Lemma 4.6. Under Assumption 4.2 it holds that

(

1

S0

)

‖v‖2
A ≤

J
∑

k=1

(APkv, v), ∀v ∈ H.

Proof. Given any v ∈ H, we employ the splitting of Assumption 4.2 to obtain

‖v‖2
A =

J
∑

k=1

(Av, Ikvk) =
J
∑

k=1

(IT
k Av, vk) =

J
∑

k=1

(IT
k A(Ik(IT

k AIk)−1IT
k A)v, vk) =

J
∑

k=1

(APkv, Ikvk).

Now, let P̃k = (IT
k AIk)−1IT

k A, so that Pk = IkP̃k. Then

‖v‖2
A =

J
∑

k=1

(IT
k AIkP̃kv, vk) =

J
∑

k=1

(AkP̃kv, vk) ≤
J
∑

k=1

(Akvk, vk)1/2(AkP̃kv, P̃kv)1/2

≤
(

J
∑

k=1

(Akvk, vk)

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

=

(

J
∑

k=1

(AIkvk, Ikvk)

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

=

(

J
∑

k=1

‖Ikvk‖2
A

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

≤ S
1/2
0 ‖v‖A

(

J
∑

k=1

(AIkP̃kv, IkP̃kv)

)1/2

= S
1/2
0 ‖v‖A

(

J
∑

k=1

(APkv, Pkv)

)1/2

, ∀v ∈ H.

Since (APkv, Pkv) = (APkv, v), dividing the above by ‖v‖A and squaring yields the result.

The next intermediate result will be useful in the case that the subspace solver Rk is effective on only
the part of the subspace Hk, namely Vk ⊆ Hk.

Lemma 4.7. Under Assumptions 4.1(a) and 4.2 (for the same subspaces IkVk ⊆ IkHk) it holds that

J
∑

k=1

(R−1
k vk, vk) ≤

(

S0

ω0

)

‖v‖2
A, ∀v =

J
∑

k=1

Ikvk ∈ H, vk ∈ Vk ⊆ Hk.

Proof. With v =
∑J

k=1 Ikvk, where we employ the splitting in Assumption 4.2, we have

J
∑

k=1

(R−1
k vk , vk) =

J
∑

k=1

(AkA−1
k R−1

k vk, vk) =

J
∑

k=1

(Akvk, vk)
(AkA−1

k R−1
k vk, vk)

(Akvk, vk)

≤
J
∑

k=1

(Akvk, vk) max
vk 6=0

(AkA−1
k R−1

k vk, vk)

(Akvk, vk)
≤

J
∑

k=1

ω−1
0 (Akvk, vk)

=

J
∑

k=1

ω−1
0 (AIkvk, Ikvk) =

J
∑

k=1

ω−1
0 ‖Ikvk‖2

A ≤
(

S0

ω0

)

‖v‖2
A,

which proves the lemma.
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The following lemma relates the constant appearing in the “splitting” Assumption 3.9 of the product and
sum operator theory to the subspace splitting constant appearing in Assumption 4.2 above.

Lemma 4.8. Under Assumptions 4.1(a) and 4.2 (for the same subspaces IkVk ⊆ IkHk) it holds that

‖v‖2
A ≤

(

S0

ω0

) J
∑

k=1

(ATkv, v), ∀v ∈ H.

Proof. Given any v ∈ H, we begin with the splitting in Assumption 4.2 as follows

‖v‖2
A = (Av, v) =

J
∑

k=1

(Av, Ikvk) =

J
∑

k=1

(IT
k Av, vk) =

J
∑

k=1

(RkIT
k Av, R−1

k vk).

We employ now the Cauchy-Schwarz inequality in the Rk inner-product, yielding

‖v‖2
A ≤

(

J
∑

k=1

(RkR−1
k vk , R−1

k vk)

)1/2( J
∑

k=1

(RkIT
k Av, IT

k Av)

)1/2

≤
(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(AIkRkIT
k Av, Av)

)1/2

=

(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(ATkv, v)

)1/2

,

where we have employed Lemma 4.7 for the last inequality. Dividing the inequality above by ‖v‖A and
squaring yields the lemma.

In order to employ the product and sum theory, we must quantify the interaction of the operators Tk. As
the Tk involve corrections in subspaces, we will see that the operator interaction properties will be determined
completely by the interaction of the subspaces. Therefore, we introduce the following notions to quantify
the interaction of the subspaces involved.

Definition 4.2. (Strong interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ ) is defined to have
as entries Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .

Definition 4.3. (Weak interaction matrix) The strictly upper-triangular interaction matrix Ξ ∈ L(RJ , RJ)
is defined to have as entries Ξij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

The following lemma relates the interaction properties of the subspaces specified by the strong interaction
matrix to the interaction properties of the associated subspace correction operators Tk = IkRkIT

k A.
Lemma 4.9. For the strong interaction matrix Θ given in Definition 4.2, it holds that

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J, ∀u, v ∈ H.

Proof. Since Tku = IkRkIT
k Au = Ikuk, where uk = RkIT

k Au, the lemma follows simply from the definition
of Θ in Definition 4.2 above.

Remark 4.12. Note that the weak interaction matrix in Definition 4.3 involves a subspace Vk ⊆ Hk, which
will be necessary in the analysis of multigrid-like methods. Unfortunately, this will preclude the simple
application of the product operator theory of the previous sections. In particular, we cannot estimate the
constant C2 required for the use of Corollary 3.6, because we cannot show Lemma 3.15 for arbitrary Tk. In
order to prove Lemma 3.15, we would need to employ the upper-triangular portion of the strong interaction
matrix Θ in Definition 4.2, involving the entire space Hk, which is now different from the upper-triangular
weak interaction matrix Ξ (employing only the subspace Vk) defined as above in Definition 4.3. There was no
such distinction between the weak and strong interaction matrices in the product and sum operator theory
of the previous sections; the weak interaction matrix was defined simply as the strictly upper-triangular
portion of the strong interaction matrix.
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We can, however, employ the original Theorem 3.5 by attempting to estimate C1 directly, rather than
employing Corollary 3.6 and estimating C1 indirectly through C0 and C2. The following result will allow us
to do this, and still employ the weak interaction property above in Definition 4.3.

Lemma 4.10. Under Assumptions 4.1 and 4.2 (for the same subspaces IkVk ⊆ IkHk), it holds that

‖v‖2
A ≤

(

S0

ω0

)

[1 + ω1‖Ξ‖2]
2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H,

where Ξ is the weak interaction matrix of Definition 4.3.

Proof. We employ the splitting of Assumption 4.2, namely v =
∑J

k=1 Ikvk, vk ∈ Vk ⊆ Hk, as follows:

‖v‖2
A =

J
∑

k=1

(Av, Ikvk) =

J
∑

k=1

(AEk−1v, Ikvk) +

J
∑

k=1

(A[I − Ek−1]v, Ikvk)

=

J
∑

k=1

(AEk−1v, Ikvk) +

J
∑

k=1

k−1
∑

i=1

(ATiEi−1v, Ikvk) = S1 + S2.

We now estimate S1 and S2 separately. For the first term, we have:

S1 =
J
∑

k=1

(AEk−1v, Ikvk) =
J
∑

k=1

(IT
k AEk−1v, vk) =

J
∑

k=1

(RkIT
k AEk−1v, R−1

k vk)

≤
J
∑

k=1

(RkIT
k AEk−1v, IT

k AEk−1v)1/2(R−1
k vk , vk)1/2 =

J
∑

k=1

(ATkEk−1v, Ek−1v)1/2(R−1
k vk, vk)1/2

≤
(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(R−1
k vk, vk)

)1/2

.

where we have employed the Cauchy-Schwarz inequality in the Rk inner-product for the first inequality
and in R

J for the second. Employing now Lemma 4.7 (requiring Assumptions 4.1 and 4.2) to bound the
right-most term, we have

S1 ≤
(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

We now bound the term S2, employing the weak interaction matrix given in Definition 4.3 above, as
follows:

S2 =

J
∑

k=1

k−1
∑

i=1

(ATiEi−1v, Ikvk) =

J
∑

k=1

k−1
∑

i=1

(AIi[RiI
T
i AEi−1v], Ikvk)

≤
J
∑

k=1

J
∑

i=1

Ξik‖Ii[RiI
T
i AEi−1v]‖A‖Ikvk‖A =

J
∑

k=1

J
∑

i=1

Ξik‖TiEi−1v‖A‖Ikvk‖A = (Ξx,y)2,

where x,y ∈ R
J , xk = ‖Ikvk‖A, yi = ‖TiEi−1v‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J .
Now, we have that

S2 ≤ (Ξx,y)2 ≤ ‖Ξ‖2‖x‖2‖y‖2 = ‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, TkEk−1v)

)1/2( J
∑

k=1

(AIkvk, Ikvk)

)1/2

≤ ω
1/2
1 ‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(Akvk, vk)

)1/2

,
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since Ak = IT
k AIk , and by Lemma 3.2, which may be applied because of Lemma 4.5. By Lemma 4.4, we

have (Akvk, vk) ≤ ω1(R
−1
k vk, vk), and employing this result along with Lemma 4.7 gives

S2 ≤ ω1‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(R−1
k vk, vk)

)1/2

≤
(

S0

ω0

)1/2

‖v‖Aω1‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

Combining the two results gives finally

‖v‖2
A ≤ S1 + S2 ≤

(

S0

ω0

)1/2

‖v‖A [1 + ω1‖Ξ‖2]

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

, ∀v ∈ H.

Dividing by ‖v‖A and squaring yieldings the result.

Remark 4.13. Although our language and notation is quite different, the proof we have given above for
Lemma 4.10 is similar to results in [46] and [19]. Similar ideas and results appear [40]. The main ideas and
techniques underlying proofs of this type were originally developed in [8, 9, 44].

4.3. Product and sum splitting theory for non-nested Schwarz methods

The main theory for Schwarz methods based on non-nested subspaces, as in the case of overlapping domain
decomposition-like methods, may be summarized in the following way. We still consider an abstract method,
but we assume it satisfies certain assumptions common to real overlapping Schwarz domain decomposition
methods. In particular, due to the local nature of the operators Tk for k 6= 0 arising from subspaces
associated with overlapping subdomains, it will be important to allow for a special global operator T0 for
global communication of information (the need for T0 will be demonstrated later). Therefore, we use the
analysis framework of the previous sections which includes the use of a special global operator T0. Note
that the local nature of the remaining Tk will imply that ρ(Θ) ≤ Nc, where Nc is the number of maximum
number of subdomains which overlap any subdomain in the region.

The analysis of domain decomposition-type algorithms is in most respects a straightforward application of
the theory of products and sums of operators, as presented earlier. The theory for multigrid-type algorithms
is more subtle; we will discuss this in the next section.

Let the operators E and P be defined as:

E = (I − TJ)(I − TJ−1) · · · (I − T0),(22)

P = T0 + T1 + · · · + TJ ,(23)

where the operators Tk ∈ L(H,H) are defined in terms of the approximate corrections in the spaces Hk as:

Tk = IkRkIT
k A, k = 0, . . . , J,(24)

where

Ik : Hk 7→ H, null(Ik) = {0}, IkHk ⊆ H, H =
J
∑

k=1

IkHk.

The following assumptions are required; note that the following theory employs many of the assumptions
and lemmas of the previous sections, for the case that Vk ≡ Hk.

Assumption 4.3. (Subspace solvers) The operators Rk ∈ L(Hk ,Hk) are SPD. Further, there exists
parameters 0 < ω0 ≤ ω1 < 2, such that

ω0(Akvk, vk) ≤ (AkRkAkvk , vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 0, . . . , J.
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Assumption 4.4. (Splitting constant) Given any v ∈ H, there exists S0 > 0 and a particular splitting

v =
∑J

k=0 Ikvk, vk ∈ Hk, such that
J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A.

Definition 4.4. (Interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ ) is defined to have as entries
Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .

Theorem 4.11. (Multiplicative method) Under Assumptions 4.3 and 4.4, it holds that

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(6 + 6ω2
1ρ(Θ)2)

.

Proof. By Lemma 4.5, Assumption 4.3 implies that Assumption 3.8 holds, with ω = ω1. By Lemma 4.8, we
know that Assumptions 4.3 and 4.4 imply that Assumption 3.9 holds, with C0 = S0/ω0. By Lemma 4.9, we
know that Definition 4.4 is equivalent to Definition 3.2 for Θ. Therefore, the theorem follows by application
of Theorem 3.23.

Theorem 4.12. (Additive method) Under Assumptions 4.3 and 4.4, it holds that

κA(P ) ≤ S0(ρ(Θ) + 1)ω1

ω0
.

Proof. By Lemma 4.5, Assumption 4.3 implies that Assumption 3.8 holds, with ω = ω1. By Lemma 4.8, we
know that Assumptions 4.3 and 4.4 imply that Assumption 3.9 holds, with C0 = S0/ω0. By Lemma 4.9, we
know that Definition 4.4 is equivalent to Definition 3.2 for Θ. Therefore, the theorem follows by application
of Theorem 3.24.

Remark 4.14. Note that Assumption 4.3 is equivalent to

κA(RkAk) ≤ ω1

ω0
, k = 0, . . . , J,

or maxk{κA(RkAk)} ≤ ω1/ω0. Thus, the result in Theorem 4.12 can be written as:

κA(P ) ≤ S0(ρ(Θ) + 1) max
k

{κA(RkAk)}.

Therefore, the global condition number is completely determined by the local condition numbers, the splitting
constant, and the interaction property.

Remark 4.15. We have the default estimate for ρ(Θ):

ρ(Θ) ≤ J.

For use of the theory above, we must also estimate the splitting constant S0, and the subspace solver spectral
bounds ω0 and ω1, for each particular application.

Remark 4.16. Note that if a coarse space operator T0 is not present, then the alternate bounds from the
previous sections could have been employed. However, the advantage of the above approach is that the
additional space H0 does not adversely effect the bounds, while it provides an additional space to help
satisfy the splitting assumption. In fact, in the finite element case, it is exactly this coarse space which
allows one to show that S0 does not depend on the number of subspaces, yielding optimal algorithms when
a coarse space is involved.

Remark 4.17. The theory in this section was derived mainly from work in the domain decomposition commu-
nity, due chiefly to Widlund and his co-workers. In particular, our presentation owes much to [44] and [16].
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4.4. Product and sum splitting theory for nested Schwarz methods

The main theory for Schwarz methods based on nested subspaces, as in the case of multigrid-like methods,
is summarized in this section. By “nested” subspaces, we mean here that there are additional subspaces
Vk ⊆ Hk of importance, and we refine the analysis to consider these addition nested subspaces Vk. Of course,
we must still assume that

∑J
k=1 IkVk = H. Later, when analyzing multigrid methods, we will consider in fact

a nested sequence I1H1 ⊆ I2H2 ⊆ · · · ⊆ HJ ≡ H, with Vk ⊆ Hk, although this assumption is not necessary
here. We will however assume here that one space H1 automatically performs the role of a “global” space,
and hence it will not be necessary to include a special global space H0 as in the non-nested case. Therefore,
we will employ the analysis framework of the previous sections which does not specifically include a special
global operator T0. (By working with the subspaces Vk rather than the Hk we will be able to avoid the
problems encountered with a global operator interacting with all other operators, as in the previous sections.)

The analysis of multigrid-type algorithms is more subtle than analysis for overlapping domain decompo-
sition methods, in that the efficiency of the method comes from the effectiveness of simple linear methods
(e.g., Gauss-Seidel iteration) at reducing the error in a certain sub-subspace Vk of the “current” space Hk.
The overall effect on the error is not important; just the effectiveness of the linear method on error subspace
Vk. The error in the remaining space Hk\Vk is handled by subspace solvers in the other subspaces, since we

assume that H =
∑J

k=1 IkVk. Therefore, in the analysis of the nested space methods to follow, the spaces
Vk ⊆ Hk introduced earlier will play a key role. This is in contrast to the non-nested theory of the previous
section, where it was taken to be the case that Vk ≡ Hk. Roughly speaking, nested space algorithms “split”
the error into components in Vk, and if the subspace solvers in each space Hk are good at reducing the error
in Vk, then the overall method will be good.

Let the operators E and P be defined as:

E = (I − TJ)(I − TJ−1) · · · (I − T1),(25)

P = T1 + T2 + · · · + TJ ,(26)

where the operators Tk ∈ L(H,H) are defined in terms of the approximate corrections in the spaces Hk as:

Tk = IkRkIT
k A, k = 1, . . . , J,(27)

where

Ik : Hk 7→ H, null(Ik) = {0}, IkHk ⊆ H, H =

J
∑

k=1

IkHk.

The following assumptions are required.
Assumption 4.5. (Subspace solvers) The operators Rk ∈ L(Hk ,Hk) are SPD. Further, there exists

subspaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk, and parameters 0 < ω0 ≤ ω1 < 2, such that

ω0(Akvk, vk) ≤ (AkRkAkvk , vk), ∀vk ∈ Vk ⊆ Hk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

Assumption 4.6. (Splitting constant) Given any v ∈ H, there exists subspaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk (the same subspaces Vk as in Assumption 4.5 above) and a particular splitting v =
∑J

k=1 Ikvk,
vk ∈ Vk, such that

J
∑

k=1

‖Ikvk‖2
A ≤ S0‖v‖2

A, ∀v ∈ H,

for some splitting constant S0 > 0.
Definition 4.5. (Strong interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ ) is defined to have

as entries Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .
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Definition 4.6. (Weak interaction matrix) The strictly upper-triangular interaction matrix Ξ ∈ L(RJ , RJ)
is defined to have as entries Ξij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

Theorem 4.13. (Multiplicative method) Under Assumptions 4.5 and 4.6, it holds that

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(1 + ω1‖Ξ‖2)2
.

Proof. The proof of this result is more subtle than the additive method, and requires more work than
a simple application of the product operator theory. This is due to the fact that the weak interaction
matrix of Definition 4.6 specifically involves the subspace Vk ⊆ Hk. Therefore, rather than employing
Theorem 3.25, which employs Corollary 3.6 indirectly, we must do a more detailed analysis, and employ the
original Theorem 3.5 directly. (See the remarks preceding Lemma 4.10.)

By Lemma 4.5, Assumption 4.5 implies that Assumption 3.1 holds, with ω = ω1. Now, to employ
Theorem 3.5, it suffices to realize that Assumption 3.3 holds with with C1 = S0(1 + ω1‖Ξ‖2)

2/ω0. This
follows from Lemma 4.10.

Theorem 4.14. (Additive method) Under Assumptions 4.5 and 4.6, it holds that

κA(P ) ≤ S0ρ(Θ)ω1

ω0
.

Proof. By Lemma 4.5, Assumption 4.5 implies that Assumption 3.8 holds, with ω = ω1. By Lemma 4.8, we
know that Assumptions 4.5 and 4.6 imply that Assumption 3.9 holds, with C0 = S0/ω0. By Lemma 4.9, we
know that Definition 4.5 is equivalent to Definition 3.2 for Θ. Therefore, the theorem follows by application
of Theorem 3.26.

Remark 4.18. We have the default estimates for ‖Ξ‖2 and ρ(Θ):

‖Ξ‖2 ≤
√

J(J − 1)/2 < J, ρ(Θ) ≤ J.

For use of the theory above, we must also estimate the splitting constant S0, and the subspace solver spectral
bounds ω0 and ω1, for each particular application.

Remark 4.19. The theory in this section was derived from several sources; in particular, our presentation
owes much to [44], [19], and to [46].



5. Applications to domain decomposition

Domain decomposition methods were first proposed by H.A. Schwarz as a theoretical tool for studying elliptic
problems on complicated domains, constructed as the union of simple domains. An interesting early reference
not often mentioned is [24], containing both analysis and numerical examples, and references to the original
work by Schwarz. In this section, we briefly describe the fundamental overlapping domain decomposition
methods, and apply the theory of the previous sections to give convergence rate bounds.

5.1. Variational formulation and subdomain-based subspaces

Given a domain Ω and coarse triangulation by J regions {Ωk} of mesh size Hk, we refine (several times) to
obtain a fine mesh of size hk. The regions defined by the initial triangulation Ωk are then extended by δk to
form the “overlapping subdomains” Ω′

k. Now, let V and V0 denote the finite element spaces associated with
the hk and Hk triangulation of Ω, respectively. The variational problem in V has the form:

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V.

The form a(·, ·) is bilinear, symmetric, coercive, and bounded, whereas f(·) is linear and bounded. Therefore,
through the Riesz representation theorem we can associate with the above problem an abstract operator
equation Au = f , where A is SPD.

Domain decomposition methods can be seen as iterative methods for solving the above operator equa-
tion, involving approximate projections of the error onto subspaces of V associated with the overlapping
subdomains Ω′

k. To be more specific, let Vk = H1
0 (Ω′

k) ∩ V , k = 1, . . . , J ; it is not difficult to show that
V = V1 + · · · + VJ , where the coarse space V0 may also be included in the sum.

5.2. The multiplicative and additive Schwarz methods

We denote as Ak the restriction of the operator A to the space Vk , corresponding to (any) discretization
of the original problem restricted to the subdomain Ω′

k. Algebraically, it can be shown that Ak = IT
k AIk ,

where Ik is the natural inclusion in H and IT
k is the corresponding projection. The property that Ik is

the natural inclusion and IT
k is the corresponding projection holds if either Vk is a finite element space or

the Euclidean space R
nk (in the case of multigrid, Ik and IT

k are inclusion and projection only in the finite
element space case). In other words, domain decomposition methods automatically satisfy the variational
condition, Definition 4.1, in the subspaces Vk, k 6= 0, for any discretization method.

Now, if Rk ≈ A−1
k , we can define the approximate A-orthogonal projector from V onto Vk as Tk =

IkRkIT
k A. An overlapping domain decomposition method can be written as the basic linear method, Algo-

rithm 2.1, where the multiplicative Schwarz error propagator E is:

E = (I − TJ)(I − TJ−1) · · · (I − T0).

The additive Schwarz preconditioned system operator P is:

P = T0 + T1 + · · · + TJ .

Therefore, the overlapping multiplicative and additive domain decomposition methods fit exactly into the
framework of abstract multiplicative and additive Schwarz methods discussed in the previous sections.

5.3. Algebraic domain decomposition methods

As remarked above, for domain decomposition methods it automatically holds that Ak = IT
k AIk, where Ik is

the natural inclusion, IT
k is the corresponding projection, and Vk is either a finite element space or R

nk . While
this variational condition holds for multigrid methods only in the case of finite element discretizations, or
when directly enforced as in algebraic multigrid methods (see the next section), the condition holds naturally
and automatically for domain decomposition methods employing any discretization technique.

37
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We see that the Schwarz method framework then applies equally well to domain decomposition methods
based on other discretization techniques (box-method or finite differences), or to algebraic equations having
a block-structure which can be viewed as being associated with the discretization of an elliptic equation
over a domain. The Schwarz framework can be used to provide a convergence analysis even in the algebraic
case, although the results may be suboptimal compared to the finite element case when more information is
available about the continuous problem.

5.4. Convergence theory for the algebraic case

For domain decomposition methods, the local nature of the projection operators will allow for a simple
analysis of the interaction properties required for the Schwarz theory. To quantify the local nature of the
projection operators, assume that we are given H =

∑J
k=0 IkHk along with the subspaces IkHk ⊆ H, and

denote as Pk the A-orthogonal projector onto IkHk. We now make the following definition.

Definition 5.1. For each operator Pk, 1 ≤ k ≤ J , define N
(k)
c to be the number of operators Pi such

that PkPi 6= 0, 1 ≤ i ≤ J , and let Nc = max1≤k≤J{N (k)
c }.

Remark 5.20. This is a natural condition for domain decomposition methods, where N
(k)
c represents the

number of subdomains which overlap a given domain associated with Pk , excluding a possible coarse space
I0H0. By treating the projector P0 separately in the analysis, we allow for a global space H0 which may
in fact interact with all of the other spaces. Note that Nc ≤ J in general with Schwarz methods; with
domain decomposition, we can show that Nc = O(1). Our use of the notation Nc comes from the idea that
Nc represents essentially the minimum number of colors required to color the subdomains so that no two
subdomains sharing interior mesh points have the same color. (If the domains were non-overlapping, then
this would be a case of the four-color problem, so that in two dimensions it would always hold that Nc ≤ 4.)

The following splitting is the basis for applying the theory of the previous sections. Note that this
splitting is well-defined in a completely algebraic setting without further assumptions.

Lemma 5.1. Given any v ∈ H =
∑J

k=0 IkHk, IkHk ⊆ H, there exists a particular splitting v =
∑J

k=0 Ikvk, vk ∈ Hk, such that
J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A,

for the splitting constant S0 =
∑J

k=0 ‖Qk‖2
A.

Proof. Let Qk ∈ L(H,Hk) be the orthgonal projectors onto the subspaces Hk. We have that Hk = QkH,
and any v ∈ H can be represented uniquely as

v =

J
∑

k=0

Qkv =

J
∑

k=0

Ikvk, vk ∈ Hk.

We have then that
J
∑

k=0

‖Ikvk‖2
A =

J
∑

k=0

‖Qkv‖2
A ≤

J
∑

k=0

‖Qk‖2
A‖v‖2

A = S0‖v‖2
A,

where S0 =
∑J

k=0 ‖Qk‖2
A.

Lemma 5.2. It holds that ρ(Θ) ≤ Nc.

Proof. This follows easily, since ρ(Θ) ≤ ‖Θ‖1 = maxj{
∑

i |Θij |} ≤ Nc.

We make the following assumption on the subspace solvers.
Assumption 5.1. Assume there exists SPD operators Rk ∈ L(Hk ,Hk) and parameters 0 < ω0 ≤ ω1 < 2,

such that
ω0(Akvk, vk) ≤ (AkRkAkvk , vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.



APPLICATIONS TO DOMAIN DECOMPOSITION 39

Theorem 5.3. Under Assumption 5.1, the multiplicative Schwarz domain decomposition method has an
error propagator which satisfies:

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(6 + 6ω2
1N

2
c )

.

Proof. By Assumption 5.1, we have that Assumption 4.3 holds. By Lemma 5.1, we have that Assumption 4.4
holds, with S0 =

∑J
k=0 ‖Qk‖2

A. By Lemma 5.2, we have that for Θ as in Definition 4.4, it holds that
ρ(Θ) ≤ Nc. The proof now follows from Theorem 4.11.

Theorem 5.4. Under Assumption 5.1, the additive Schwarz domain decomposition method as a precon-
ditioner gives a condition number bounded by:

κA(P ) ≤ S0(1 + Nc)
ω1

ω0
.

Proof. By Assumption 5.1, we have that Assumption 4.3 holds. By Lemma 5.1, we have that Assumption 4.4
holds, with S0 =

∑J
k=0 ‖Qk‖2

A. By Lemma 5.2, we have that for Θ as in Definition 4.4, it holds that
ρ(Θ) ≤ Nc. The proof now follows from Theorem 4.12.

5.5. Improved results through finite element theory

If a coarse space is employed, and the overlap of the subdomains δk is on the order of the subdomain size
Hk, i.e., δk = cHk, then one can bound the splitting constant S0 to be independent of the mesh size and the
number of subdomains J . Required to prove such a result is some elliptic regularity or smoothness on the
solution to the original continuous problem:

Find u ∈ H1
0 (Ω) such that a(u, v) = (f, v), ∀v ∈ H1

0 (Ω).

The regularity assumption is stated as an apriori estimate or regularity inequality of the following form: The
solution to the continuous problem satisfies u ∈ H1+α(Ω) for some real number α > 0, and there exists a
constant C such that

‖u‖H1+α(Ω) ≤ C‖f‖Hα−1(Ω).

If this regularity inequality holds for the continuous solution, one can show the following result by employing
some results from interpolation theory and finite element approximation theory.

Lemma 5.5. There exists a splitting v =
∑J

k=0 Ikvk, vk ∈ Hk such that

J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A, ∀v ∈ H,

where S0 is independent of J (and hk and Hk).

Proof. Refer for example to the proof in [44] and the references therein to related results.



6. Applications to multigrid

Multigrid methods were first developed by Federenko in the early 1960’s, and have been extensively studied
and developed since they became widely known in the late 1970’s. In this section, we briefly describe
the linear multigrid method as a Schwarz method, and apply the theory of the previous sections to give
convergence rate bounds.

6.1. Recursive multigrid and nested subspaces

Consider a set of finite-dimensional Hilbert spaces Hk of increasing dimension:

dim(H1) < dim(H2) < · · · < dim(HJ ).

The spaces Hk, which may for example be finite element function spaces, or simply Rnk (where nk =
dim(Hk)), are assumed to be connected by prolongation operators Ik

k−1 ∈ L(Hk−1,Hk), and restriction

operators Ik−1
k ∈ L(Hk ,Hk−1). We can use these various operators to define mappings Ik that provide a

nesting structure for the set of spaces Hk as follows:

I1H1 ⊂ I2H2 ⊂ · · · ⊂ IJHJ ≡ H,

where
IJ = I, Ik = IJ

J−1I
J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1.

We assume that each space Hk is equipped with an inner-product (·, ·)k inducing the norm ‖·‖k = (·, ·)1/2
k .

Also associated with each Hk is an operator Ak, assumed to be SPD with respect to (·, ·)k. It is assumed
that the operators satisfy variational conditions:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T .(28)

These conditions hold naturally in the finite element setting, and are imposed directly in algebraic multigrid
methods.

Given B ≈ A−1 in the space H, the basic linear method constructed from the preconditioned system
BAu = Bf has the form:

un+1 = un − BAun + Bf = (I − BA)un + Bf.(29)

Now, given some B, or some procedure for applying B, we can either formulate a linear method using
E = I − BA, or employ a CG method for BAu = Bf if B is SPD.

6.2. Variational multigrid as a multiplicative Schwarz method

The recursive formulation of multigrid methods has been well-known for more than fifteen years; mathe-
matically equivalent forms of the method involving product error propagators have been recognized and
exploited theoretically only very recently. In particular, it can be shown [8, 22, 34] that if the variational
conditions (28) hold, then the multigrid error propagator can be factored as:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1),(30)

where:
IJ = I, Ik = IJ

J−1I
J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1,(31)

T1 = I1A
−1
1 IT

1 A, Tk = IkRkIT
k A, k = 2, . . . , J,(32)

where Rk ≈ A−1
k is the “smoothing” operator employed in each space Hk. It is not difficult to show that

with the definition of Ik in equation (31), the variational conditions (28) imply that additional variational
conditions hold between the finest space and each of the subspaces separately, as required for the Schwarz
theory:

Ak = IT
k AIk .(33)

40
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6.3. Algebraic multigrid methods

Equations arising in various application areas often contain complicated discontinuous coefficients, the shapes
of which may not be resolvable on all coarse mesh element boundaries as required for accurate finite element
approximation (and as required for validity of finite element error estimates). Multigrid methods typically
perform badly, and even the regularity-free multigrid convergence theory [8] is invalid.

Possible approaches include coefficient averaging methods (cf. [1]) and the explicit enforcement of the
conditions (28) (cf. [1, 13, 38]). By introducing a symbolic stencil calculus and employing MAPLE or
MATHEMATICA, the conditions (28) can be enforced algebraically in an efficient way for certain types of
sparse matrices; details may be found for example in the appendix of [22].

If one imposes the variational conditions (28) algebraically, then from our comments in the previous
section we know that algebraic multigrid methods can be viewed as multiplicative Schwarz methods, and
we can attempt to analyze the convergence rate of algebraic multigrid methods using the Schwarz theory
framework.

6.4. Convergence theory for the algebraic case

The following splitting is the basis for applying the theory of the previous sections. Note that this splitting
is well-defined in a completely algebraic setting without further assumptions.

Lemma 6.1. Given any v ∈ H =
∑J

k=0 IkHk, Ik−1Hk−1 ⊆ IkHk ⊆ H, there exists subspaces IkVk ⊆
IkHk ⊆ H =

∑J
k=1 IkVk, and a particular splitting v =

∑J
k=0 Ikvk, vk ∈ Vk, such that

J
∑

k=0

‖Ikvk‖2
A ≡ ‖v‖2

A.

The subspaces are IkVk = (Pk − Pk−1)H, and the splitting is v =
∑J

k=1(Pk − Pk−1)v.

Proof. We have the projectors Pk : H 7→ IkHk as defined in Lemma 4.2, where we take the convention that
PJ = I , and that P0 = 0. Since Ik−1Hk−1 ⊂ IkHk, we know that PkPk−1 = Pk−1Pk = Pk−1. Now, let us
define:

P̂1 = P1, P̂k = Pk − Pk−1, k = 2, . . . , J.

By Theorem 9.6-2 in [28] we have that each P̂k is a projection. (It is easily verified that P̂k is idempotent
and A-self-adjoint.) Define now

IkVk = P̂kH = (Pk − Pk−1)H = (IkA−1
k IT

k A − Ik−1A
−1
k−1I

T
k−1A)H

= Ik(A−1
k − Ik

k−1A
−1
k−1(I

k
k−1)

T )IT
k AH, k = 1, . . . , J,

where we have used the fact that two forms of variational conditions hold, namely those of equation (28)
and equation (33). Note that

P̂kP̂j = (Pk − Pk−1)(Pj − Pj−1) = PkPj − PkPj−1 − Pk−1Pj + Pk−1Pj−1.

Thus, if k > j, then
P̂kP̂j = Pj − Pj−1 − Pj + Pj−1 = 0.

Similarly, if k < j, then
P̂kP̂j = Pk − Pk − Pk−1 + Pk−1 = 0.

Thus,
H = I1V1 ⊕ I2V2 ⊕ · · · ⊕ IJVJ = P̂1H⊕ P̂2H⊕ · · · ⊕ P̂JH,

and P =
∑J

k=1 P̂k = I defines a splitting (an A-orthogonal splitting) of H. We then have that

‖v‖2
A = (APv, v) =

J
∑

k=1

(AP̂kv, v) =

J
∑

k=1

(AP̂kv, P̂kv) =

J
∑

k=1

‖P̂kv‖2
A =

J
∑

k=1

‖Ikvk‖2
A.
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For the particular splitting employed above, the weak interaction property is quite simple.
Lemma 6.2. The (strictly upper-triangular) interaction matrix Ξ ∈ L(RJ , RJ), having entries Ξij as the

smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj ,

satisfies Ξ ≡ 0 for the subspace splitting IkVk = P̂kH = (Pk − Pk−1)H.

Proof. Since P̂jPi = (Pj − Pj−1)Pi = PjPi − Pj−1Pi = Pi − Pi = 0 for i < j, we have that IjVj = P̂jH is
orthogonal to IiHi = PiH, for i < j. Thus, it holds that

(AIiui, Ijvj) = 0, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

The most difficult assumption to verify will be the following one.
Assumption 6.1. There exists SPD operators Rk and parameters 0 < ω0 ≤ ω1 < 2 such that

ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk, IkVk = (Pk − Pk−1)H ⊆ IkHk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

With this single assumption, we can state the main theorem.
Theorem 6.3. Under Assumption 6.1, the multigrid method has an error propagator which satisfies:

‖E‖2
A ≤ 1 − ω0(2 − ω1).

Proof. By Assumption 6.1, Assumption 4.5 holds. The splitting in Lemma 6.1 shows that Assumption 4.6
holds, with S0 = 1. Lemma 6.2 shows that for Ξ as in Definition 4.6, it holds that Ξ ≡ 0. The theorem now
follows by Theorem 4.13.

Remark 6.21. In order to analyze the convergence rate of an algebraic multigrid method, we now see that we
must be able to estimate the two parameters ω0 and ω1 in Assumption 6.1. However, in an algebraic multigrid
method, we are free to choose the prolongation operator Ik, which of course also influences Ak = IT

k AIk .
Thus, we can attempt to select the prolongation operator Ik and the subspace solver Rk together, so that
Assumption 6.1 will hold, independent of the number of levels J employed. In other words, the Schwarz
theory framework can be used to help design an effective algebraic multigrid method. Whether it will be
possible to select Rk and Ik satisfying the above requirements is the subject of future work.

6.5. Improved results through finite element theory

It can be shown that Assumption 6.1 holds for parameters ω0 and ω1 independent of the mesh size and
number of levels J , if one assumes some elliptic regularity or smoothness on the solution to the original
continuous problem:

Find u ∈ H1
0 (Ω) such that a(u, v) = (f, v), ∀v ∈ H1

0 (Ω).

This regularity assumption is stated as an apriori estimate or regularity inequality of the following form:
The solution to the continuous problem satisfies u ∈ H1+α(Ω) for some real number α > 0, and there exists
a constant C such that

‖u‖H1+α(Ω) ≤ C‖f‖Hα−1(Ω).

If this regularity inequality holds with α = 1 for the continuous solution, one can show the following result
by employing some results from interpolation theory and finite element approximation theory.

Lemma 6.4. There exists SPD operators Rk and parameters 0 < ω0 ≤ ω1 < 2 such that

ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk, IkVk = (Pk − Pk−1)H ⊆ IkHk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.
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Proof. See for example the proof in [46].

More generally, assume only that u ∈ H1(Ω) (so that the regularity inequality holds only with α = 0), and
that there exists L2(Ω)-like orthogonal projectors Qk onto the finite element spaces Mk, where we take the
convention that QJ = I and Q0 = 0. This defines the splitting

v =

J
∑

k=1

(Qk − Qk−1)v,

which is central to the BPWX theory [8]. Employing this splitting along with results from finite element
approximation theory, it is shown in [8], using a similar Schwarz theory framework, that

‖E‖2
A ≤ 1 − C

J1+ν
, ν ∈ {0, 1}.

This result holds even in the presence of coefficient discontinuities (the constants being independent of the
jumps in the coefficients). The restriction is that all discontinuities lie along all element boundaries on all
levels. The constant ν depends on whether coefficient discontinuity “cross-points” are present.
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[37] U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive Methods, vol. 13 of
SIAM Frontiers Series, SIAM, Philadelphia, PA, 1993.
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