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Abstract

A general framework of image-based geometric processing is presented to bridge the gap be-
tween three-dimensional (3D) imaging that provides structural details of a biological system
and mathematical simulation where high-quality surface or volumetric meshes are required.
A 3D density map is processed in the order of image pre-processing (contrast enhancement
and anisotropic filtering), feature extraction (boundary segmentation and skeletonization),
and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh gen-
eration. While the tool-chain described is applicable to general types of 3D imaging data,
the performance is demonstrated specifically on membrane-bound organelles in ventricu-
lar myocytes that are imaged and reconstructed with electron microscopic (EM) tomogra-
phy and two-photon microscopy (T-PM). Of particular interest in this study are two types
of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and
junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating
the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomy-
ocytes.
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1. Introduction

Confocal laser-scanning microscopy is be-
ing widely used to study subcellular struc-
tures at the cell-wide scale (Saetersdal et al.,
1992; Soeller and Cannell, 1999). However,
the limited resolution of light microscopy
(LM) often leaves many structural details
unclear. By contrast, electron microscopy
(EM), together with 3D tomographic recon-
struction techniques, can reveal anatomical
details of membrane systems at nanometer
resolutions. For example, in the study of
cardiomyocytes, ryanodine receptors (RyR’s)
on sarcoplasmic reticulum (SR) membrane
can be visible as individual “foot” struc-
tures in two-dimensional (2D) EM (Franzini-
Armstrong et al., 1999). However, with EM
we can only “see” a small area of the struc-
tures of interest. In addition, 3D electron to-
mographic analysis of cellular structures still
remains a demanding task, due to various
experimental and computational challenges.
While the confocal microscopy and electron
microscopy have their own pros and cons, a
combination of both techniques would cre-
ate a better view of cardiomyocytes at both
nano- and micro-scales.

Computer-aided mathematical simulation,
on the other hand, has become popular in
studying biological behaviors for its efficiency
in both time and cost and for its ability of
investigating some activities beyond the ex-
perimental limits (e.g., (Michailova et al.,
2002)). Depending on the size and nature
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of a biological system, stochastic methods
based on Monte Carlo simulation and de-
terministic methods utilizing partial differen-
tial equations (PDEs) have been the primary
techniques. A particular example that has
a strong connection to our current studies is
the mathematical simulation of calcium dy-
namics in cardiomyocytes. Computer mod-
els have been introduced to simulate Ca2+

spark generation (Izu et al., 2001; Koh et al.,
2006), Ca2+ wave initialization and propaga-
tion (Izu et al., 2006, 2001), and Ca2+ buffer-
ing and diffusion (Michailova et al., 2002).
All these studies, however, were conducted
on simplified geometries such as cylindrical
or rectangular shapes. As pointed out in (Izu
et al., 2006; Koh et al., 2006), a small geo-
metric change, even in the case the change is
uniformly applied, can greatly influence the
behaviors of Ca2+ spark generation and wave
propagation in computer simulation.

Although neither imaging nor simulation
will be addressed in detail in the present pa-
per, we predict that building 3D high-fidelity
geometric models from imaging data would
make mathematical simulation more accu-
rate, which in turn could provide us a bet-
ter understanding of the biological system be-
ing investigated. With the advancement of
EM and LM imaging technologies in visu-
alizing subcellular structures and increasing
demands on realistic geometric models from
solvers to numerically simulate biological sys-
tems, we believe that it is now timely and
significant to bridge the gap between imaging
and simulation such that the structural infor-
mation can be integrated into mathematical
models. Most 3D imaging data are currently
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given as a uniformly digitized cubic volume,
where each grid point has a density (scalar)
value. However, many numerical solvers need
surface and/or volumetric meshes as inputs
to define the domains in which the simula-
tion is conducted. The gap between imaging
and simulation, therefore, includes at least
two steps: (1) extracting features (bound-
aries or skeletons) from imaging data, and
(2) generating meshes from the features de-
tected. In addition, image pre-processing is
usually necessary for better feature extrac-
tion, when the original image is noisy or the
contrast between features and backgrounds is
low.

To this end, we present in this paper a
number of image analysis and geometric pro-
cessing algorithms that perform directly on
3D imaging data to construct high-fidelity ge-
ometric models represented by surface and/or
volumetric meshes. While most of these algo-
rithms had been detailed individually in our
previous work (Bajaj et al., 2003b; Yu and
Bajaj, 2004, 2005; Yu et al., 2008), their in-
tegration into a single pipeline is not straight-
forward and has not yet been addressed be-
fore. One of the challenges is that the fea-
tures extracted from images are represented
by zigzag boundaries or skeletons consisting
of discrete voxels. Generating high-fidelity
and smooth meshes from such features needs
careful justification, which was not previously
discussed (Yu et al., 2008). Our goal here
is to describe a general framework of image-
based geometric processing that can be appli-
cable to 3D imaging data that range in scales
across the molecular, cellular, and organ lev-
els.

To test the procedure and performance of
our computational framework, we choose to
model membrane-bound organelles that reg-
ulate calcium mobilization in ventricular my-
ocytes. Of particular interest in the cur-
rent study are two types of membrane-bound
Ca2+-regulating organelles, namely, trans-
verse tubules (T-tubules) and junctional sar-
coplasmic reticulum (jSR). T-tubules, found
in adult mammalian ventricular cardiomy-
ocytes and skeletal muscle cells (Brette and
Orchard, 2007), are deep invaginations of
plasma membranes and play a critical role
in rapid propagation of depolarization from
surface membranes to interiors of these cells.
The Ca2+-signaling process, known as Ca2+-
induced Ca2+ release (CICR), is carried out
within a number of narrow micro-domains (or
dyadic clefts) that span 10∼15 nm between
the cytoplasmic sides of T-tubular mem-
brane and adjacent jSR membrane in ven-
tricular myocytes (Bers, 2001; Fabiato, 1985;
Franzini-Armstrong et al., 1999). At a larger
scale, the cell-wide excitation and contrac-
tion are governed by the beat-by-beat global
Ca2+ change that is known to be the temporal
and spatial summation of individual Ca2+-
releasing events following the propagation of
membrane excitation through the T-tubule
network. Given these different scales, both
EM and two-photon microscopy (T-PM) im-
ages shall be utilized to extract individual
dyadic clefts and cell-wide T-tubular systems.
Numerical simulation of Ca2+ dynamics that
uses the geometric models generated by our
approaches will not be discussed in the cur-
rent paper.

We describe the technical aspects of the
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pipeline of image-preprocessing (Section 2.2),
feature extraction (2.3), and geometric mesh
modeling (2.4). In particular, anatomical
models of cardiac membrane organelles are
generated by applying the aforementioned
approaches to both electron microscopy (Sec-
tion 3.1) and light microscopy (3.2) images.
The selection of iso-surfaces is critical in de-
termining the geometry of T-tubules and jSR,
and is discussed in detail in Sections 4.1 and
4.2 respectively. Section 4.3 analyzes quanti-
tatively the spatial organization of T-tubules.
The software implementation of all the al-
gorithms employed in the current study is
briefly described in Section 4.4. While the
usefulness of the algorithmic tool-chain has
been demonstrated on a variety of biological
images in the current study, the challenges of
feature extraction and further development
of downstream mathematical simulation are
discussed in Sections 4.5 and 4.6.

2. Materials and Methods

2.1. Microscopy Imaging and 3D Reconstruc-
tion

The enhanced staining strategy of mem-
brane organelles in cardiomyocytes and the
reconstruction of 3D density maps will be
described in detail elsewhere (Hayashi et al,
manuscript in preparation). Briefly, adult
mouse hearts were perfusion-fixed through
the apex of the left ventricle with a sodium
cacodylate buffer containing 3% dextran, 3%
dextrose, and 50 mM CaCl2 in the presence
of 3% glutaraldehyde. Several 1mm-cubic tis-
sue blocks were obtained and treated with
0.8% potassium ferrocyanide and 2% osmium

tetroxide for 2 hours at 4 ◦C. They were fur-
ther incubated with 1% uranyl acetate, de-
hydrated in a graded series of ethanol solu-
tions at room temperature, and embedded
in Durcupan ACM (Electron Microscopy Sci-
ences, PA) in a vacuum oven, as described
in (Perkins et al., 1997). Sections (thickness:
500 nm) were imaged in a JEOL 4000EX in-
termediate high voltage EM system operated
at 400 kV. The tilt series images recorded
with a 4K × 4K charge-coupled device cam-
era (16 bits per pixel) were processed with
the IMOD suite (Boulder Laboratory for 3D
Electron Microscopy of Cells, University of
Colorado, Boulder, CO) to create a 3D to-
mographic map.

Adult mouse ventricles were perfusion-
fixed through the ascending aorta with
a sodium cacodylate buffer containing
4% paraformaldehyde and immediately
vibratome-sectioned to 40-80 µm thickness.
The sections were incubated with 0.01
mg/ml wheat germ hemagultinin (WGA)
conjugated with Alexa Fluor 488 at 4 ◦C and
visualized using a two-photon microscope
(RTS 2000, objective: 60x oil, NA=1.45, ex
800 nm, em 508-558, 59 nm/pixel). The 3D
maps are computed by interpolating a stack
of 2D fluorescent images in the order of their
depth indices.

2.2. Image Pre-processing

In the current study, we applied a localized
contrast enhancement method to both EM
and LM images. The method was developed
in our earlier studies (Yu and Bajaj, 2004).
The basic idea is to design an adaptive one-
dimensional transfer function, which maps a
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narrow intensity range to a broader one for
each individual voxel according to the local
average and local minimum and maximum in
a suitable neighborhood. This method can be
thought of as a localized version of the classi-
cal contrast manipulation technique (Gonza-
lez and Woods, 1992; Pratt, 1991), but it also
inherits the advantages of both the adaptive
histogram equalization (Caselles et al., 1998;
Stark, 2000) and the retinex model (Jobson
et al., 1997).

We also reduced noise in the current EM
and LM data using the bilateral pre-filtering
(Elad, 2002; Tomasi and Manduchi, 1998)
coupled to an evolution-driven anisotropic
geometric diffusion PDE (partial differential
equation) (Barash, 2002). The PDE model
is:

∂tφ− ‖∇φ‖div

(
Dσ ∇φ

‖∇φ‖
)

= 0 (1)

The efficacy of this method is based on a
careful selection of the anisotropic diffusion
tensor Dσ based on estimates of the normal
and principal curvature directions of the iso-
surface (level-set) in three dimensions (Bajaj
et al., 2003a). The diffusion coefficients along
the three independent directions of the fea-
ture boundary were determined by the local
second order variation of the intensity func-
tion at each voxel. In order to estimate con-
tinuous first and second order partial deriva-
tives, a tricubic B-spline basis was used to ap-
proximate locally the original intensity (Ba-
jaj and Yu, 2005; Jiang et al., 2003).

2.3. Feature Extraction

To extract the geometric features of ad-
joining T-tubules and jSR, we employed both
boundary segmentation and skeletonization
that were all performed directly on 3D imag-
ing data except the manual placement of seed
points on 2D slices (see below). We first
applied multi-seeded image segmentation as
described earlier (Bajaj et al., 2003b; Yu
and Bajaj, 2005). This approach is an en-
hanced variant of the well-known fast march-
ing method (Malladi and Sethian, 1998;
Sethian, 1996). In this method, a contour
is initialized from a pre-chosen seed point,
and then keeps growing until a certain stop-
ping condition is reached. Every voxel is as-
signed with a value called time (denoted by
T ), which is initially zero for seed points and
infinite for all other voxels. Repeatedly, the
voxel on the marching contour with minimal
time value is deleted from the contour and
the time values of its neighbors are updated
according to the following equation:

||∇T (x)|| · F (x) = 1 (2)

where F (x) is called speed function that is
usually determined by the gradients of the
input maps (e.g., F (x) = e−α‖∇I(x)‖, where
α > 0 and I(x) is the original map). The
neighbors, if they are updated for the first
time, are then inserted into the contour. In
order to segment multiple targets, we chose
one or more seeds for each of the objects. Ev-
ery seed initiated a contour and all contours
started to grow simultaneously and indepen-
dently. Two contours corresponding to the
same object were merged into a single one,
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while two contours belonging to different ob-
jects stopped on their common boundaries.
Seeds could be defined by the critical points
that can be detected automatically using the
gradient vector diffusion in (Yu and Bajaj,
2005). For images containing multiple fea-
tures (e.g., T-tubules and jSR), we classified
the seeds into one of those features before
they were used for segmentation. To simplify
this process, we assigned manually at least
one seed for each of the features and the rest
of the seeds were then automatically classi-
fied (Yu and Bajaj, 2005).

As an example, Fig. 1A shows a cropped
cross-section of a 3D electron tomographic
map of a ventricular cardiomyocyte (inten-
sity inverted). The image noise can be seen
more clearly in a zoomed-in region in Fig. 1B.
To segment the boundary of the T-tubule,
we first grouped all seeds into two classes,
one corresponding to the T-tubule and the
other to the rest, based on their intensity val-
ues. With a user-defined threshold and the
multi-seeded fast marching method, we then
extracted the T-tubular structure from the
EM map (the most inner curve in green in
Fig. 1C). Although the exact boundary of
jSR was not well defined in the maps due
to the high noise level, the segmented T-
tubule provided a good “reference” to dis-
tinguish between jSR and background noise.
We assumed that all seeds that were out-
side but within a certain distance (45 nm)
to T-tubules be classified as jSR seeds. The
rest of the seeds were treated as background
noise. Using the multi-seeded method and
three classes of seeds obtained, we were able
to segment out both T-tubular and jSR struc-

tures as illustrated in Fig. 1C.
As the boundary of jSR was not precisely

detected, we decided to adopt a weaker shape
descriptor, namely skeleton or median curve
(surface) to represent geometric features of
jSR. A simple definition of a skeleton can
be given by so-called grass fire model − the
boundary of an object is set on fire and the
skeleton is the loci where the fire fronts meet
and quench each other (Blum, 1967). A typi-
cal computer implementation of this model is
by iterative thinning, a process of repeatedly
peeling the voxels lying on the boundaries
of an object until the skeletons are reached
(Lam et al., 1992). The segmented boundary
of jSR (Fig. 1C) provided a good starting
point to find the skeletons. Fig. 1D shows a
cross-section of the jSR skeletons (the curves
in magenta) we extracted using the topology-
preserving iterative 3D thinning method as
described in (Palagyi et al., 2001). The same
skeleton extraction strategy was also applied
to the LM images of T-tubules, as will be
demonstrated in the Results or Fig. 4B and
C. Note that T-tubules in LM data were
treated as piece-wise 1D curves instead of 2D
surfaces as employed in EM studies.

2.4. Geometric Modeling and Mesh Genera-
tion

Both the boundaries of T-tubules and the
skeletons of jSR extracted above were repre-
sented by a number of voxels (see Fig. 1E for
zoomed-in boundaries and skeletons). How-
ever, mathematical simulation often requires
surface or volumetric meshes. We therefore
converted the voxel-based features into real-
istic 3D geometric models represented by tri-
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angular and/or tetrahedral meshes. In our
recent studies, we had developed a feature-
preserving, adaptive mesh generation and re-
finement scheme, in which the inputs can be
one of three types: a molecule (represented
by a list of atoms), a scalar 3D volume, or
a user-defined triangular surface mesh (Yu
et al., 2008). However, neither the segmented
T-tubules nor the skeletonized jSR in the
aforementioned EM or LM studies were in
any of these three forms. In the following
we shall explain how to convert the extracted
boundary or skeletal information into pseudo-
molecular models and then generate meshes
from such models.

The boundary voxels of the segmented T-
tubules formed a zigzag surface (Fig. 1E). In
order to get a smooth boundary, we placed a
sphere with a fixed radius of 3.5 nm (equal to
one voxel size) on each voxel about 7.0 nm (or
two-voxel size) away from the boundary (as
illustrated by blue circles inside the T-tubule
in Fig. 1F). All these spheres were treated
as atoms, constituting a so-called pseudo-
molecular model, which we used as an input
in our mesh generation toolchain. In a simi-
lar way, we built a pseudo-molecule from the
skeletons of jSR by placing a sphere on each
of the voxels on the skeletons as illustrated by
yellow circles on the jSR in Fig. 1F. Given
a molecule, we first generated a 3D density
map by treating each atom as a Gaussian-
like smoothly decaying scalar function in <3

(Blinn, 1982; Duncan and Olson, 1993; Grant
and Pickup, 1995). The molecular surface
was then approximated by appropriate level
sets (or isocontours) of the Gaussian function

(Zhang et al., 2006) as follows:

F (x) =
N∑

i=1

e
Bi(

‖x−xi‖2
r2
i

−1)
= T0, (3)

where the negative parameter Bi is called
blobbyness that controls the spread of elec-
tron density of each atom. We usually treat
the blobbyness as a constant parameter (de-
noted by B0) for all atoms. xi and ri are the
center and radius of the ith atom. T0 is the
iso-value corresponding to the molecular sur-
face. We shall discuss in Section 4 how to
choose appropriate iso-values to extract sur-
faces (membranes) of T-tubules and jSR.

The surface triangulation of 3D density
maps was constructed by the marching cube
method (Lorensen and Cline, 1987). The
quality of the meshes was then improved by
moving the vertices while retaining the sharp
features and smoothness on the original sur-
faces as described in (Yu et al., 2008). The
surface meshes was also selectively coarsened
or refined, meaning that the regions of less
interest were sparsely meshed such that the
size of the resulting mesh was small enough
for numerical solvers to handle big systems.
The volumetric (tetrahedral) meshes were
constructed from the post-processed surface
meshes using the constrained Delaunay trian-
gulation as implemented in Tetgen (Si, 2004;
Si and Gartner, 2005). In (Yu et al., 2008),
we had shown that meshes generated by this
toolchain had much higher quality than those
without quality improvement or meshes gen-
erated by other tools such as MSMS (San-
ner et al., 1996). Similar sphere-packing and
mesh generation techniques were also applied
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to LM images, and T-tubular network struc-
tures were modeled with high-quality surface
and volumetric meshes.

3. Results

3.1. Modeling T-tubules and jSR from EM
Data

A tomographic EM reconstruction (den-
sity map) was obtained from the mouse my-
ocardium, in which the staining contrasts of
T-tubules and SR were selectively enhanced.
The 3D density map was first pre-processed
using the contrast enhancement and noise re-
duction methods, followed by the extractions
of T-tubules and jSR using the segmenta-
tion and skeletonization approaches, as de-
scribed in the Methods. Finally high qual-
ity meshes were generated from the extracted
boundaries of T-tubules and skeletons of jSR
and visualized using the UCSF Chimera tool
(Pettersen et al., 2004). Fig. 2A shows the
extracted triangular surface mesh of the T-
tubule corresponding to the features shown
in Fig. 1. The mesh in the front was cut out
so that the mesh behind is visible from inside.
The mesh near the dashed rectangle in Fig.
2A is enlarged and shown in Fig. 2B, from
which we can clearly see the quality of the
triangular mesh generated using our meshing
toolchain. Fig. 2C shows the mesh of jSR ex-
tracted from the EM images using the skele-
tonization approach. The estimation of the
thickness of jSR will be discussed in Section
4.2. From this 3D model of jSR, we can see
that jSR covers T-tubules irregularly. A close
view of the mesh quality is shown in Fig. 2D.
Fig. 2E shows the extracted T-tubule, jSR,

together with one cross-section of the original
density EM map.

The feature extraction and geometric mod-
eling techniques applied to the current study
demonstrate that there are significant varia-
tions in the size, shape, and orientation of
dyads, the anatomical and functional cou-
plings between T-tubules and jSR, visualized
by EM tomography. In the particular model
shown in Fig. 3A-D, the T-tubule associated
with the dyad is connected to the non-dyadic
region of T-tubules with a neck (see Fig. 3A
and D for two views). The dyadic and non-
dyadic T-tubules shown here have different
orientations and shapes, and the neck con-
necting both T-tubules appears to be sig-
nificantly thinner than other regions of the
T-tubules. A great amount of jSR extends
from the dyad to cover partially the neck.
The cross-section of T-tubules in this model
demonstrates an elliptic shape instead of a
circular one as seen in Fig. 2. The triangu-
lated surface mesh with the front portion cut
out is shown in Fig. 3B and a closer view of
the dyadic cleft (indicated by the dashed rect-
angle) is given in Fig. 3C. Another example
of the feature extraction and mesh generation
is shown in Fig. 3E, where two T-tubules
are close to each other and surrounded by
individual jSR. Again, these two T-tubules
demonstrate a notable difference in shape and
size. An interesting observation from this ex-
ample is that T-tubules are not always sepa-
rated by a regular distance but instead they
could get very close yielding an irregular 3D
distribution in cardiomyocytes.
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3.2. 3D T-tubular Network from Light Mi-
croscopy Images

With a combination of image pre-
processing, skeleton extraction, and mesh
generation, we have also successfully con-
structed realistic 3D T-tubular systems
from the T-PM images of mouse ventricular
myocytes. We tested our algorithms and
software tools on a volume of 21.1 µm
× 10.7 µm × 2.4 µm, cropped from the
T-PM data we collected. This sub-volume
was first pre-processed by our 3D contrast
enhancement and noise reduction algorithms
as discussed in Section 2.2. Fig. 4A and
B show an example of T-PM images of
T-tubular structures of mouse ventricular
myocytes, corresponding respectively to
the cross-section of the original image and
the image after contrast enhancement and
noise reduction. It is obvious that the
contrast enhancement, coupled with the
image smoothing, significantly improves the
image quality, making the subsequent feature
extractions (skeletonization, in particular)
much easier and more reliable.

Fig. 4C and D show the extracted skele-
tons of T-tubules using the iterative thinning
approach as outlined in Section 2.3. Note
that each branch is composed of a num-
ber of very short “line segments” with sig-
nificantly varying lengths. From both pic-
tures, we can see that the skeletons provide
us very useful information on the 3D topol-
ogy of the T-tubular network, although they
do not contain any thickness information re-
garding the T-tubules. However, we can “re-
cover” the thickness of T-tubules and build
high-quality geometric surface meshes using

the sphere-packing approach. Specifically, we
place a number of spheres with a fixed radius
along the extracted skeletons of T-tubules,
with one sphere centering on each line seg-
ment. These spheres are then treated as a
pseudo-molecule and fed into our mesh gen-
eration toolchain (Yu et al., 2008), to thicken
T-tubular skeletons, assuming their diame-
ter is roughly 250 nm, based on the pre-
vious experimental observation (Soeller and
Cannell, 1999). The “thickened” T-tubules
are represented by triangular surface meshes
(Fig. 4E and F). Because the line segments
constituting the skeletons of T-tubules often
vary in length, the spheres along skeletons
are non-equally distributed, resulting in non-
uniformly “thickened” T-tubules. This prob-
lem, however, can be fixed by equally placing
spheres along the skeletons. Another factor
that causes the non-uniform thickness of “re-
constructed” T-tubules is due to the vary-
ing curvature of skeletons from one region
to others. Therefore, the variation of thick-
ness shown in the current mesh model does
not represent biologically the actual T-tubule
anatomy, but it does provide an approximate
model for future simulation.

While triangular surface meshes can be di-
rectly used in mathematical simulation using
boundary element methods to model, for ex-
ample, the propagation of membrane excita-
tion along T-tubular branches, it is also in
great demand to construct volumetric tetra-
hedral meshes and use finite element meth-
ods to simulate various biological activities.
This strategy is especially useful for model-
ing Ca2+ mobilization within T-tubules and,
perhaps more interestingly, simulating Ca2+
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buffering and diffusion originated from T-
tubules into the cytosol. To this end, we uti-
lize the surface triangulation as seen in Fig.
4E to generate the tetrahedral meshes (Fig.
4G and H) using the constrained Delaunay
triangulation as implemented in Tetgen (Si,
2004; Si and Gartner, 2005) and incorporated
into our meshing tool (Yu et al., 2008). Here
a large sphere is used to mimic the cell sur-
face membrane and serve as a boundary for
future simulation. The tetrahedral mesh is
generated between this bounding sphere and
the extracted T-tubular triangular mesh as
shown in Fig. 4G. A close view of the area
near T-tubules is shown in Fig. 4H, where
T-tubular structures near the center of the
picture (colored in cyan) are empty and sur-
rounded by adaptive tetrahedra.

4. Discussion

4.1. Iso-value Estimation of T-tubules

In Section 2.4, we described how to build
a pseudo-molecule given the extracted T-
tubular structure, and how to construct
an initial surface mesh from the Gaussian-
blurred volume. The unanswered question is:
how to find an appropriate iso-surface that
matches the segmented T-tubule as well as
possible? Apparently the isosurface is de-
pendent on the iso-value and blobbyness cho-
sen (we assume that the position and radius
of each atom are known). In (Blinn, 1982),
Blinn suggested that the default iso-value be
set as 1, and the surfaces can change by ad-
justing the blobbyness B0. Following our pre-
vious work (Yu et al., 2008), we could also fix
the blobbyness B0 (set as −0.5, for example)

and adjust the iso-value to find the approxi-
mate isosurface.

Due to the variation of surface curvatures
and non-uniform distribution of “atoms” near
the boundary grids, it is difficult, if not im-
possible, finding an analytically represented
iso-value that gives rise to an exactly matched
surface. Apparently the iso-surface extracted
using the sphere-packing method described
above tends to be closer to the true surface at
convex areas and farther away at concave ar-
eas. For simplicity, we consider only a planar
surface region where the spheres or “atoms”
are distributed uniformly in a 2D rectangular
grid spaced by a unit of d in both X and Y
directions. The question now becomes: given
such a list of spheres with a constant radius
(denoted by r0) and a fixed blobbyness B0,
what is the value of F (x) at a point that is
away from the plane by a distance of h, or in
particular what is the value of F (0, 0, h)? We
can show that (See Appendix A for details):

F (0, 0, h) ≈ − πr2
0

B0d2
e

B0
r2
0

(h2−r2
0)

. (4)

This is actually the threshold or iso-value
that we use to extract initial surface meshes.
For example, we know that h = 7.0 nm and
r0 = 3.5 nm for the EM maps we considered
in Section 3.1. The spacing distance between
neighboring atoms is approximated by one-
voxel size or 3.5 nm. The default blobbyness
is set −0.5, as usually used in our molecu-
lar mesh generator. All these parameters to-
gether give rise to an iso-value of 1.402, which
is the one we used to extract the initial sur-
face from the segmented T-tubules as seen in
Fig. 2 and Fig. 3.
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From the extracted geometries of T-
tubules, we can calculate their volumes,
which in turn can be used to validate the
iso-value estimation described above. The
volume of a T-tubule can be calculated in
two ways: from the voxels segmented or from
the surface mesh generated. In the example
shown in Fig. 1 or Fig. 2, the number of vox-
els corresponding to the segmented T-tubule
is 66,176. Note that each voxel is equivalent
to a cube of 3.5×3.5×3.5 nm3, which yields
a total volume of 2,837,296 nm3 for this par-
ticular T-tubule. On the other hand, we can
also calculate the volume enclosed by the ex-
tracted surface mesh (Fig. 2A). From the
tetrahedral mesh inside this surface, we com-
pute the sum of the volumes of all the tetrahe-
dra and get a total volume of 2,867,207 nm3.
Compared to the volume estimated from the
segmented voxels, the volume calculated from
the surface mesh is about 1.05% larger. This
analysis quantitatively validates the iso-value
determination as discussed above.

4.2. Iso-value Estimation of jSR

The estimation of iso-value for jSR is a
little more complicated due to the lack of
precise boundaries. However, we do have
fairly accurate skeletons for jSR as shown
in Fig. 1D. Given the segmented T-tubules,
we can estimate the average distance from
the skeletons of jSR to the boundaries of
the corresponding T-tubules. Previous stud-
ies (Bers, 2001; Fabiato, 1985; Franzini-
Armstrong et al., 1999; Langer and Peskoff,
1996) have suggested that the dyadic clefts
span by an average distance of 10∼15 nm be-
tween the membranes of T-tubules and neigh-

boring jSR. We shall take the median of this
range, which is 12.5 nm. For the example
shown in Fig. 1, the average distance from
skeletons of jSR to the nearby T-tubule is
about 20.9 nm, which implies that the jSR
surface should be away from the skeletons
roughly by a distance of 20.9−12.5 = 8.4
nm. Note that the iso-surface of jSR, un-
like that of T-tubules, is generated from a
list of spheres lying along a one-dimensional
curve. Therefore, we need a slightly different
approximation of the iso-value for curvilinear
features (see Appendix B for details):

F̄ (0, 0, h) ≈ e
B0
r2
0

(h2−r2
0)

(

√
πr2

0

−B0d2
). (5)

The parameters here are basically the same
as those for T-tubules as discussed in Section
4.1, except that h here should be set as 8.4.
With these parameters, Equation 5 yields an
iso-value of 0.582, which is a little smaller
than that for T-tubules.

Because the average distance from the
skeletons of jSR to the T-tubule is about 20.9
nm, we can approximate the thickness of jSR
as follows: (20.9−12.5)×2 = 16.8 nm, where
12.5 nm is the average spanning distance of
the dyadic clefts we assumed. On the other
hand, we can also estimate the thickness of
jSR based on its volumes. The total volume
of jSR is 1,582,942 nm3, estimated from the
tetrahedralization from the surface mesh in
Fig. 2B. In addition, the total number of
skeleton points (see yellow spheres on the jSR
in Fig. 1F for illustration) is 7, 981. On av-
erage, each of these points occupies a sur-
face area of 3.5×3.5 = 12.25 nm2. There-
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fore, the average thickness of SR can be es-
timated as 1,582,942/(7981×3.5×3.5) = 16.2
nm. This is close to the thickness estimated
from the average spanning distance of the
dyadic clefts, and confirms again that our iso-
value determination and hence the iso-surface
extracted are reasonably accurate.

4.3. Quantitative Analysis of Cell-Wide T-
tubular Systems

Although the main goal of the present
paper is to generate meshes from imaging
data, the feature extraction alone may also
be used to analyze the spatial distribution of
T-tubular structures. Several recent studies
have linked the T-tubule disorganization to
the pathogenesis of heart failure (see (Brette
and Orchard, 2007) for a review), suggest-
ing that changes in the length variations of
T-tubular branches might cause the desyn-
chronization of CICR events. Therefore,
achieving accurate geometric analysis of T-
tubules in 3D space is significant to under-
stand the structural contribution of mem-
brane organelles and their changes to the con-
tractile dysfunction of cardiomyocytes. From
the extracted skeletons of T-tubules as seen
in Section 3.2 and Fig. 4, we can analyze the
branch lengths and orientations of T-tubules.
As an example, we again cropped out a sub-
volume from the T-PM data but doubled the
size of the volume to 21.1 µm × 10.7 µm ×
5.0 µm near the center of the cell. In our
skeleton extraction method, each branch is
represented by a number of short line seg-
ments. The length of the segments on average
is about 70 nm, close to the pixel size (60 nm)
in our experimental data. The length of each

branch is measured by adding up the lengths
of all segments lying on that branch. The
orientation distribution of T-tubules is esti-
mated by the orientation of each short line
segment on the skeletons of T-tubules with
respect to the longitudinal axis of the cell.

Fig. 5A shows the orientation distribution
of T-tubules by percentages. The orientation
of each line segment is represented by the an-
gle between the segment and the longitudinal
axis of the cell. Therefore, 90◦ corresponds to
line segments parallel to the transverse plane
of the cell. From the distribution shown in
Fig. 5A, we can see that ∼ 60% of the T-
tubules in this particular example have ori-
entations roughly in the transverse direction
of the cell (corresponding to the three bars on
the right in Fig. 5A). Since most T-tubules
having such orientations are lying on or near
the Z-disks of ventricular myocytes, our esti-
mation of T-tubular orientations agrees well
with previous studies (Soeller and Cannell,
1999). However, T-tubules can be oriented
in arbitrary directions, forming a complicated
three-dimensional network. In order to study
how densely the T-tubules are connected to
each other, we also calculated the histogram
of T-tubular branch lengths as shown in Fig.
5B. There is a sharp increase from 0.25 µm
to 0.75 µm, which then decreases rapidly to
∼5.0 µm. The average length of T-tubular
branches for this example is about 1.15 µm,
as indicated by the arrow in Fig. 5B. The
median length is about 1.06 µm. Note that
the anisotropy of the original fluorescent data
distribution does not seem to affect our geo-
metric analysis much because of the skeleton
representation used.
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4.4. Software Implementation and Resource

All the algorithms discussed here have been
implemented in a combination of C and C++
programming languages. While the soft-
ware packages developed can be compiled
and run on a variety of computer operat-
ing systems, all results shown in the Re-
sults were generated on a Linux machine with
a single processor, and the execution time
for each of the algorithms varies from a few
seconds up to one minute. We have made
most of the software tools implementing these
algorithms available online for free down-
loading under certain agreements. Specif-
ically, the individual tools of image pre-
processing (contrast enhancement and noise
filtering) and feature extraction (segmenta-
tion and skeletonization) can be downloaded
from the Computational Visualization Cen-
ter (http://cvcweb.ices.utexas.edu/software/
applications.php) at The University of Texas
at Austin. The mesh generation tool, named
Geometry-preserving Adaptive Mesher (or
GAMer) (Yu et al., 2008), will be released
as part of the finite element toolkit FETK
(www.fetk.org) (Holst, 2001) developed at
The University of California, San Diego.
Some of the image pre-processing and feature
extraction code had been incorporated into a
fast and scalable visualization tool called Vol-
Rover (cvcweb.ices.utexas.edu/software).

4.5. Automatic Segmentation: the Chal-
lenges and Future Work

Generally speaking, the problems of im-
age pre-processing (noise filtering and con-
trast enhancement) and geometric modeling
(mesh generation) are well-posed, meaning

that the performance of the corresponding al-
gorithms is often guaranteed (e.g., noise re-
duced, contrast enhanced, or mesh quality
improved after each iteration of processing).
However, the feature extraction from pixel-
based gray-scale images is much harder to
deal with. A small perturbation of image
intensities may result in completely different
features (boundaries or skeletons). In other
words, the result of feature detection is very
sensitive to the noise in the original image.
In the framework described in Section 2, the
skeletonization is based on the segmented (bi-
nary) images and hence easier to “predict”
the results. Therefore, the real bottleneck
of the image-based geometric modeling is the
boundary segmentation from a gray-scale im-
age. This is however not surprising − image
segmentation has always been one of the fun-
damental but difficult problems in image pro-
cessing and analysis.

Compared to the watershed method (Volk-
mann, 2002) or the traditional fast marching
method (Sethian, 1996), our segmentation
approach utilizes multiple sets of seed points
and accordingly a number of contours com-
pete with each other and deform to the most
agreeable boundaries. The accuracy of the
segmentation is generally affected by two im-
portant factors: the noise level and the man-
ual selection of some seed points by the user.
The image pre-processing can significantly re-
duce the noise as shown in Fig. 1C. How-
ever, some structures may be permanently
“damaged” during the specimen preparation,
imaging, or 3D reconstruction, and cannot be
“recovered” by the pre-processing techniques.
For example, some jSR on the right side of
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the T-tubule in Fig. 1C forms an “island”
and the contours from the main jSR cannot
reach there. This problem may be resolved by
placing one (or more) new seed point within
the “island”. In general, more sophisticated
seed selection would result in better segmen-
tation but require more manual work from
the user. In our future work we will develop a
user-friendly graphical interface, in which the
user can interactively select seed points, run
the segmentation, and visualize the results.
When an input image has a high signal-to-
noise ratio, it is also possible to select and
classify the seeds automatically, thereby mak-
ing the image-based geometric modeling fully
automated. The multi-seeded segmentation
approach can also be applied to images with
a number of distinctive components (such as
multilayered structures). One such example
had been demonstrated in our recent work on
subunit segmentation of viruses and ribosome
(Baker et al., 2006; Yu and Bajaj, 2005).

4.6. Multiscale Simulation of E-C Coupling
in Hearts

Although it is beyond the scope of the
present paper, the ultimate goal of the image-
based geometric modeling is realistic simula-
tion of biological systems using various math-
ematical models. The simulation using the
geometric models of T-tubules and jSR is be-
ing conducted at two levels. One is within a
single dyad (or calcium release unit) from EM
data to simulate the calcium-induced calcium
release (CICR). Due to the random behaviors
of calcium channelling and diffusion, and rel-
atively small number of calcium ions involved
in a single dyad, stochastic methods are more

suitable at this scale by tracking the posi-
tion of every single calcium ion. Being used
for this purpose is the MCell tool (Stiles and
Bartol, 2001), a Monte Carlo based stochastic
simulation package developed at the Salk In-
stitute (www.mcell.cnl.salk.edu). The other
simulation problem of our interest is the
global calcium dynamics at the cellular level,
namely, modeling how calcium concentration
changes in the whole cell or in a segment
of the cell as a result of diffusion, buffering
and re-uptake of calcium. At this scale, the
stochastic behaviors become much less sig-
nificant and hence a better way is to use a
set of partial differential equations (PDE’s)
to describe the continuous change of calcium
concentration in the cell. The FETK simula-
tion tool (www.fetk.org) will be used to nu-
merically solve the equations. Typically these
numerical simulations can be conducted on a
single processor within a reasonable time, but
calculation of calcium diffusions may need
more advanced parallel computation depend-
ing on the sizes of domains (meshes).

While the methodology described in the
present paper primarily targets structures
with detectable boundaries, non-membrane
structures or structures with extremely noisy
boundaries may still be identified and rep-
resented by their mass centers (Yu and Ba-
jaj, 2003). For example, we can detect the
centers of ryanodine receptors (RyR’s), given
that their accurate boundaries may be diffi-
cult to extract in 3D reconstructed EM maps.
These centers, together with the jSR mem-
brane detected, can be used to determine the
distribution (both locations and orientations)
of RyR’s. We can then build a more realistic
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3D model of calcium release units by fitting
the cryo-EM map of RyR’s (Liu et al., 2005;
Samso et al., 2005; Serysheva et al., 2007)
into the electron tomographic map at a rel-
atively lower resolution. On the other hand,
the approaches and algorithmic details can
also be extended to medical images such as
CT-scanned heart data, making it possible to
investigate structural analysis and functional
simulation of heart failures from sub-cellular
to whole organ levels.
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Appendix A: Iso-value Estimation for
Planar Features

Let us assume that all the grids on a two-
dimensional (or X-Y) plane be uniformly oc-

cupied by atoms and all the atoms have a
fixed radius r0 and a constant blobbyness B0.
From Equation (3) we know that the function
value of F (x) at (0, 0, h) can be written as:

F (0, 0, h) =
∞∑

i,j=−∞
e

B0(
(di)2+(dj)2+h2

r2
0

−1)
(6)

= e
B0
r2
0

(h2−r2
0)

∞∑
i=−∞

e
B0d2

r2
0

i2
∞∑

j=−∞
e

B0d2

r2
0

j2

.

(7)
Note that:

∫ ∞

−∞
e−ax2

=

√
π

a
. (8)

Therefore (7) can be approximated by:

F (0, 0, h) ≈ e
B0
r2
0

(h2−r2
0)

(

√
πr2

0

−B0d2
)(

√
πr2

0

−B0d2
).

(9)

= − πr2
0

B0d2
e

B0
r2
0

(h2−r2
0)

. (10)

Equation (10) can be used to approximate the
iso-value of the isosurface that is away from
the layer of spheres by a distance of h. The
error of such an approximation depends on
the curvature of the local area on the surface
and the way how the spheres are packed on
the surface.

Appendix B: Iso-value Estimation for
Curvilinear Features

We assume that the curve be a straight line
and all the grids on that line be uniformly oc-
cupied by atoms on a one-dimensional (or X)
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axis. Again, we assume that all the atoms
have a fixed radius r0 and a constant blobby-
ness B0. Similar to Appendix A, we can es-
timate the function value of F̄ (x) at (0, 0, h)
as:

F̄ (0, 0, h) =
∞∑

i,j=−∞
e

B0(
(di)2+h2

r2
0

−1)
(11)

= e
B0
r2
0

(h2−r2
0)

∞∑
i=−∞

e
B0d2

r2
0

i2

. (12)

≈ e
B0
r2
0

(h2−r2
0)

(

√
πr2

0

−B0d2
). (13)

Equation (13) is the approximation to the
iso-value in case of the curvilinear structures.
The error of such an approximation mainly
depends on the local curvature of the curve.
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Figure 1: Illustrations of image analysis and geometric modeling. (A) A 3.5nm-thick slice of the electron
tomogram of a ventricular cardiomyocyte. This small region, showing a single T-tubule (in the middle)
surrounded by junctional sarcoplasmic reticulum (jSR), was taken from a large 3D reconstructed EM map.
The size of this sub-volume is 101× 91× 51 voxels (3.5 nm/voxel). Due to the staining methods specifically
used in the current study, T-tubular structures in the EM maps are significantly “darker” than SR and
background noise (Note: intensity shown here has been inverted). (B) A close look at the image in the
rectangular area indicated in (A). (C) The T-tubule and jSR are segmented using an automatic algorithm.
(D) The skeletons of jSR (the curves in magenta) are automatically extracted based on the segmented jSR
from (C). (E) A close look at the skeletons and boundaries in the same area indicated in (A). (F) Schematic
illustration of the sphere-packing method to create pseudo-molecules of T-tubules and jSR. Scale bars: 50
nm in (A,C,D,F) and 10 nm in (B,E).
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Figure 2: Feature extraction and mesh generation on the EM data shown in Fig.1. (A) High-quality
triangular surface mesh is generated from the auto-segmented T-tubule. The mesh in the front is cut out
so that we can clearly see the interior of the mesh. (B) A close view of the surface mesh in the rectangular
area as indicated in (A). (C) The computed surface mesh for jSR based on its skeletons. (D) A close view of
the rectangular area in (C). (E) The T-tubule and jSR are put together with a cross section of the original
map. Scale bar in (E): 50 nm.
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Figure 3: More examples of geometric modeling from EM imaging data. (A) The surfaces rendering of
the extracted T-tubules (the thick structures in cyan) surrounded by jSR (the thin structures in yellow).
(B) The surface mesh representation with the front part cut out. (C) A close view of the dyadic cleft as
indicated by the dashed rectangle in (C). (D) Another view of the same model as shown in (A). (E) Another
example of geometric modeling of T-tubules (the thick structures in cyan) and the surrounding jSR (the
thin structures in yellow). A cross section of the original image is shown together with the models. Scale
bar in (E): 50 nm.
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Figure 4: Illustrations of image pre-processing and geometric modeling of T-tubules from light microscopic
images. (A) The original T-PM image (a small portion of the cross-section). (B) The image after contrast
enhancement and noise reduction. (C) The skeletons extracted directly from the 3D LM images. All adjacent
branches have been colored differently to distinguish between them, although the color scheme used does not
convey any biological information. A close view of the rectangular region is shown in (D) with a small amount
of rotation to the left to demonstrate the 3D network in the depth direction. (E) The surface triangulation
is constructed based on the skeletons using the pseudo-molecule approach. The model is rotated to the left
by about 45◦. The rectangular region, with triangulation details, is enlarged in (F). (G) and (H) show the
tetrahedral mesh bounded by the surface triangulation of (E). A large artificial bounding sphere (yellow in
(G)) will serve as the domain boundary to solve simulation problems. Note that the T-tubular structures
(in cyan) near the center in (H) are empty, and the tetrahedral meshes exist only between T-tubules and
the bounding sphere. The region in (H) roughly corresponds to that indicated by the arrow in (C). Scale
bars in (A,B): 2 µm.
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Figure 5: Quantitative analysis of T-tubular systems using T-PM images. (A) The distribution of the
orientation of T-tubules, which was calculated as the angle between each short line segment on the skeletons
and the long axis of the cell. Most T-tubules have orientations roughly perpendicular to the longitudinal
axis of the cell, implying that a majority of T-tubules lie on or near the Z-disks of ventricular myocytes.
However, T-tubules can be in arbitrary orientation, forming a complicated three-dimensional network. (B)
The distribution of T-tubular branch lengths. There is a sharp increase from 0.25 µm to 0.75 µm, which
then decreases rapidly to ∼5.0 µm. The average branch length of T-tubules in cardiomyocytes is about 1.15
µm, as indicated by the arrow. The median length is about 1.06 µm. The estimation of branch lengths
indicates how densely the T-tubules are connected to each other.
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