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SUMMARY

A preconditioning theory for Schwarz methods is presented. The theory establishes sufficient
conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive def-
inite preconditioners. It allows for the analysis and use of non-variational and non-convergent
linear methods as preconditioners for conjugate gradient methods, and it is applied to domain
decomposition and multigrid. This paper illustrates why symmetrizing may be a bad idea for
linear methods. Numerical examples are presented for a test problem.

INTRODUCTION

In this paper, we consider additive and multiplicative Schwarz methods and their acceler-
ation with Krylov methods, for the numerical solution of self-adjoint positive definite (SPD)
operator equations arising from the discretization of elliptic partial differential equations. The
standard theory of conjugate gradient acceleration of linear methods requires that a certain
operator associated with the linear method—the preconditioner—be symmetric and positive
definite. Often, however, as in the case of Schwarz-based preconditioners, the preconditioner
is known only implicitly, and symmetry and positive definiteness are not easily verified. Here,
we try to construct natural sets of sufficient conditions that are easily verified and do not re-
quire the explicit formulation of the preconditioner. More precisely, we derive conditions for
the constituent components of MG and DD algorithms (smoother, subdomain solver, trans-
fer operators, etc.), that guarantee symmetry and positive definiteness of the preconditioning
operator which is (explicitly or implicitly) defined by the resulting Schwarz method. We exam-
ine the implications of these conditions for various formulations of the standard DD and MG
algorithms.

The outline of the paper is as follows. We begin in the next section by reviewing basic linear
methods for SPD linear operator equations and by examining Krylov acceleration strategies.
A simple lemma will illustrate why symmetrizing may be a bad idea for linear methods. In
the third and fourth sections, we analyze multiplicative and additive Schwarz preconditioners.
We develop a theory that establishes sufficient conditions for the multiplicative and additive
algorithms to yield SPD preconditioners. This theory is used to establish sufficient conditions for
multiplicative and additive DD and MG methods, and it allows for analysis of non-variational
and even non-convergent linear methods as preconditioners. In the final section, we report
results of numerical experiments with finite-element-based DD and MG methods applied to a
difficult test problem with discontinuous coefficients to illustrate the theory and conjectures.

1This work was supported in part by the NSF under Cooperative Agreement No. CCR-9120008.
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LINEAR ITERATIVE METHODS

Notation. Let H be a real finite-dimensional Hilbert space equipped with the inner-product
(·, ·) inducing the norm ‖·‖ = (·, ·)1/2. The adjoint of a linear operator A ∈ L(H,H) with respect
to (·, ·) is the unique operator AT satisfying (Au, v) = (u, AT v) , ∀u, v ∈ H. An operator A is
called self-adjoint or symmetric if A = AT ; a self-adjoint operator A is called positive definite or
simply positive if (Au, u) > 0 , ∀u ∈ H, u 6= 0. If A is self-adjoint positive definite (SPD), then
the bilinear form (Au, v) defines another inner-product, which we denote as (·, ·)A. It induces

the norm ‖ · ‖A = (·, ·)
1/2

A .
The adjoint of an operator M with respect to (·, ·)A, the A-adjoint, is the unique operator

M∗ satisfying (Mu, v)A = (u, M∗v)A , ∀u, v ∈ H. From this definition it follows that

M∗ = A−1MT A . (1)

M is called A-self-adjoint if M = M ∗ and A-positive if (Mu, u)A > 0 , ∀u ∈ H, u 6= 0.
If N ∈ L(H1,H2), then NT ∈ L(H2,H1) is defined as the unique operator relating the

inner-products in H1 and H2 as follows:

(Nu, v)H2
= (u, NTv)H1

, ∀u ∈ H1 , ∀v ∈ H2 . (2)

Since it is usually clear from the arguments which inner-product is involved, we shall often drop
the subscripts on inner-products (and norms) throughout the paper.

We denote the spectrum of an operator M as σ(M). The spectral theory for self-adjoint
linear operators states that the eigenvalues of the self-adjoint operator M are real and lie in
the closed interval [λmin(M), λmax(M)] defined by the Raleigh quotients:

λmin(M) = min
u6=0

(Mu, u)

(u, u)
, λmax(M) = max

u6=0

(Mu, u)

(u, u)
.

Similarly, if an operator M is A-self-adjoint, then its eigenvalues are real and lie in the interval
defined by the Raleigh quotients generated by the A-inner-product. A well-known property is
that if M is self-adjoint, then the spectral radius of M , denoted as ρ(M), satisfies ρ(M) = ‖M‖.
This property can also be shown to hold in the A-norm for A-self-adjoint operators.

Lemma 1. If A is SPD and M is A-self-adjoint, then ρ(M) = ‖M‖A.

Linear methods. Given the equation Au = f, where A ∈ L(H,H) is SPD, consider the
preconditioned equation BAu = Bf , with B ∈ L(H,H). The operator B, the preconditioner,
is usually chosen so that the linear iteration

un+1 = un − BAun + Bf = (I − BA)un + Bf, (3)

has some desired convergence properties. The convergence of (3) is determined by the properties
of the so-called error propagation operator, E = I − BA.

We now state a series of simple lemmas that we shall use repeatedly in the following sections.
Their short proofs and further references can be found in [5].
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Lemma 2. If A is SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Lemma 3. If A is SPD, then E is A-self-adjoint if and only if B is self-adjoint.

Lemma 4. If A and B are SPD, then BA is A-SPD.

Lemma 5. If A is SPD and B is self-adjoint, then ‖E‖A = ρ(E).

Lemma 6. If E∗ is the A-adjoint of E, then ‖E‖2
A = ‖EE∗‖A.

Lemma 7. If A and B are SPD and E is A-non-negative, then ‖E‖A < 1.

Lemma 8. If A is SPD and B is self-adjoint, and E is such that

−C1(u, u)A ≤ (Eu, u)A ≤ C2(u, u)A, ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then ρ(E) = ‖E‖A ≤ max{C1, C2}.

Lemma 9. If A and B are SPD, then Lemma 8 holds for some C2 < 1.

The following lemma illustrates why symmetrizing is a bad idea for linear methods. It
exposes the convergence rate penalty incurred by symmetrization of a linear method.

Lemma 10. For any E ∈ L(H,H), it holds that:

ρ(EE) ≤ ‖EE‖A ≤ ‖E‖2
A = ‖EE∗‖A = ρ(EE∗).

Proof. The first and second inequalities hold for any norm. The first equality follows from
Lemma 6, and the second follows from Lemma 1.

Note that this is an inequality not only for the spectral radii but also for the A-norms of
the nonsymmetric and symmetrized error propagators. The lemma illustrates that one may
actually see the differing convergence rates early in the iteration as well.

Krylov acceleration of SPD linear methods. The conjugate gradient method was developed
by Hestenes and Stiefel [4] as a method for solving linear systems Au = f , with SPD operators
A. In order to improve convergence, it is common to precondition the linear system by an SPD
preconditioning operator B ≈ A−1, in which case the generalized or preconditioned conjugate
gradient method results. Our goal in this section is to briefly review some relationships between
the contraction number of a basic linear preconditioner and that of the resulting preconditioned
conjugate gradient algorithm.

We start with the well-known conjugate gradient contraction bound [3]

‖ei+1‖A ≤ 2



1 −
2

1 +
√

κA(BA)





i+1

‖e0‖A = 2 δi+1
cg ‖e0‖A,

where κA(BA), the A-condition number of BA, is the ratio of extreme eigenvalues of BA.
The following result gives a bound on the condition number of the operator BA in terms

of the extreme eigenvalues of the error propagator E = I −BA; such bounds are often used in
the analysis of linear preconditioners (cf. Proposition 5.1 in [9]).
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Lemma 11. If A and B are SPD and E is such that

−C1(u, u)A ≤ (Eu, u)A ≤ C2(u, u)A, ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then the above must hold with C2 < 1, and it follows that

κA(BA) ≤
1 + C1

1 − C2

.

Remark 1. Even if a linear method is not convergent, it may still be a good preconditioner.
If C2 << 1 and if C1 > 1 does not become too large, then κA(BA) will be small and the
conjugate gradient method will converge rapidly, even though the linear method diverges.

The next result connects the contraction number of the preconditioner to the contraction
number of the preconditioned conjugate gradient method (see [10] for a proof).

Lemma 12. If A and B are SPD and ‖I − BA‖A ≤ δ < 1, then δcg < δ.

Krylov acceleration of nonsymmetric linear methods. The convergence theory of the conju-
gate gradient iteration requires that the preconditioned operator BA be A-self-adjoint (see [1]
for more general conditions), which from Lemma 2 requires that B be self-adjoint. If a Schwarz
method is employed which produces a nonsymmetric operator B, then although A is SPD, the
theory of the previous section does not apply and a nonsymmetric solver such as conjugate
gradients on the normal equations [1], GMRES [6], CGS [7], or Bi-CGstab [8] must be used.
Further on, we shall use the preconditioned Bi-CGstab algorithm to accelerate nonsymmetric
Schwarz methods. In a sequence of numerical experiments, we shall compare the effectiveness
of this approach with unaccelerated symmetric and nonsymmetric Schwarz methods, and with
symmetric Schwarz methods accelerated with conjugate gradients.

MULTIPLICATIVE SCHWARZ METHODS

Consider a product operator of the form:

E = I − BA = (I − B̄1A)(I − B0A)(I − B1A), (4)

where B̄1, B0, and B1 are linear operators on H, and where A is, as before, an SPD operator
on H. We are interested in conditions for B̄1, B0, and B1, which guarantee that the implicitly
defined operator B is self-adjoint and positive definite and, hence, can be accelerated by using
the conjugate gradient method.

Lemma 13. Sufficient conditions for symmetry and positivity of operator B, defined by (4),
are:

1. B̄1 = BT
1 ;

2. B0 = BT
0 ;

3. ‖I − B1A‖A < 1;
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4. B0 non-negative on H.

Proof. By Lemma 3, in order to prove symmetry of B, it is sufficient to prove that E is A-self-
adjoint. By using (1), we get

E∗ = A−1ET A = (I − BT
1 A)(I − BT

0 A)(I − B̄T
1 A),

which equals E following from conditions 1 and 2.
Next, we prove that (Bu, u) > 0, ∀u ∈ H, u 6= 0. Since A is non-singular, this is equivalent

to proving that (BAu, Au) > 0. Using condition 1, we have that

(BAu, Au) = ((I − E)u, Au)

= (u, Au)− ((I − BT
1 A)(I − B0A)(I − B1A)u, Au)

= (u, Au)− ((I − B0A)(I − B1A)u, A(I − B1A)u)

= (u, Au)− ((I − B1A)u, A(I − B1A)u) + (B0w, w),

where w = A(I −B1A)u. By condition 4, we have that (B0w, w) ≥ 0. Condition 3 implies that
((I − B1A)u, A(I − B1A)u) < (u, Au) for u 6= 0. Thus, the first two terms in the sum above
are together positive, while the third is non-negative, so that B is positive.

Multiplicative domain decomposition. Given the finite-dimensional Hilbert space H, consider
J spaces Hk, k = 1, . . . , J , together with linear operators Ik ∈ L(Hk,H), null(Ik) = {0}, such
that IkHk ⊆ H =

∑J
k=1 IkHk. We also assume the existence of another space H0, an associated

operator I0 such that I0H0 ⊆ H, and some linear operators Ik ∈ L(H,Hk), k = 0, . . . , J . For
notational convenience, we shall denote the inner-products on Hk by (·, ·) (without explicit
reference to the particular space). Note that the inner products on different spaces need not
be related.

In a domain decomposition context, the spaces Hk, k = 1, . . . , J are typically associated
with local subdomains of the original domain on which the partial differential equation is
defined. The space H0 is then a space associated with some global coarse mesh. The operators
Ik, k = 1, . . . , J are usually inclusion operators, while I0 is an interpolation or prolongation
operator (as in a two-level MG method). The operators Ik, k = 1, . . . , J are usually orthogonal
projection operators, while I0 is a restriction operator (again, as in a two-level MG method).

The error propagator of a multiplicative DD method on the space H employing the subspaces
IkHk has the general form [2]

E = I − BA = (I − IJR̄JIJA) · · · (I − I0R0I
0A) · · · (I − IJRJIJA) , (5)

where R̄k and Rk, k = 1, . . . , J , are linear operators on Hk and R0 is a linear operator on H0.
Usually the operators R̄k and Rk are constructed so that R̄k ≈ A−1

k and Rk ≈ A−1
k , where Ak

is the operator defining the subdomain problem in Hk. Similarly, R0 is constructed so that
R0 ≈ A−1

0 . Actually, quite often R0 is a “direct solve”, i.e., R0 = A−1
0 . The subdomain problem

operator Ak is related to the restriction of A to Hk. We say that Ak satisfies the Galerkin
conditions or, in a finite element setting, that it is variationally defined when

Ak = IkAIk, Ik = IT
k . (6)

5



Recall that the superscript “T” is to be interpreted as the adjoint in the sense of (2), i.e., with
respect to the inner-products in H and Hk.

Propagator (5) can be thought of as the product operator (4) by choosing

I − B̄1A =
1
∏

k=J

(I − IkR̄kI
kA) , B0 = I0R0I

0 , I − B1A =
J
∏

k=1

(I − IkRkI
kA) ,

where B̄1 and B1 are known only implicitly. This identification allows for the use of Lemma 13
to establish sufficient conditions on the subdomain operators R̄k, Rk, and R0 to guarantee that
multiplicative domain decomposition yields an SPD operator B.

Theorem 1. Sufficient conditions for symmetry and positivity of the multiplicative domain
decomposition operator B, defined by (5), are:

1. Ik = ckI
T
k , ck > 0 , k = 0, · · · , J ;

2. R̄k = RT
k , k = 1, · · · , J ;

3. R0 = RT
0 ;

4.
∥

∥

∥

∏J
k=1(I − IkRkI

kA)
∥

∥

∥

A
< 1 ;

5. R0 non-negative on H0 .

Proof. We show that the conditions of Lemma 13 are satisfied. First, we prove that B̄1 = BT
1 ,

which, by Lemma 3, is equivalent to proving that (I − B1A)∗ = (I − B̄1A). By using (1), we
have

(

J
∏

k=1

(I − IkRkI
kA)

)∗

= A−1

(

J
∏

k=1

(I − IkRkI
kA)

)T

A =
1
∏

k=J

(I − (Ik)T RT
k (Ik)

T A) ,

which equals (I − B̄1A) under conditions 1 and 2 of the theorem. The symmetry of B0 follows
immediately from conditions 1 and 3; indeed,

BT
0 = (I0R0I

0)T = (I0)T RT
0 (I0)

T = (c0I0)R0(c
−1
0 I0) = I0R0I

0 = B0 .

By condition 4 of the theorem, condition 3 of Lemma 13 holds trivially. The theorem follows
if one realizes that condition 4 of Lemma 13 is also satisfied, since,

(B0u, u) = (I0R0I
0u, u) = (R0I

0u, IT
0 u) = c−1

0 (R0I
0u, I0u) ≥ 0 , ∀u ∈ H .

Remark 2. Note that one sweep through the subdomains, followed by a coarse problem
solve, followed by another sweep through the subdomains in reverse order, gives rise to an
error propagator of the form (5). Also, note that no conditions are imposed on the nature of
the operators Ak associated with each subdomain. In particular, the theorem does not require
that the variational conditions be satisfied. The theorem also does not require that the overall
multiplicative DD method be convergent.
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Remark 3. The results of the theorem apply for operators on general finite-dimensional
Hilbert spaces with arbitrary inner-products. They hold in particular for matrix operators on
R

N , equipped with the Euclidean inner-product or the discrete L2 inner-product. In the former
case the superscript “T” corresponds to the standard matrix transpose. In the latter case, the
matrix representation of the adjoint is a scalar multiple of the matrix transpose; the scalar
may be different from unity when the adjoint involves two different spaces, as in the case of
prolongation and restriction. This possible constant in the case of the discrete L2 inner-product
is absorbed in the factor ck in condition 1. This allows for an easy verification of the conditions
of the theorem in an actual implementation, where the operators are represented as matrices
and where the inner-products do not explicitly appear in the algorithm.

Remark 4. Condition 1 of the theorem (with ck = 1) for k = 1, . . . , J is usually satisfied
trivially for domain decomposition methods. For k = 0, it may have to be imposed explicitly.
Condition 2 of the theorem allows for several alternatives which give rise to an SPD precon-
ditioner, namely: (1) use of exact subdomain solvers (if Ak is a symmetric operator); (2) use
of identical symmetric subdomain solvers in the forward and backward sweeps; and (3) use of
the adjoint of the subdomain solver on the second sweep. Condition 3 is satisfied when the
coarse problem is symmetric and the solve is an exact one, which is usually the case. If not, the
coarse problem solve has to be symmetric. Condition 4 in Theorem 1 is clearly a non-trivial
one; it is essentially the assumption that the multiplicative DD method without a coarse space
is convergent. Condition 5 is satisfied, for example, when the coarse problem is SPD and the
solve is exact.

Multiplicative multigrid. Consider the Hilbert space H and J spaces Hk together with
operators Ik ∈ L(Hk,H), null(Ik) = 0, such that the spaces IkHk are nested and satisfy
I1H1 ⊆ I2H2 ⊆ · · · ⊆ IJ−1HJ−1 ⊆ HJ ≡ H. As before, we denote the Hk-inner-products
by (·, ·), since it will be clear from the arguments which inner-product is intended. Again, the
inner-products are not necessarily related in any way. We assume also the existence of operators
Ik ∈ L(H,Hk).

In a multigrid context, the spaces Hk are typically associated with a nested hierarchy of
successively refined meshes, with H1 being the coarsest mesh and HJ being the fine mesh
on which the PDE solution is desired. The linear operators Ik are prolongation operators,
constructed from given interpolation or prolongation operators that operate between subspaces,
i.e., Ik

k−1 ∈ L(Hk−1,Hk). The operator Ik is then constructed (only as a theoretical tool) as a
composite operator

Ik = IJ
J−1I

J−1
J−2 · · · I

k+2
k+1I

k+1
k , k = 1, . . . , J − 1. (7)

The composite restriction operators Ik, k = 1, . . . , J − 1, are constructed similarly from some
given restriction operators Ik−1

k ∈ L(Hk,Hk−1). The coarse problem operators Ak are related
to the restriction of A to Hk. As in the case of DD methods, we say that Ak is variationally
defined or satisfies the Galerkin conditions when conditions (6) hold. It is not difficult to see
that conditions (6) are equivalent to the following recursively defined variational conditions:

Ak = Ik
k+1Ak+1I

k+1
k , Ik

k+1 = (Ik+1
k )T . (8)

when the composite operators Ik appearing in (6) are defined as in (7).
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In a finite element setting, conditions (8) can be shown to hold in ideal situations, for
both the stiffness matrices and the abstract weak form operators, for a nested sequence of
successively refined finite element meshes. In the finite difference or finite volume method
setting, conditions (8) must often be imposed algebraically, in a recursive fashion.

The error propagator of a multiplicative V-cycle MG method is defined implicitly as

E = I − BA = I − DJAJ , (9)

where AJ = A and where operators Dk, k = 2, . . . , J , are defined recursively:

I − DkAk = (I − R̄kAk)(I − Ik
k−1Dk−1I

k−1
k Ak)(I − RkAk), k = 2, . . . , J, (10)

D1 = R1 . (11)

Operators R̄k and Rk are linear operators on Hk, usually called smoothers. The linear operators
Ak ∈ L(Hk,Hk) define the coarse problems. They often satisfy the variational condition (8).

The error propagator (9) can be thought of as an operator of the form (4) with

B̄1 = R̄J , B0 = IJ
J−1DJ−1I

J−1
J , B1 = RJ .

Such an identification with the product method allows for the use of Lemma 13. The following
theorem establishes sufficient conditions for the subspace operators Rk, R̄k, and Ak in order
to generate an (implicitly defined) SPD operator B that can be accelerated with conjugate
gradients.

Theorem 2. Sufficient conditions for symmetry and positivity of the multiplicative multi-
grid operator B, implicitly defined by (9), (10), and (11), are

1. Ak is SPD on Hk, k = 2, . . . , J ;

2. Ik−1
k = ck(I

k
k−1)

T , ck > 0, k = 2, . . . , J ;

3. R̄k = RT
k , k = 2, . . . , J ;

4. R1 = RT
1 ;

5. ‖I − RJA‖A < 1;

6. ‖I − RkAk‖Ak
≤ 1, k = 2, . . . , J − 1;

7. R1 non-negative on H1.

Proof. Since R̄J = RT
J , we have that B̄1 = BT

1 , which gives condition 1 of Lemma 13. Now, B0

is symmetric if and only if

B0 = IJ
J−1DJ−1I

J−1
J = (c−1

J IJ−1
J )T DT

J−1(cJIJ
J−1)

T = BT
0 ,

which holds under condition 2 and a symmetry requirement for DJ−1. We will prove that
DJ−1 = DT

J−1 by induction. First, D1 = DT
1 since R1 = RT

1 . By Lemma 3 and condition 1, Dk

is symmetric if and only if Ek = I − DkAk is Ak-self-adjoint. By using (1), we have that

E∗
k = A−1

k

(

(I − R̄kAk)(I − Ik
k−1Dk−1I

k−1
k Ak)(I − RkAk)

)T
Ak

= (I − R̄kAk)(I − (ckI
k
k−1)D

T
k−1(c

−1
k Ik−1

k )Ak)(I − RkAk),
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where we have used conditions 1, 2, and 3. Therefore, E∗
k = Ek, if Dk−1 = DT

k−1. Hence, the
result follows by induction on k.

Condition 3 of Lemma 13 follows trivially by condition 5 of the theorem.
It remains to verify condition 4 of Lemma 13, namely that B0 is non-negative. This is

equivalent to showing that DJ−1 is non-negative on HJ−1. This will follow again from an
induction argument. First, note that D1 = R1 is non-negative on H1. Next, we prove that
(Dkvk, vk) ≥ 0, ∀vk ∈ Hk, or, equivalently, since Ak is non-singular, that (DkAkvk, Akvk) ≥ 0.
So, for all vk ∈ Hk,

(DkAkvk, Akvk) = (Akvk, vk) − (AkEkvk, vk)

= (Akvk, vk) − (Ak(I − Ik
k−1Dk−1I

k−1
k Ak)(I − RkAk)vk, (I − RkAk)vk)

= (Akvk, vk) − (Ak(I − RkAk)vk, (I − RkAk)vk)

+ (AkI
k
k−1Dk−1I

k−1
k Ak(I − RkAk)vk, (I − RkAk)vk)

= (vk, vk)Ak
− (Skvk, Skvk)Ak

+ c−1
k (Dk−1vk−1, vk−1)

where Sk = I − RkAk and vk−1 = Ik−1
k Ak(I − RkAk)vk ∈ Hk−1. By condition 6, the first two

terms add up to a non-negative value. Hence, Dk is non-negative if Dk−1 is non-negative.

Remark 5. As noted earlier in Remark 3, the conditions and conclusions of the theorem
can be interpreted completely in terms of the usual matrix representations of the multigrid
operators.

Remark 6. Condition 1 of the theorem requires all but the coarsest grid operator to be SPD.
This is easily satisfied when they are constructed either by discretization or by explicitly enforc-
ing the Galerkin condition. Condition 2 requires restriction and prolongation to be adjoints,
possibly multiplied by an arbitrary constant. Condition 3 of the theorem is satisfied when the
number of pre-smoothing steps equals the number of post-smoothing steps and, in addition,
one of the following is imposed: (1) use of the same symmetric smoother for both pre- and
post-smoothing; or (2) use of the adjoint of the pre-smoothing operator as the post-smoother.
Condition 4 requires a symmetric coarsest mesh solver. When the coarsest mesh problem is
SPD, the symmetry of R1 is satisfied when it corresponds to an exact solve (as is typical for MG
methods). Condition 5 is a convergence requirement on the fine space smoother. Condition 6
requires the coarse grid smoothers to be non-divergent. The non-negativity requirement for
R1 is a non-trivial one; however, if A1 is SPD, it is immediately satisfied when the operator
corresponds to an exact solve.

ADDITIVE SCHWARZ METHODS

Consider a sum operator of the following form:

E = I − BA = I − ω(B0 + B1)A, ω > 0, (12)

where, as before, A is an SPD operator and B0 and B1 are linear operators on H.

Lemma 14. Sufficient conditions for symmetry and positivity of B, defined in (12), are

9



1. B1 is SPD in H;

2. B0 is symmetric and non-negative on H.

Proof. We have that B = ω(B0 + B1), which is symmetric by the symmetry of B0 and B1.
Positivity follows since (B0u, u) ≥ 0 and (B1u, u) > 0, ∀u ∈ H, u 6= 0.

Additive domain decomposition. We consider the space H and the J subspaces IkHk such
that IkHk ⊆ H =

∑J
k=1 IkHk. Again, we allow for a “coarse” subspace I0H0 ⊆ H.

The error propagator of an additive DD method on the space H employing the subspaces
IkHk has the general form (see [10])

E = I − BA = I − ω(I0R0I
0 + I1R1I

1 + · · ·+ IJRJIJ)A. (13)

The operators Rk are constructed in such a way that Rk ≈ A−1
k , where the Ak are the subdomain

problem operators. Propagator (13) can be thought of as the sum method (12) by taking
B0 = I0R0I

0 and B1 =
∑J

k=1 IkRkI
k. This identification allows for the use of Lemma 14

in order to establish conditions to guarantee that additive domain decomposition yields an
SPD preconditioner. Before we state the main theorem, we need the following lemma, which
characterizes the splitting of H into subspaces IkHk in terms of a positive splitting constant S0.

Lemma 15. Given any v ∈ H, there exists a splitting v =
∑J

k=1 Ikvk, vk ∈ Hk, and a
constant S0 > 0 such that

J
∑

k=1

‖Ikvk‖
2
A ≤ S0‖v‖

2
A. (14)

Proof. Since
∑J

k=1 IkHk = H, we can construct subspaces Vk ⊆ Hk such that IkVk ∩ IlVl = {0},
for k 6= l and H =

∑J
k=1 IkVk. Any v ∈ H, can be decomposed uniquely as v =

∑J
k=1 Ikvk,

vk ∈ Vk. Define the projectors Qk ∈ L(H, IkVk) such that Qkv = Ikvk. Then,

J
∑

k=1

‖Ikvk‖
2
A =

J
∑

k=1

‖Qkv‖
2
A ≤

J
∑

k=1

‖Qk‖
2
A ‖v‖2

A.

Hence, the result follows with S0 =
∑J

k=1 ‖Qk‖
2
A.

Theorem 3. Sufficient conditions for symmetry and positivity of the additive domain de-
composition operator B, defined in (13), are

1. Ik = ckI
T
k , ck > 0, k = 0, . . . , J ;

2. Rk is SPD on Hk, k = 1, . . . , J ;

3. R0 is symmetric and non-negative on H0.

Proof. Symmetry of B0 and B1 follow trivially from the symmetry of Rk and R0 and from
Ik = ckI

T
k . That B0 is non-negative on H follows immediately from the non-negativity of R0

on H0.
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Finally, we prove positivity of B1. Define Ak = IkAIk, k = 1, . . . , J . By condition 1 and the
full rank nature of Ik, we have that Ak is SPD. Now, since Rk is also SPD, the product RkAk

is Ak-SPD. Hence, there exists an ω0 > 0 such that 0 < ω0 < λi(RkAk), k = 1, . . . , J . This is
used together with (14) to bound the sum

J
∑

k=1

c−1
k (R−1

k vk, vk) =
J
∑

k=1

c−1
k (AkA

−1
k R−1

k vk, vk) ≤
J
∑

k=1

c−1
k (Akvk, vk) max

vk 6=0

(AkA
−1
k R−1

k vk, vk)

(Akvk, vk)

≤
J
∑

k=1

c−1
k ω−1

0 (Akvk, vk) =
J
∑

k=1

ω−1
0 (AIkvk, Ikvk) =

J
∑

k=1

ω−1
0 ‖Ikvk‖

2
A ≤

(

S0

ω0

)

‖v‖2
A,

with v =
∑J

k=1 Ikvk. We can now employ this result to establish positivity of B1:

‖v‖2
A = (Av, v) =

J
∑

k=1

(Av, Ikvk) =
J
∑

k=1

(IT
k Av, vk) =

J
∑

k=1

(Rkc
1/2

k IT
k Av, R−1

k c
−1/2

k vk).

By using the Cauchy-Schwarz inequality first in the Rk-inner-product and then in R
J , we have

that

‖v‖2
A ≤

(

J
∑

k=1

(RkR
−1
k c

−1/2

k vk, R
−1
k c

−1/2

k vk)

)1/2 ( J
∑

k=1

(Rkc
1/2

k IT
k Av, c

1/2

k IT
k Av)

)1/2

≤
(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(IkRkckI
T
k Av, Av)

)1/2

=
(

S0

ω0

)1/2

‖v‖A (B1Av, Av)1/2 .

Finally, we divide by ‖v‖A and square to obtain

(B1Av, Av) ≥
ω0

S0

‖v‖2
A > 0 , ∀v ∈ H, v 6= 0.

Remark 7. Condition 1 is naturally satisfied for k = 1, . . . , J , with ck = 1, since the asso-
ciated Ik and Ik are usually inclusion and orthogonal projection operators (which are natural
adjoints when the inner-products are inherited from the parent space, as in domain decompo-
sition). The fact that I0 = c0I

T
0 needs to be established explicitly. Condition 2 requires the

use of SPD subdomain solvers. The condition will hold, for example, when the subdomain
solve is exact and the subdomain problem operator is SPD. (The latter is naturally satisfied
by condition 1 and the full rank nature of Ik.) Finally, condition 3 is nontrivial and needs to
be checked explicitly. The condition holds when the coarse space problem operator is SPD and
the solve is exact. Note that variational conditions are not needed for the coarse space problem
operator.

Additive multigrid. Given are the Hilbert space H and J − 1 nested subspaces IkHk such
that I1H1 ⊆ I2H2 ⊆ · · · ⊆ IJ−1HJ−1 ⊆ HJ ≡ H . The operators Ik and Ik are the usual linear
operators between the different spaces, as in the previous sections.
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The error propagator of an additive MG method is defined explicitly:

E = I − BA = I − ω(I1R1I
1 + I2R2I

2 + · · ·+ IJ−1RJ−1I
J−1 + RJ)A. (15)

This can be thought of as the sum method analyzed earlier by taking B0 =
∑J−1

k=1 IkRkI
k and

B1 = RJ . This identification allows for the use of Lemma 14 to establish sufficient conditions
to guarantee that additive MG yields an SPD preconditioner.

Theorem 4. Sufficient conditions for symmetry and positivity of the additive multigrid op-
erator B defined in (15) are

1. Ik = ckI
T
k , ck > 0, k = 1, . . . , J − 1;

2. RJ is SPD in H;

3. Rk is symmetric non-negative in Hk, k = 1, . . . , J − 1.

Proof. Symmetry of B0 and B1 is obvious. B1 is positive by condition 2. Non-negativity of B0

follows from

(B0u, u) =
J−1
∑

k=1

(IkRk(ckIk)
T u, u) =

J−1
∑

k=1

ck(RkI
T
k u, IT

k u) ≥ 0, ∀u ∈ H, u 6= 0.

Remark 8. Condition 1 of the theorem has to be imposed explicitly. Conditions 2 and 3
require the smoothers to be symmetric. The positivity of RJ is satisfied when the fine grid
smoother is convergent, although this is not a necessary condition. The non-negativity of
Rk, k < J , has to be checked explicitly. When the coarse problem operators Ak are SPD, this
condition is satisfied, for example, when the smoothers are non-divergent. Note that variational
conditions for the subspace problem operators are not required.

NUMERICAL RESULTS

The Poisson-Boltzmann equation describes the electrostatic potential of a biomolecule lying
in an ionic solvent. This nonlinear elliptic equation for the dimensionless electrostatic potential
u(r) has the form

−∇ · (ε(r)∇u(r)) + κ̄2 sinh(u(r)) =

(

4πe2
c

kBT

)

Nm
∑

i=1

ziδ(r − ri), r ∈ R
3, u(∞) = 0.

The coefficients appearing in the equation are discontinuous by orders of magnitude. The
placement and magnitude of atomic charges are represented by source terms involving delta-
functions. Analytical techniques are used to obtain boundary conditions on a finite domain
boundary.

We will compare several MG and DD methods for a two-dimensional, linearized form of
the Poisson-Boltzmann problem, modeling a molecule with three point charges. The surface
of the molecule is such that the discontinuities do not align with the coarsest mesh or with

12



Figure 1: Example 1: Nested finite element meshes for MG.

Figure 2: Example 1: Overlapping subdomains for DD.

the subdomain boundaries. Beginning with the coarse mesh shown on the left in Figure 1, we
uniformly refine the initial mesh of 10 elements (9 nodes) five times, leading to a fine mesh of
2560 elements (1329 nodes). Piecewise linear finite elements, combined with one-point Gaussian
quadrature, are used to discretize the problem. The three coarsest meshes used to formulate
the MG methods are given in Figure 1. For the DD methods, the subdomains, corresponding
to the initial coarse triangulation, are given a small overlap of one fine mesh triangle. The
DD methods also employ a coarse space constructed from the initial triangulation. Figure 2
shows three overlapping subdomains overlaying the initial coarse mesh. Computed results are
presented in Tables 1 to 4. Given for each experiment is the number of iterations required to
satisfy the error criterion (reduction of the A-norm of the error by 10−10). We report results for
the unaccelerated, CG-accelerated, and Bi-CGstab-accelerated methods. The execution time
differs for each method; normalized costs are tabulated in [5].

Multiplicative multigrid. The results for multiplicative V-cycle MG are presented in Table 1.
Each row corresponds to a different smoothing strategy and is annotated by (ν1, ν2), with ν1 pre-
smoothing sweeps and ν2 post-smoothing sweeps. An “f” indicates the use of a single forward
Gauss-Seidel sweep, while a “b” denotes the use of the adjoint of the latter, i.e., a backward
Gauss-Seidel sweep. Two series of results are given. For the first set, we explicitly imposed
the Galerkin conditions when constructing the coarse operators. In this case, the multigrid
algorithm is guaranteed to converge (cf. [5]). In the second series of tests (corresponding to
the numbers in parentheses) the coarse mesh operators are constructed using standard finite
element discretization. In that case, Galerkin conditions are not satisfied everywhere due to
coefficient discontinuities appearing within coarse elements; hence, the MG method may diverge
(DIV).

The unaccelerated MG results clearly illustrate the symmetry penalty given in Lemma 10.
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Table 1: Example 1: Multiplicative MG with variational (discretized) coarse problem

ν1 ν2 UNACCEL CG Bi-CGstab

f 0 65 (DIV) �100 (�100) 14 (16)

f b 55 (DIV) 16 (18) 10 (15)

f f 40 (31) 30 (�100) 9 (9)

ff 0 39 (48) �100 (�100) 8 (10)

fb 0 53 (DIV) �100 (�100) 10 (11)

0 ff 39 (29) 29 (�100) 8 (9)

0 fb 53 (DIV) 17 (99) 10 (12)

fb fb 34 (27) 12 (13) 8 (8)

ff bb 28 (18) 11 (11) 7 (7)

ff ff 24 (15) 12 (12) 6 (6)

fff f 24 (15) 17 (27) 6 (6)

ffff 0 25 (17) �100 (�100) 7 (6)

Table 2: Example 1: Multiplicative DD with variational (discretized) coarse problem

Accel. subdomain solve forw forw/back forw/forw

UNACCEL exact 40 (42) 38 (39) 20 (21)
symmetric 279 (282) 146 (149) 140 (141)
adjointed – 110 (112) 102 (103)

nonsymmetric 189 (191) 102 (104) 95 (96)

CG exact �500 (�500) 13 (13) 20 (20)
symmetric 140 (56) 24 (24) 29 (27)
adjointed – – 21 (21) 25 (26)

nonsymmetric 135 (83) 22 (23) 28 (28)

Bi-CGstab exact 9 (9) 9 (9) 6 (6)
symmetric 23 (23) 17 (16) 16 (16)
adjointed – – 14 (14) 14 (13)

nonsymmetric 19 (20) 13 (13) 13 (13)

The nonsymmetric methods are always superior to the symmetric ones (the cases (f,b), (ff,bb),
and (fb,fb)). Note that minimal symmetry (ff,bb) leads to a better convergence than maximal
symmetry (fb,fb). The correctness of Lemma 10 is illustrated by noting that two iterations of the
(f,0) strategy are actually faster than one iteration of the (f,b) strategy; also, compare the (ff,0)
strategy to the (ff,bb) one. The CG-acceleration leads to a guaranteed reduction in iteration
count for the symmetric preconditioners (see Lemma 12). We observe that the unaccelerated
method need not be convergent for CG to be effective. CG appears to also accelerate some
non-symmetric linear methods. Yet, it seems difficult to predict failure or success beforehand in
such cases. The most robust method appears to be the Bi-CGstab method. Note the tendency
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Table 3: Example 1: Additive MG with variational (discretized) coarse problem

ν UNACCEL CG Bi-CGstab

f 175 (�1000) �100 (�100) 23 (52)

ff 110 (�1000) 119 (168) 19 (43)

fb 146 (�1000) 34 (54) 23 (49)

ffff 95 (�1000) 28 (67) 17 (37)

ffbb 100 (�1000) 27 (47) 17 (34)

fbfb 95 (�1000) 28 (48) 20 (43)

Table 4: Example 1: Additive DD with variational (discretized) coarse problem

subdomain solve UNACCEL CG Bi-CGstab

exact �1000 (�1000) 34 (34) 25 (27)

symmetric �1000 (�1000) 57 (57) 50 (49)

nonsymmetric �1000 (�1000) 69 (65) 38 (41)

to favor the nonsymmetric V-cycle strategies. Overall, the fastest method proves to be the
Bi-CGstab-acceleration of a (very nonsymmetric) V(1,0)-cycle.

Multiplicative domain decomposition. Results for multiplicative DD are given in Table 2. In
the column “forw” the iteration counts reported were obtained with a single sweep though the
subdomains on each multiplicative DD iteration. The other columns correspond to a symmetric
forward/backward sweep or to two forward sweeps. Four different subdomain solvers are used:
an exact solve, a symmetric method consisting of two symmetric Gauss-Seidel iterations, a
nonsymmetric method consisting of four Gauss-Seidel iterations, and, finally, a method using
four forward Gauss-Seidel iterations in the forward subdomain sweep and using their adjoint
(i.e., four backward Gauss-Seidel iterations) in the backward subdomain sweep. The latter leads
to a symmetric iteration; see Remark 2. Note that the cost of the three inexact subdomain
solvers is identical.

Although apparently not as sensitive to operator symmetries as MG, the same conclusions
can be drawn for DD as for MG. In particular, the symmetry penalty is seen for the pure
DD results. Lemma 10 is confirmed since two iterations in the column “forw” are always more
efficient than one iteration of the corresponding method in column “forw/back.” The CG results
indicate that using minimal symmetry (the “adjointed” column) is a more effective approach
than the fully symmetric one (the “symmetric” column). The most robust acceleration is the
Bi-CGstab one.

Additive multigrid. Results obtained with an additive multigrid method are reported in
Table 3. The number and nature of the smoothing strategy is given in the first column of the
table.

In the case of an unaccelerated additive method, the selection of a good damping param-
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eter is crucial for convergence of the method. We did not search extensively for an optimal
parameter; a selection of ω = 0.45 seemed to provide good results in the case when the coarse
problem was variationally defined. No ω-value leading to satisfactory convergence was found
in the case when the coarse problems were obtained by discretization. In the case of CG ac-
celeration the observed convergence behavior was completely independent of the choice of ω;
see Remark 2. The symmetric methods (ν = fb, ffbb, fbfb) are accelerated very well. Some of
the nonsymmetric methods are accelerated too, especially when the number of smoothing steps
is sufficiently large. The best method overall appears to be the Bi-CGstab acceleration of the
nonsymmetric multigrid method with a single forward Gauss-Seidel sweep on each grid-level.

Additive domain decomposition. The results for additive DD are given in Table 4. The
subdomain solver is either an exact solver, a symmetric solver based on two symmetric (for-
ward/backward) Gauss-Seidel sweeps, or a nonsymmetric solver based on four forward Gauss-
Seidel iterations. No value of ω was found that led to satisfactory convergence of the unaccel-
erated method. The CG-acceleration performs well when the linear method is symmetric and
worse if nonsymmetric. Again, the best overall method is the Bi-CGstab-acceleration of the
nonsymmetric additive solver.
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