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Abstract. A recent paper of Arnold, Falk, and Winther [Bull. Amer. Math.
Soc. 47 (2010), 281–354] showed that a large class of mixed finite element

methods can be formulated naturally on Hilbert complexes, where using a
Galerkin-like approach, one solves a variational problem on a finite-dimensional
subcomplex. In a seemingly unrelated research direction, Dziuk [Lecture Notes
in Math., vol. 1357 (1988), 142–155] analyzed a class of nodal finite elements
for the Laplace–Beltrami equation on smooth 2-surfaces approximated by a

piecewise-linear triangulation; Demlow later extended this analysis [SIAM
J. Numer. Anal., 47 (2009), 805–827] to 3-surfaces, as well as to higher-
order surface approximation. In this article, we bring these lines of research

together, first developing a framework for the analysis of variational crimes
in abstract Hilbert complexes, and then applying this abstract framework to
the setting of finite element exterior calculus on hypersurfaces. Our framework

extends the work of Arnold, Falk, and Winther to problems that violate their
subcomplex assumption, allowing for the extension of finite element exterior
calculus to approximate domains, most notably the Hodge–de Rham complex

on approximate manifolds. As an application of the latter, we recover Dziuk’s
and Demlow’s a priori estimates for 2- and 3-surfaces, demonstrating that
surface finite element methods can be analyzed completely within this abstract

framework. Moreover, our results generalize these earlier estimates dramatically,
extending them from nodal finite elements for Laplace–Beltrami to mixed finite
elements for the Hodge Laplacian, and from 2- and 3-dimensional hypersurfaces

to those of arbitrary dimension. By developing this analytical framework
using a combination of general tools from differential geometry and functional
analysis, we are led to a more geometric analysis of surface finite element

methods, whereby the main results become more transparent.
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1. Introduction

The aim of this paper is to bring together three distinct ideas that have influenced,
in separate ways, the development and analysis of geometric finite element methods
for elliptic partial differential equations.

The first idea is that of a variational crime. Suppose we have a variational
problem of the form: Find u ∈ V such that

(1) B (u, v) = F (v), ∀v ∈ V,
where V is a Hilbert space, B : V × V → R is a bounded, coercive bilinear form,
and F ∈ V ∗ is a bounded linear functional. If Vh ⊂ V is a subspace (usually
finite-dimensional), then one can obtain an approximate solution by solving the
Galerkin variational problem: Find uh ∈ Vh such that

B (uh, v) = F (v), ∀v ∈ Vh.
This is the typical abstract setting for finite element methods. However, for many
problems of interest, especially finite element methods on surfaces or on domains
with curved boundaries, one cannot efficiently compute the bilinear form B (·, ·) or
the functional F (·) on a subspace of V . Instead, one must take an approximating
space Vh 6⊂ V , along with an approximate bilinear form Bh : Vh × Vh → R and
functional Fh ∈ V ∗h , and formulate the generalized Galerkin variational problem:
Find uh ∈ Vh such that

(2) Bh (uh, v) = Fh(v), ∀v ∈ Vh.
Such modifications to the original variational problem are called “variational crimes.”
There is a well-understood framework for the analysis of a large class of variational
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crimes, represented by the Strang lemmas [7]: for instance, the first and second
Strang lemmas allow for the complete analysis of numerical quadrature, the use
of geometric modeling technology such as isoparametric elements, and many other
examples of variational crimes.

The emergence of surface finite elements represents a second distinct idea that
has influenced the development of geometric finite element methods. The analysis
of surface finite element methods, which by construction are “criminal” methods,
has required a more sophisticated approach that exploits the specific nature of the
crime in order to obtain a satisfactory error analysis; this custom-tailored analysis
contrasts with the more general approach given by the Strang lemmas. The surface
finite element research area was effectively initiated with the 1988 article of Dziuk
[16], although there is related work appearing about ten years earlier by Nédélec [26].
While there was some activity in the area during the 1990s (cf. [17, 11]), beginning
in 2001 there was a tremendous expansion of research in the general area of surface
finite element methods, with many applications arising in material science, biology,
and astrophysics; examples include [21, 10, 12, 13, 19, 18, 15, 14].

The third distinct idea that has had a major influence on the development of
geometric methods is that of mixed finite elements, whose early success in areas such
as computational electromagnetics was later found to have surprising connections
with the calculus of exterior differential forms, including de Rham cohomology and
Hodge theory [6, 27, 28, 20]. This has culminated, very recently, in the powerful
theory of finite element exterior calculus developed by Arnold, Falk, and Winther
[2, 3]. A key insight of the latter work, from a functional-analytic point of view, is
that a mixed variational problem can be posed on a Hilbert complex : a differential
complex of Hilbert spaces, in the sense of Brüning and Lesch [8]. Galerkin-type mixed
methods are then obtained by solving the variational problem on a finite-dimensional
subcomplex.

In this article, we bring these lines of research together, first developing a
framework for the analysis of variational crimes in abstract Hilbert complexes,
and then applying this abstract framework to the setting of finite element exterior
calculus on hypersurfaces. Our framework extends the work of Arnold, Falk, and
Winther [3] to problems that violate their subcomplex assumption, allowing for
the extension of finite element exterior calculus to approximate domains, most
notably the Hodge–de Rham complex on approximate manifolds. As an application
of the latter, we recover Dziuk’s [16] and Demlow’s [14] a priori estimates for 2-
and 3-surfaces, demonstrating that surface finite element methods can be analyzed
completely within this abstract framework. Moreover, our results generalize these
earlier estimates dramatically, extending them from nodal finite elements for Laplace–
Beltrami to mixed finite elements for the Hodge Laplacian, and from 2- and 3-
dimensional hypersurfaces to those of arbitrary dimension. By developing this
analytical framework using a combination of general tools from differential geometry
and functional analysis, we are led to a more geometric analysis of surface finite
element methods, whereby the main results become more transparent.

The remainder of the article is organized as follows. In Section 2, we review
the abstract framework of Hilbert complexes, which plays a central role in the
work of Arnold, Falk, and Winther [3] on finite element exterior calculus. This
includes a brief introduction to Hilbert complexes and their morphisms, domain
complexes, Hodge decomposition, the Poincaré inequality, the Hodge Laplacian,
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mixed variational problems, and approximation using Hilbert subcomplexes. In
Section 3, we consider the approximation of a Hilbert complex by a second complex,
related to the first complex through an injective morphism rather than through
subcomplex inclusion. Since this morphism is not necessarily unitary (i.e., inner-
product preserving), this allows the approximating complex to have a different
inner product, which only approximates that of the original complex. We develop
some basic results for the pair of complexes and the maps between them, and then
prove error estimates for generalized Galerkin-type approximations of solutions to
variational problems using the approximating complex; these estimates generalize the
results of Arnold, Falk, and Winther [3] to “external” approximations. Our results
may be viewed as establishing Strang-type lemmas for approximating variational
problems in Hilbert complexes. Finally, in Section 4, we apply the framework
developed in Section 3 to the Hodge–de Rham complex of differential forms on a
compact, oriented Riemannian manifold. We first review Hodge–de Rham theory,
and then consider a pair of Riemannian manifolds related by diffeomorphisms,
establishing estimates for the maps needed to apply the generalized Hilbert complex
approximation framework. After reviewing the concept of a tubular neighborhood,
we then consider the specific case of Euclidean hypersurfaces. We subsequently
show how the results of the previous sections recover the analysis framework and a
priori estimates of Dziuk [16], Demlow and Dziuk [15], Demlow [14], and moreover
extend their results from scalar functions on 2- and 3-surfaces to general k-forms on
arbitrary dimensional hypersurfaces. We also indicate how our results generalize
the a priori estimates of Dziuk [16], Demlow [14] from nodal finite element methods
for the Laplace–Beltrami operator to mixed finite element methods for the Hodge
Laplacian.

2. Review of Hilbert complexes

In this section, we quickly review the abstract framework of Hilbert complexes,
which forms the heart of the analysis in Arnold, Falk, and Winther [3] for mixed
finite element methods. Just as the space of L2 functions is a prototypical example
of a Hilbert space, the prototypical example of a Hilbert complex to keep in mind is
the L2-de Rham complex of differential forms. (This example will be discussed at
greater length in Section 4.) After stating the basic definitions, we will summarize
some of the key results from Arnold, Falk, and Winther [3] on mixed variational
problems and their numerical approximation using Hilbert subcomplexes. The
interested reader may also refer to Brüning and Lesch [8] for a comprehensive
treatment of Hilbert complexes from the viewpoint of functional analysis.

2.1. Basic definitions. Let us introduce the basic objects of study, Hilbert com-
plexes, and their morphisms.

Definition 2.1. A Hilbert complex (W, d) consists of a sequence of Hilbert spaces
W k, along with closed, densely-defined linear maps dk : V k ⊂W k → V k+1 ⊂W k+1,
possibly unbounded, such that dk ◦ dk−1 = 0 for each k.

· · · // V k−1
dk−1

// V k
dk

// V k+1 // · · ·

This Hilbert complex is said to be bounded if dk is a bounded linear map from W k

to W k+1 for each k, i.e., (W, d) is a cochain complex in the category of Hilbert
spaces. It is said to be closed if the image dkV k is closed in W k+1 for each k.
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Definition 2.2. Given two Hilbert complexes, (W, d) and (W ′,d′), a morphism
of Hilbert complexes f : W → W ′ consists of a sequence of bounded linear maps
fk : W k →W ′k such that fkV k ⊂ V ′k and d′kfk = fk+1dk for each k. That is, the
following diagram commutes:

· · · // V k

fk

��

dk
// V k+1

fk+1

��

// · · ·

· · · // V ′k
d′k // V ′k+1 // · · ·

By analogy with cochain complexes, it is possible to define notions of cocycles,
coboundaries, harmonic forms, and cohomology spaces for Hilbert complexes.

Definition 2.3. Given a Hilbert complex (W, d), the space of k-cocycles is the
kernel Zk = ker dk, the space of k-coboundaries is the image Bk = dk−1V k−1,
the kth harmonic space is the intersection Hk = Zk ∩Bk⊥W , and the kth reduced

cohomology space is the quotient Zk/Bk. When Bk is closed, Zk/Bk is simply called
the kth cohomology space, and is identical to reduced cohomology.

Remark 1. One can show that the harmonic space Hk is isomorphic to the reduced

cohomology space Zk/Bk. For a closed complex, this is identical to the usual
cohomology space Zk/Bk, since Bk is closed for each k.

Definition 2.4. Given a morphism of Hilbert complexes f : W →W ′, the induced
map on (reduced) cohomology is defined by [z] 7→ [fz], where [z] denotes the (reduced)
cohomology class of the cocycle z.

In general, the differentials dk of a Hilbert complex may be unbounded linear
maps. However, given an arbitrary Hilbert complex (W, d), it is always possible to
construct a bounded complex having the same domains and maps, as follows.

Definition 2.5. Given a Hilbert complex (W, d), the domain complex (V,d) consists
of the domains V k ⊂W k, endowed with the graph inner product

〈u, v〉V k = 〈u, v〉Wk + 〈dku,dkv〉Wk+1 .

Remark 2. Since dk is a closed map, each V k is closed with respect to the norm
induced by the graph inner product. Also, each map dk is bounded, since

‖dkv‖V k+1 = ‖dkv‖Wk+1 ≤ ‖v‖Wk + ‖dkv‖Wk+1 = ‖v‖V k .

Thus, the domain complex is a bounded Hilbert complex; moreover, it is a closed
complex if and only if (W, d) is closed.

For the remainder of the paper, we will follow the simplified notation used by
Arnold, Falk, and Winther [3]: the W -inner product and norm will be written simply
as 〈·, ·〉 and ‖·‖, without subscripts, while the V -inner product and norm will be
written explicitly as 〈·, ·〉V and ‖·‖V .

2.2. Hodge decomposition and Poincaré inequality. The Helmholtz decom-
position states that a rapidly-decaying vector field on R3 can be decomposed into
curl-free and divergence-free components, i.e., the vector field can be written as the
sum of the gradient of a scalar potential and the curl of a vector potential. For
differential forms, this is generalized by the Hodge decomposition, which states that
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any differential form can be written as a sum of exact, coexact, and harmonic com-
ponents. Here, we recall an even further generalization of the Hodge decomposition
to arbitrary Hilbert complexes; this immediately gives rise to an abstract version of
the Poincaré inequality, which will be crucial to much of the later analysis.

Following Brüning and Lesch [8], we can decompose each space W k in terms of
orthogonal subspaces,

W k = Zk ⊕ Zk⊥W = Zk ∩
(
Bk ⊕Bk⊥W

)
⊕ Zk⊥W = Bk ⊕ Hk ⊕ Zk⊥W ,

where the final expression is known as the weak Hodge decomposition. For the
domain complex (V,d), the spaces Zk, Bk, and Hk are the same as for (W, d), and
consequently we get the decomposition

V k = Bk ⊕ Hk ⊕ Zk⊥V ,

where Zk⊥V = Zk⊥W ∩ V k. In particular, if (W, d) is a closed Hilbert complex, then
the image Bk is a closed subspace, so we have the strong Hodge decomposition

W k = Bk ⊕ Hk ⊕ Zk⊥W ,

and likewise for the domain complex,

V k = Bk ⊕ Hk ⊕ Zk⊥V .

From here on, following the notation of Arnold, Falk, and Winther [3], we will
simply write Zk⊥ in place of Zk⊥V when there can be no confusion.

Lemma 2.6 (Abstract Poincaré Inequality). If (V,d) is a bounded, closed Hilbert
complex, then there exists a constant cP such that

‖v‖V ≤ cP ‖d
kv‖V , ∀v ∈ Zk⊥.

Proof. The map dk is a bounded bijection from Zk⊥ to Bk+1, which are both
closed subspaces, so the result follows immediately by applying the bounded inverse
theorem. �

Corollary 2.7. If (V,d) is the domain complex of a closed Hilbert complex (W, d),
then

‖v‖V ≤ cP ‖d
kv‖, ∀v ∈ Zk⊥.

We close this subsection by defining the dual complex of a Hilbert complex, and
recalling how the Hodge decomposition can be interpreted in terms of this complex.

Definition 2.8. Given a Hilbert complex (W, d), the dual complex (W ∗,d∗) consists

of the spaces W ∗k = W k, and adjoint operators d∗k =
(
dk−1

)∗
: V ∗k ⊂W ∗k → V ∗k−1 ⊂

W ∗k−1.

· · · V ∗k−1
oo V ∗k

d∗koo V ∗k+1

d∗k+1
oo · · ·oo

Remark 3. Since the arrows in the dual complex point in the opposite direction,
this is a Hilbert chain complex rather than a cochain complex. (The chain property
d∗k ◦ d∗k+1 = 0 follows easily from the cochain property dk ◦ dk−1 = 0.) Accordingly,

we can define the k-cycles Z∗k = ker d∗k = Bk⊥W and k-boundaries B∗k = d∗k+1V
∗
k .

The kth harmonic space can then be rewritten as Hk = Zk ∩ Z∗k; we also have

Zk = B∗⊥W
k , and thus Zk⊥W = B∗k. Therefore, the weak Hodge decomposition can

be written as
W k = Bk ⊕ Hk ⊕B∗k,
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and in particular, for a closed Hilbert complex, the strong Hodge decomposition
now becomes

W k = Bk ⊕ Hk ⊕B∗k.

2.3. The abstract Hodge Laplacian and mixed variational problem. To
obtain a “mixed version” of the familiar Poisson equation −∆u = f for scalar
functions, we now follow Arnold, Falk, and Winther [3] in defining an abstract
version of the Hodge Laplacian for Hilbert complexes. The abstract Hodge Laplacian
is the operator L = dd∗ + d∗d, which is an unbounded operator W k → W k with
domain

DL =
{
u ∈ V k ∩ V ∗k

∣∣ du ∈ V ∗k+1, d∗u ∈ V k−1
}
.

If u ∈ DL solves Lu = f , then it satisfies the variational principle

〈du,dv〉+ 〈d∗u,d∗v〉 = 〈f, v〉 , ∀v ∈ V k ∩ V ∗k .

However, as noted by Arnold, Falk, and Winther [3], there are some difficulties in
using this variational principle for a finite element approximation. First, it may be
difficult to construct finite elements for the space V k ∩ V ∗k . A second concern is the
well-posedness of the problem. If we take any harmonic test function v ∈ Hk, then
the left-hand side vanishes, so 〈f, v〉 = 0; hence, a solution only exists if f ⊥ Hk.
Furthermore, for any q ∈ Hk = Zk ∩ Z∗k, we have dq = 0 and d∗q = 0; therefore, if u
is a solution, then so is u+ q.

To avoid these existence and uniqueness issues, one can define instead the following
mixed variational problem: Find (σ, u, p) ∈ V k−1 × V k × Hk satisfying

(3)

〈σ, τ〉 − 〈u,dτ〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du,dv〉+ 〈p, v〉 = 〈f, v〉 , ∀v ∈ V k,

〈u, q〉 = 0, ∀q ∈ Hk.

Here, the first equation implies that σ = d∗u, which weakly enforces the condition
u ∈ V k ∩ V ∗k . Next, the second equation incorporates the additional term 〈p, v〉,
which allows for solutions to exist even when f 6⊥ Hk. Finally, the third equation fixes
the issue of non-uniqueness by requiring u ⊥ Hk. The following result establishes
the well-posedness of the problem (3).

Theorem 2.9 (Arnold, Falk, and Winther [3], Theorem 3.1). Let (W, d) be a closed
Hilbert complex with domain complex (V,d). The mixed formulation of the abstract
Hodge Laplacian is well-posed. That is, for any f ∈ W k, there exists a unique
(σ, u, p) ∈ V k−1 × V k × Hk satisfying (3). Moreover,

‖σ‖V + ‖u‖V + ‖p‖ ≤ c ‖f‖ ,

where c is a constant depending only on the Poincaré constant cP in Lemma 2.6.

To prove this, one observes that (3) can be rewritten as a standard variational
problem (1) on the space V k−1 × V k × Hk, with the bilinear form

B (σ, u, p; τ, v, q) = 〈σ, τ〉 − 〈u,dτ〉 + 〈dσ, v〉+ 〈du,dv〉+ 〈p, v〉 − 〈u, q〉

and functional F (τ, v, q) = 〈f, v〉. The well-posedness then follows immediately
from the following theorem, which establishes the inf-sup condition for the bilinear
form B.
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Theorem 2.10 (Arnold, Falk, and Winther [3], Theorem 3.2). Let (W, d) be a
closed Hilbert complex with domain complex (V,d). There exists a constant γ > 0,
depending only on the constant cP in the Poincaré inequality (Lemma 2.6), such
that for any (σ, u, p) ∈ V k−1×V k×Hk, there exists (τ, v, q) ∈ V k−1×V k×Hk with

B (σ, u, p; τ, v, q) ≥ γ (‖σ‖V + ‖u‖V + ‖p‖) (‖τ‖V + ‖v‖V + ‖q‖) .

From the well-posedness result, it follows that there exists a bounded solution
operator K : W k →W k defined by Kf = u.

2.4. Approximation by a subcomplex. In order to obtain approximate numeri-
cal solutions to the mixed variational problem (3), Arnold, Falk, and Winther [3]
suppose that one is given a (finite-dimensional) subcomplex Vh ⊂ V of the domain
complex: that is, V kh ⊂ V k is a Hilbert subspace for each k, and the inclusion
mapping ih : Vh ↪→ V is a morphism of Hilbert complexes. By analogy with the
Galerkin method, one can then consider the mixed variational problem on the
subcomplex: Find (σh, uh, ph) ∈ V k−1

h × V kh × Hkh satisfying

(4)

〈σh, τ〉 − 〈uh,dτ〉 = 0, ∀τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh,dv〉+ 〈ph, v〉 = 〈f, v〉 , ∀v ∈ V kh ,

〈uh, q〉 = 0, ∀q ∈ Hkh.

For the error analysis of this method, one more crucial assumption must be
made: that there exists some Hilbert complex “projection” πh : V → Vh. We put
“projection” in quotes because this need not be the actual orthogonal projection
i∗h with respect to the inner product; indeed, that projection is not generally a
morphism of Hilbert complexes, since it may not commute with the differentials.
However, the map πh is V -bounded, surjective, and idempotent. It follows, then,
that although it does not satisfy the optimality property of the true projection, it
does still satisfy a quasi-optimality property, since

‖u− πhu‖V = inf
v∈Vh

‖(I − πh) (u− v)‖V ≤ ‖I − πh‖ inf
v∈Vh

‖u− v‖V ,

where the first step follows from the idempotence of πh, i.e., (I − πh) v = 0 for
all v ∈ Vh. With this framework in place, the following error estimate can be
established.

Theorem 2.11 (Arnold, Falk, and Winther [3], Theorem 3.9). Let (Vh,d) be a
family of subcomplexes of the domain complex (V,d) of a closed Hilbert complex,
parametrized by h and admitting uniformly V -bounded cochain projections, and let
(σ, u, p) ∈ V k−1×V k×Hk be the solution of (3) and (σh, uh, ph) ∈ V k−1

h ×V kh ×Hkh
the solution of problem (4). Then

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖
≤ C

(
inf

τ∈V k−1
h

‖σ − τ‖V + inf
v∈V k

h

‖u− v‖V + inf
q∈V k

h

‖p− q‖V + µ inf
v∈V k

h

‖PBu− v‖V
)
,

where µ = µkh = sup
r∈Hk

‖r‖=1

∥∥(I − πkh) r∥∥.

Therefore, if Vh is pointwise approximating, in the sense that infv∈Vh
‖u− v‖ → 0

as h→ 0 for every u ∈ V , then the numerical solution converges to the exact solution.
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3. Analysis of variational crimes

In this section, we extend the results of Arnold, Falk, and Winther [3], summarized
in the previous section, by removing the requirement for Vh to be a subcomplex
of V . The key point of departure is in the map ih : Vh ↪→ V ; rather than being an
inclusion, we require only that it is an injective morphism of Hilbert complexes, with
the property that πh ◦ ih is the identity. (The latter requirement simply corresponds
to the earlier condition that πh be idempotent in the case of subcomplexes.) After
stating some basic results about complexes equipped with such maps, we develop
error estimates for the mixed variational problem and eigenvalue problem on Vh.
These estimates contain two additional error terms, in addition to those in the
analysis of Arnold, Falk, and Winther [3]. These extra terms, analogous to those
in the Strang lemmas for generalized Galerkin methods, measure the “severity” of
two variational crimes: first, how well the right-hand side ihfh approximates f ; and
second, the extent to which ih fails to be unitary.

3.1. Approximation by an arbitrary complex. In order to approximate a
Hilbert complex (W, d), suppose we have another Hilbert complex (Wh,dh), along
with a pair of morphisms: an injection ih : Wh ↪→W and a projection πh : W →Wh,
such that πkh ◦ ikh is the identity on W k

h for each k. Recall that, by Definition 2.2 of
a Hilbert complex morphism, the maps ikh and πkh must be bounded for each k. The
relationships among the domains and maps are illustrated in the following diagram:

· · · // V k

πk
h

��

dk
// V k+1

πk+1
h

��

// · · ·

· · · // V kh

ikh

OO

dk
h // V k+1

h

ik+1
h

OO

// · · · .

Arnold, Falk, and Winther [3] consider the case where Wh ⊂ W is a subcomplex,
and ih is the inclusion of Wh into W . In this special case, ih is unitary (i.e., an
isometry), since for all u, v ∈ W k

h , we have 〈ihu, ihv〉 = 〈u, v〉 = 〈u, v〉h. Indeed,
if ih is unitary, then we can simply identify Wh with the subcomplex ihWh ⊂ W .
More generally, though, we will consider cases where Wh 6⊂W , and where ih is not
necessarily unitary.

We begin by demonstrating some basic facts about these approximations.

Theorem 3.1. If (W, d) is a bounded Hilbert complex, then so is (Wh,dh).

Proof.
∥∥dkh

∥∥ =
∥∥πk+1

h ik+1
h dkh

∥∥ =
∥∥πk+1

h dkikh
∥∥ ≤ ∥∥πk+1

h

∥∥∥∥dk
∥∥∥∥ikh∥∥ <∞. �

Theorem 3.2. If (W, d) is a closed Hilbert complex, then so is (Wh,dh).

Proof. Assume that (W, d) is closed, so that each coboundary space Bk is closed
in W k. Now, since ih is a morphism, if vh ∈ Bk

h then ihvh ∈ Bk, so Bk
h ⊂ i−1

h Bk.

Conversely, since πh is a morphism, if ihvh ∈ Bk then vh = πhihvh ∈ Bk
h, so

i−1
h Bk ⊂ Bk

h. Therefore, Bk
h = i−1

h Bk, and since ih is bounded (and hence

continuous), it follows that Bk
h is closed. �

Since πkh ◦ ikh = idWk
h

, this composition induces the identity map on the reduced

cohomology space Zkh/B
k
h; thus ih induces an injection on reduced cohomology,

while πh induces a surjection. We now show that, given a certain approximation



10 MICHAEL HOLST AND ARI STERN

condition on the harmonic spaces Hk, these induced maps are in fact isomorphisms
(which are inverses of one another, since their composition is the identity).

Theorem 3.3. Let (W, d) and (Wh,dh) be Hilbert complexes, with morphisms
ih : Wh ↪→W and πh : W →Wh such that πkh ◦ ikh = idWk

h
for each k. If, for all k,∥∥q − ikhπkhq∥∥ < ‖q‖ , ∀q ∈ Hk, q 6= 0,

then πh (and thus ih) induces an isomorphism on the reduced cohomology spaces.

Proof. Since πh induces a surjection on reduced cohomology, it suffices to show

that this is also an injection. That is, given z ∈ Zk with πhz ∈ Bk
h, we must

demonstrate that z ∈ Bk. Using the weak Hodge decomposition, write z = q + b,

where q ∈ Hk and b ∈ Bk. By assumption, πhz ∈ Bk
h, and since πh is a morphism,

πhb ∈ Bk
h as well. Thus, πhq = πhz − πhb ∈ Bk

h, and since ih is also a morphism,

ihπhq ∈ Bk ⊥ Hk. Therefore, ihπhq ⊥ q, which implies that q violates the inequality

above, so we must have q = 0 and hence z ∈ Bk. �

Corollary 3.4. If (W, d) and (Wh,dh) are closed Hilbert complexes, with morphisms
πh and ih satisfying the above assumptions, then πh (and thus ih) induces an
isomorphism on cohomology.

Remark 4. This result is slightly more general than Arnold, Falk, and Winther [3,
Theorem 3.4], which only treated the case of a bounded, closed Hilbert complex.
However, the proof is essentially identical.

Next, suppose that (V,d) and (Vh,dh) are bounded, closed Hilbert complexes;
for example, they may be the domain complexes corresponding, respectively, to
closed complexes (W, d) and (Wh,dh). We now show that the Poincaré inequality
for (Vh,dh) can be written entirely in terms of the Poincaré constant for (V,d),
denoted by cP , along with the operator norms of ih and πh.

Theorem 3.5. Let (V,d) and (Vh,dh) be bounded, closed Hilbert complexes, with
morphisms ih : Vh ↪→ V and πh : V → Vh such that πkh ◦ ikh = idV k

h
for each k. Then

‖vh‖Vh
≤ cP

∥∥πkh∥∥∥∥ik+1
h

∥∥ ‖dhvh‖Vh
, ∀vh ∈ Zk⊥h .

Proof. Given vh ∈ Zk⊥h , let z ∈ Zk⊥ be the unique element such that dz = dihvh =
ihdhvh. Then, applying the abstract Poincaré inequality on V ,

‖z‖V ≤ cP ‖dz‖V = cP ‖ihdhvh‖V ≤ cP
∥∥ik+1
h

∥∥ ‖dhvh‖Vh
.

It now suffices to show ‖vh‖Vh
≤
∥∥πkh∥∥ ‖z‖V . Observe that vh − πhz ∈ V kh , and

furthermore,

dhπhz = πhdz = πhihdhvh = dhvh,

so vh − πhz ∈ Zkh ⊥ vh. Therefore,

‖vh‖2Vh
= 〈vh, πhz〉Vh

+ 〈vh, vh − πhz〉Vh
= 〈vh, πhz〉Vh

≤ ‖vh‖Vh

∥∥πkh∥∥ ‖z‖V ,
and the result follows. �

Corollary 3.6. If (V,d) and (Vh,dh) are the domain complexes corresponding,
respectively, to closed Hilbert complexes (W, d) and (Wh,dh), then

‖vh‖Vh
≤ cP

∥∥πkh∥∥∥∥ik+1
h

∥∥ ‖dhvh‖h , ∀vh ∈ Zk⊥h .
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Finally, given the importance of the projection morphism πh in finite element
exterior calculus, we now prove a short but useful result on the existence of such
projections. In particular, the next theorem states how a projection morphism on
another complex, W ′, can be “pulled back” to obtain one on W , as pictured in the
following diagram:

W
f

//

πh

!!C
C

C
C W ′

π′h

}}{{
{{

{{
{{

Wh

ih

aaCCCCCCCC i′h

=={{{{{{{{

.

In Section 4, this will allow us to obtain a projection morphism for the de Rham
complex on a manifold, by pulling back the usual projection defined on its piecewise-
linear triangulation.

Theorem 3.7. Let (W, d) and (Wh,dh) be Hilbert complexes with an injection
morphism ih : Wh ↪→ W . Suppose there exists another complex (W ′,d′) and a
morphism f : W → W ′, such that i′h = f ◦ ih : Wh ↪→ W ′ is injective and has a
corresponding projection morphism π′h : W ′ →Wh with π′h ◦ i′h = idWh

. Then there
also exists a projection morphism πh : W →Wh such that πh ◦ ih = idWh

.

Proof. Take πh = π′h ◦ f . Then πh ◦ ih = π′h ◦ f ◦ ih = π′h ◦ i′h = idWh
. �

3.2. Modified inner product and Hodge decomposition. As noted in the
previous section, this generalized framework introduces some new complications,
due to the possible non-unitarity of ih. The following result shows that the subspace
ihWh ⊂ W can be identified with Wh, endowed with a modified inner product
〈Jh·, ·〉h instead of 〈·, ·〉h. This defines a modified Hilbert complex, which will be
denoted by (i∗hW, dh).

Theorem 3.8. Let ih : Wh ↪→W be a morphism of Hilbert complexes, and define
Jkh = ik∗h i

k
h : W k

h →W k
h for each k. Then

〈Jhuh, vh〉h = 〈ihuh, ihvh〉 , ∀uh, vh ∈W k
h ,

is an inner product, which defines a Hilbert space structure on W k
h .

Proof. 〈ihuh, ihvh〉 = 〈i∗hihuh, vh〉h = 〈Jhuh, vh〉h. This is an inner product, since

ih is linear and injective. Moreover, W k
h is closed with respect to the induced norm,

since ‖ihvh‖ ≤ ‖ih‖ ‖vh‖ and ih is bounded, so this is indeed a Hilbert space. �

Remark 5. We use the notation Jh due to the similarity with the Jacobian determi-
nant used in the “change of variables” formula for integration. Note that, although
each Jkh : W k

h →W k
h is a bounded linear map, Jh is not necessarily a Hilbert complex

automorphism. This is because, in general, d commutes with ih but not with its
adjoint i∗h. Also, clearly ikh is unitary if and only if Jkh = idWk

h
.

Now, if ih does not preserve the inner product, in particular it does not preserve
orthogonality: that is, uh ⊥ vh does not imply ihuh ⊥ ihvh. This has significant

implications for the Hodge decomposition, since although W k
h = Bk

h ⊕ Hkh ⊕ Zk⊥Wh
h

is Wh-orthogonal, it is generally not i∗hW -orthogonal. Therefore, we define the new,
modified subspaces

H′kh =
{
z ∈ Zkh

∣∣ ihz ⊥ ihBk
h

}
, Zk⊥′Wh =

{
v ∈W k

h

∣∣ ihv ⊥ ihZkh} .
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This gives a modified Hodge decomposition W k
h = Bk

h ⊕ H′kh ⊕ Zk⊥′Wh , which is no
longer necessarily Wh-orthogonal, but is now i∗hW -orthogonal. As before, this also

gives a modified Hodge decomposition for the domain complex V kh = Bk
h⊕H′kh ⊕Zk⊥′h .

3.3. Stability and convergence of the mixed method. Let (W, d) be a closed
Hilbert complex with domain complex (V,d). To approximate a solution to the
mixed variational problem (3), suppose that (Wh,dh) is another Hilbert complex
with domain complex (Vh,dh), and that we have morphisms ih : Vh ↪→ V and
πh : V → Vh such that πkh ◦ ikh = idV k

h
for each k. We assume that ih is W -

bounded, so that it also can be extended to Wh ↪→W , but that πh might only be
V -bounded. Then consider the solution of the following mixed variational problem:
Find (σh, uh, ph) ∈ V k−1

h × V kh × Hkh satisfying

(5)

〈σh, τh〉h − 〈uh,dhτh〉h = 0, ∀τh ∈ V k−1
h ,

〈dhσh, vh〉h + 〈dhuh,dhvh〉h + 〈ph, vh〉h = 〈fh, vh〉h , ∀vh ∈ V
k
h ,

〈uh, qh〉h = 0, ∀qh ∈ Hkh.

This corresponds to the generalized variational problem (2) with bilinear form

Bh (σh, uh, ph; τh, vh, qh) = 〈σh, τh〉h − 〈uh,dhτh〉h
+ 〈dhσh, vh〉h + 〈dhuh,dhvh〉h + 〈ph, vh〉h − 〈uh, qh〉h

and functional Fh (τh, vh, qh) = 〈fh, vh〉h. The following theorem establishes the
inf-sup condition for the mixed method (5).

Theorem 3.9. Let (V,d) be the domain complex of a closed Hilbert complex (W, d),
and let (Vh,dh) be a family of domain complexes of closed Hilbert complexes (Wh,dh),
equipped with uniformly W -bounded inclusion morphisms ih : Vh ↪→ V and V -bounded
projection morphisms πh : V → Vh satisfying πkh ◦ ikh = idV k

h
. Then there exists a

constant γh > 0, depending only on cP and the norms of ih and πh, such that for
any (σh, uh, ph) ∈ V k−1

h ×V kh ×Hkh, there exists (τh, vh, qh) ∈ V k−1
h ×V kh ×Hkh where

Bh (σh, uh, ph; τh, vh, qh)

≥ γh
(
‖σh‖Vh

+ ‖uh‖Vh
+ ‖ph‖h

) (
‖τh‖Vh

+ ‖vh‖Vh
+ ‖qh‖h

)
.

Proof. This is just Theorem 2.10 applied to the Hilbert complex (Vh,dh), combined
with the fact that the Poincaré constant is cP ‖πh‖ ‖ih‖ by Theorem 3.5. �

Remark 6. Since we have assumed that the morphisms ih and πh are uniformly
bounded with respect to h, it follows that the inf-sup constants γh can be bounded
below by some constant, which is independent of h.

The goal, for the remainder of this section, will be to control the error

‖σ − ihσh‖V + ‖u− ihuh‖V + ‖p− ihph‖ ,
where (σ, u, p) is a solution to (3) and (σh, uh, ph) is a solution to (5). To do this,
it will be helpful to introduce the following modified mixed problem on i∗hV : Find

(σ′h, u
′
h, p
′
h) ∈ V k−1

h × V kh × H′kh satisfying

(6)

〈Jhσ′h, τh〉h − 〈Jhu
′
h,dhτh〉h = 0, ∀τh ∈ V k−1

h ,

〈Jhdhσ
′
h, vh〉h + 〈Jhdhu

′
h,dhvh〉h + 〈Jhp′h, vh〉h = 〈i∗hf, vh〉h , ∀vh ∈ V

k
h ,

〈Jhu′h, q′h〉h = 0, ∀q′h ∈ H′kh .
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This has the corresponding bilinear form

B′h (σ′h, u
′
h, p
′
h; τh, vh, q

′
h) = 〈Jhσ′h, τh〉h − 〈Jhu

′
h,dhτh〉h

+ 〈Jhdhσ
′
h, vh〉h + 〈Jhdhu

′
h,dhvh〉h + 〈Jhp′h, vh〉h − 〈Jhu

′
h, q
′
h〉h ,

and the functional F ′h (τh, vh, q
′
h) = 〈i∗hf, vh〉h.

This is precisely equivalent to the mixed problem on the subcomplex ihVh ⊂ V ,
which has the bounded cochain projection ih ◦ πh : V → ihVh. Therefore, the
stability and convergence analysis of Arnold, Falk, and Winther [3] can be applied
immediately to this modified discrete problem. In the end, we will obtain the desired
bound by applying the triangle inequality,

(7) ‖σ − ihσh‖V + ‖u− ihuh‖V + ‖p− ihph‖
≤ ‖σ − ihσ′h‖V + ‖u− ihu′h‖V + ‖p− ihp′h‖

+ ‖ih (σh − σ′h)‖V + ‖ih (uh − u′h)‖V + ‖ih (ph − p′h)‖ .

Observe that, since ih is bounded, we can write

‖ih (σh − σ′h)‖V + ‖ih (uh − u′h)‖V + ‖ih (ph − p′h)‖
≤ C

(
‖σh − σ′h‖Vh

+ ‖uh − u′h‖Vh
+ ‖ph − p′h‖h

)
,

so it will suffice to control the error between solutions to (5) and (6) in Vh.

Theorem 3.10. Under the assumptions of Theorem 3.9, suppose that (σh, uh, ph) ∈
V k−1
h ×V kh ×Hkh is a solution to (5) and (σ′h, u

′
h, p
′
h) ∈ V k−1

h ×V kh ×H′kh is a solution
to (6). Then

‖σh − σ′h‖Vh
+ ‖uh − u′h‖Vh

+ ‖ph − p′h‖h ≤ C (‖fh − i∗hf‖h + ‖I − Jh‖ ‖f‖) .

Proof. For any (τ, v, q) ∈ V k−1
h × V kh × Hkh, we can write

Bh (σh − τ, uh − v, ph − q; τh, vh, qh) = Bh (σh − σ′h, uh − u′h, ph − p′h; τh, vh, qh)

+Bh (σ′h − τ, u′h − v, p′h − q; τh, vh, qh) .

Ignoring the first term momentarily, observe for the second term that

Bh (σ′h, u
′
h, p
′
h; τh, vh, qh) = B′h (σ′h, u

′
h, p
′
h; τh, vh, qh)

+ 〈(I − Jh)σ′h, τh〉h − 〈(I − Jh)u′h,dhτh〉h + 〈(I − Jh) dhσ
′
h, vh〉h

+ 〈(I − Jh) dhu
′
h,dhvh〉h + 〈(I − Jh) p′h, vh〉h − 〈(I − Jh)u′h, qh〉h ,

so by the variational principles (5) and (6),

B′h (σ′h, u
′
h, p
′
h; τh, vh, qh) = 〈i∗hf, vh〉h − 〈Jhu

′
h, qh〉h ,

Bh (σh, uh, ph; τh, vh, qh) = 〈fh, vh〉h .

Therefore,

Bh (σh − σ′h, uh − u′h, ph − p′h; τh, vh, qh) = 〈fh − i∗hf, vh〉h + 〈u′h, qh〉h
− 〈(I − Jh)σ′h, τh〉h + 〈(I − Jh)u′h,dhτh〉h − 〈(I − Jh) dhσ

′
h, vh〉h

− 〈(I − Jh) dhu
′
h,dhvh〉h − 〈(I − Jh) p′h, vh〉h ,
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so using the boundedness of the bilinear form and Cauchy–Schwarz, we get the
upper bound

Bh (σh − τ, uh − v, ph − q; τh, vh, qh)

≤ C
(
‖fh − i∗hf‖h + ‖PHh

u′h‖h + ‖I − Jh‖
(
‖σ′h‖Vh

+ ‖u′h‖Vh
+ ‖p′h‖h

)
+ ‖σ′h − τ‖Vh

+ ‖u′h − v‖Vh
+ ‖p′h − q‖h

)(
‖τh‖Vh

+ ‖vh‖Vh
+ ‖qh‖h

)
.

Next, Theorem 3.9 gives the lower bound

Bh (σh − τ, uh − v, ph − q; τh, vh, qh)

≥ γh
(
‖σh − τ‖Vh

+ ‖uh − v‖Vh
+ ‖ph − q‖h

) (
‖τh‖Vh

+ ‖vh‖Vh
+ ‖qh‖h

)
for some (τh, vh, qh) ∈ V k−1

h ×V kh ×Hkh, where γh can be bounded below independently
of h. Therefore, combining the upper and lower bounds and dividing out ‖τh‖Vh

+

‖vh‖Vh
+ ‖qh‖h, we get

‖σh − τ‖Vh
+ ‖uh − v‖Vh

+ ‖ph − q‖h
≤ C

(
‖fh − i∗hf‖h + ‖PHh

u′h‖h + ‖I − Jh‖
(
‖σ′h‖Vh

+ ‖u′h‖Vh
+ ‖p′h‖h

)
+ ‖σ′h − τ‖Vh

+ ‖u′h − v‖Vh
+ ‖p′h − q‖h

)
.

This expression can be simplified considerably by choosing τ = σ′h, v = u′h, and
q = PHh

p′h, so applying the triangle inequality gives the error estimate

‖σh − σ′h‖Vh
+ ‖uh − u′h‖Vh

+ ‖ph − p′h‖h
≤ C

(
‖fh − i∗hf‖h + ‖PHh

u′h‖h + ‖I − Jh‖ ‖f‖+ ‖p′h − q‖h
)
.

All that remains is to deal with the terms ‖PHh
u′h‖h and ‖p′h − q‖h. First, since u′h is

i∗hV -orthogonal to H′kh , the modified Hodge decomposition lets us write u′h = u′B+u′⊥,
where u′B ∈ Bk

h and u′⊥ ∈ Zk⊥′h . Now, observe that PHh
u′B = 0 since Bk

h ⊥ Hkh, and
furthermore PHh

Jhu
′
⊥ = 0 since u′⊥ ∈ Zk⊥′h implies Jhu

′
⊥ ⊥ Zkh. Therefore,

‖PHh
u′h‖h = ‖PHh

u′⊥‖h = ‖PHh
(I − Jh)u′⊥‖h ≤ C ‖I − Jh‖ ‖f‖ .

Next, since p′h ∈ H′kh ⊂ Zkh, the Hodge decomposition gives p′h = PBh
p′h + PHh

p′h =
PBh

p′h + q. Also, similar to the previous term, since p′h ∈ H′kh we have Jhp
′
h ⊥ Bk

h,
so PBh

Jhp
′
h = 0. Thus,

‖p′h − q‖h = ‖PBh
p′h‖h = ‖PBh

(I − Jh) p′h‖h ≤ C ‖I − Jh‖ ‖f‖ .

Therefore, these two terms can be combined with the existing ‖I − Jh‖ ‖f‖ term,
leaving the final error estimate,

‖σh − σ′h‖Vh
+ ‖uh − u′h‖Vh

+ ‖ph − p′h‖h ≤ C (‖fh − i∗hf‖h + ‖I − Jh‖ ‖f‖) ,

as desired, which completes the proof. �
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Corollary 3.11. If (σ, u, p) ∈ V k−1×V k×Hk is a solution to (3) and (σh, uh, ph) ∈
V k−1
h × V kh × Hkh is a solution to (5), then

‖σ − ihσh‖V + ‖u− ihuh‖V + ‖p− ihph‖
≤ C

(
inf

τ∈ihV k−1
h

‖σ − τ‖V + inf
v∈ihV k

h

‖u− v‖V + inf
q∈ihV k

h

‖p− q‖V +µ inf
v∈ihV k

h

‖PBu− v‖V

+ ‖fh − i∗hf‖h + ‖I − Jh‖ ‖f‖
)
,

where µ = µkh = sup
r∈Hk

‖r‖=1

∥∥(I − ikhπkh) r∥∥.

Proof. Use the triangle inequality, as in (7), and then apply Theorem 2.11 and
Theorem 3.10 to bound the respective error terms. �

This theorem establishes convergence, as long as our approximations satisfy
‖I − Jh‖ → 0 and ‖fh − i∗hf‖h → 0 when h→ 0. This raises the question of how to

choose fh ∈ V kh ; although clearly fh = i∗hf will work, in many cases this cannot be
computed efficiently. The next result demonstrates that, if Πh : W k →W k

h is any
bounded linear projection (i.e., satisfying Πh ◦ ikh = idWk

h
), then simply choosing

fh = Πhf is sufficient to get a quasi-optimally convergent solution.

Theorem 3.12. If Πh : W k → W k
h is a family of linear projections, bounded

uniformly with respect to h, then we have the inequality

‖Πhf − i∗hf‖h ≤ C
(
‖I − Jh‖ ‖f‖+ inf

φ∈ihWk
h

‖f − φ‖
)
.

Proof. Using the triangle inequality, we write

‖(Πh − i∗h) f‖h ≤ ‖(Πh − i∗hihΠh) f‖h + ‖(i∗h − i∗hihΠh) f‖h
= ‖(I − i∗hih) Πhf‖h + ‖i∗h (I − ihΠh) f‖h
≤ ‖I − Jh‖ ‖Πhf‖h + ‖i∗h‖ ‖(I − ihΠh) f‖
≤ C

(
‖I − Jh‖ ‖f‖+ inf

φ∈ihWk
h

‖f − φ‖
)
,

where the final step follows from the W -boundedness of Πh and the quasi-optimality
property of I − ihΠh, i.e., (I − ihΠh) f = (I − ihΠh) (f − φ) for any φ ∈ ihW k

h . �

3.4. Remarks on obtaining improved error estimates. Arnold, Falk, and
Winther [3] were also able to obtain improved error estimates by making some
additional assumptions: namely, that πh is W -bounded rather than merely V -
bounded, and that the Hilbert complex V satisfies a certain compactness property.
With these assumptions, the continuous solution operator K : W k →W k becomes
a compact operator, and hence converts the pointwise convergence of I − πh → 0
(which follows from the quasi-optimality property) to norm convergence. This norm
convergence is essential for applying the so-called “Aubin–Nitsche trick” (also known
as “L2 lifting”), where one obtains improved estimates by applying the solution
operator to the error term itself. Roughly speaking, one needs norm convergence,
rather than pointwise convergence, since the solution operator is being applied to
quantities that depend on the parameter h.

However, there are no such improved estimates for the additional error terms
obtained in the previous subsection. Essentially, this is because norm convergence
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is already required for ‖I − Jh‖ → 0 as h → 0, and there is no analogous quasi-
optimality result for Jh as there is for πh. Therefore, these terms remain the same,
and the improved estimates only apply to the terms already analyzed by Arnold,
Falk, and Winther [3] for the subcomplex case.

3.5. Convergence of the eigenvalue problem. While we have primarily focused
on the numerical approximation of the mixed variational problem, Arnold, Falk, and
Winther [3] also analyzed an eigenvalue problem associated to the Hodge Laplacian.
The extension of their eigenvalue convergence result to non-subcomplexes is fairly
straightforward, and follows from the results already given in this section, as we
will now show.

Consider the eigenvalue problem

(8)

〈σ, τ〉 − 〈u,dτ〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du,dv〉+ 〈p, v〉 = λ 〈u, v〉 , ∀v ∈ V k,

〈u, q〉 = 0, ∀q ∈ Hk,

the discrete problem

(9)

〈σh, τh〉h − 〈uh,dhτh〉h = 0, ∀τh ∈ V k−1
h ,

〈dhσh, vh〉h + 〈dhuh,dhvh〉h + 〈ph, vh〉h = λh 〈uh, vh〉h , ∀vh ∈ V
k
h ,

〈uh, qh〉h = 0, ∀qh ∈ Hkh,

and the modified discrete problem

(10)

〈Jhσ′h, τh〉h − 〈Jhu
′
h,dhτh〉h = 0, ∀τh ∈ V k−1

h ,

〈Jhdhσ
′
h, vh〉h + 〈Jhdhu

′
h,dhvh〉h + 〈Jhp′h, vh〉h = λ′h 〈u′h, vh〉h , ∀vh ∈ V

k
h ,

〈Jhu′h, q′h〉h = 0, ∀q′h ∈ H′kh .

As shown by Arnold, Falk, and Winther [3, Theorem 3.19], solutions to the subcom-
plex problem (10) converge to those of (8), which follows immediately from the fact
that ihK

′
hPh converges to K in the L

(
W k,W k

)
operator norm. We now show that

this result also holds for the problem (9).

Theorem 3.13. Let (V,d) be the domain complex of a closed Hilbert complex (W, d)
satisfying the compactness property, and let (Vh,dh) be a family of domain complexes
of closed Hilbert complexes (Wh,dh), equipped with morphisms ih : Wh ↪→ W and
πh : W →Wh such that πkh ◦ ikh = idWk

h
, where ih and πh are bounded uniformly with

respect to h. Then the discrete eigenvalue problems (9) converge to the problem (8).

Proof. It suffices to show that ihKhPh converges to K in the L
(
W k,W k

)
operator

norm. (As stated by Arnold, Falk, and Winther [3], the sufficiency of norm conver-
gence follows from Boffi, Brezzi, and Gastaldi [5].) Using the triangle inequality, we
write

‖K − ihKhPh‖ ≤ ‖K − ihK ′hPh‖+ ‖ih (K ′h −Kh)Ph‖ .
The first term on the right-hand side converges to zero, by Arnold, Falk, and
Winther [3, Corollary 3.17]. For the second term, recall that ih and πh are assumed
to be bounded uniformly with respect to h, and since ‖Ph‖ = ‖πhPihWh

‖ ≤ ‖πh‖,
it follows that Ph is bounded uniformly with respect to h, as well. Therefore, it
suffices to control ‖K ′h −Kh‖ in L

(
W k
h ,W

k
h

)
. However, the earlier analysis in
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Theorem 3.10 shows that ‖K ′h −Kh‖ ≤ C ‖I − Jh‖, which completes the proof of
convergence. �

4. Application to differential forms on Riemannian manifolds

In this section, we apply the framework developed in Section 3 to the Hodge–
de Rham complex of differential forms on a compact oriented Riemannian manifold.
We will begin by first recalling the basic definitions of the de Rham complex of
smooth forms; its completion as a Hilbert complex, called the L2-de Rham complex;
and the corresponding domain complex, which dovetails with the theory of Sobolev
spaces. Next, we discuss the general problem of approximating the de Rham
complex on a manifold M by a family of “nearby” manifolds Mh, each equipped
with an orientation-preserving diffeomorphism ϕh : Mh → M . We subsequently
establish the correspondence between this setup and the generalized Hilbert complex
approximation framework of Section 3, obtaining estimates for the appropriate maps,
as needed. We then specialize the discussion a bit further by considering the case
when M is a submanifold of some larger manifold N ; in this case, the approximating
submanifolds Mh ⊂ N can be taken to lie in a tubular neighborhood of M , and
ϕh : Mh →M is obtained by projection along normals.

Finally, we then look at the specific case where N = Rn, and where we wish to
approximate a solution on some m-dimensional Euclidean hypersurface M ⊂ Rn,
n = m+ 1, by finite elements defined on a piecewise-linear mesh Mh ⊂ Rn. This is
now the realm of of surface finite element methods, as analyzed in Dziuk [16], Demlow
and Dziuk [15], Demlow [14]. We subsequently show how our results of the previous
sections recover the analysis framework and a priori estimates of Dziuk [16], Demlow
and Dziuk [15], Demlow [14], extending their results from scalar functions on 2-
and 3-surfaces to general k-forms on arbitrary dimensional hypersurfaces. We also
indicate how our results generalize the a priori estimates of Dziuk [16], Demlow
[14] from nodal finite element methods for the Laplace–Beltrami operator to mixed
finite element methods for the Hodge Laplacian.

4.1. A brief review of Hodge–de Rham theory. Given a smooth, m-dimensional
manifold M , let Ωk(M) denote the space of smooth k-forms on M for k = 0, 1, . . . ,m,
and let dk : Ωk(M) → Ωk+1(M) be the exterior derivative for k = 0, 1, . . . ,m− 1.
Then (Ω(M),d) is a cochain complex,

0 // Ω0(M)
d // Ω1(M)

d // · · · d // Ωm(M) // 0.

called the de Rham complex on M .
Suppose that, in addition, M is oriented and compact, and has a Riemannian

metric g. Then, we can define the L2-inner product of any u, v ∈ Ωk(M) to be

〈u, v〉L2Ω(M) =

∫
M

u ∧ ?gv =

∫
M

〈〈u, v〉〉g µg.

Here, ?g : Ωk(M)→ Ωm−k(M) is the Hodge star operator associated to the metric,
〈〈·, ·〉〉g : Ωk(M)× Ωk(M)→ C∞(M) is the pointwise inner product induced by the

metric and µg is the Riemannian volume form. (The Hodge star is defined precisely
so that u ∧ ?gv = 〈〈u, v〉〉g µg, and it follows that ?g is an isometry.) The Hilbert

space L2Ωk(M) is then defined, for each k, to be the completion of Ωk(M) with
respect to the L2-inner product.
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To show that this forms a Hilbert complex
(
L2Ω(M),d

)
, we must now define the

weak exterior derivative dk on some dense domain of L2Ωk(M). Given u ∈ L2Ωk(M),
we say that w ∈ L2Ωk+1(M) is the weak exterior derivative of u, and write du = w,
if

〈u,d∗v〉L2Ω(M) = 〈w, v〉L2Ω(M) , ∀v ∈ Ωk+1
c (M),

where Ωk+1
c (M) denotes the space of smooth (k + 1)-forms with compact support.

Therefore, one defines the dense domains HΩk(M) ⊂ L2Ωk(M), consisting of
elements in L2Ωk(M) that have a weak exterior derivative in L2Ωk+1(M). Thus,
we have

0 // HΩ0(M)
d // HΩ1(M)

d // · · · d // HΩm(M) // 0.

where each HΩk(M) can be given the graph inner product

〈u, v〉HΩ(M) = 〈u, v〉L2Ω(M) + 〈du,dv〉L2Ω(M) .

(Note the similarity with the definition of the Sobolev spaces H1, H (curl), and
H (div).) Since each HΩk(M) is complete, it follows that dk is a closed operator;
therefore,

(
L2Ω(M),d

)
is indeed a Hilbert complex, and (HΩ(M),d) is the corre-

sponding domain complex. Furthermore, it can be shown that
(
L2Ω(M),d

)
satisfies

the compactness condition, so these Hilbert complexes are in fact closed and satisfy
the conditions necessary for the improved error estimates. (For more details on the
construction of these complexes, see Arnold, Falk, and Winther [3].)

4.2. Diffeomorphic Riemannian manifolds. Let (M, g) be an oriented, com-
pact, m-dimensional Riemannian manifold, and suppose (Mh, gh) is a family of
oriented, compact Riemannian manifolds, parametrized by h and equipped with
orientation-preserving diffeomorphisms ϕh : Mh → M . Now, since the pullback
ϕ∗h : Ω(M) → Ω (Mh) and pushforward ϕh∗ : Ω (Mh) → Ω(M) commute with the
exterior derivative, they give a cochain isomorphism between the smooth de Rham
complexes Ω (Mh) and Ω (M).

We now show that these maps are bounded, and hence can be extended to Hilbert
complex isomorphisms between L2Ω (Mh) and L2Ω(M), following the results of
Stern [29]. Given any point x ∈ Mh, let {e1, . . . , em} be a positively-oriented, gh-
orthonormal basis of the tangent space TxMh, and let {f1, . . . , fm} be a positively-
oriented, g-orthonormal basis of Tϕh(x)M . Then, with respect to these bases, the
tangent map Txϕh : TxMh → Tϕh(x)M can be represented by an m × m matrix
Φ. Moreover, since ϕh is a diffeomorphism, the matrix Φ has m strictly positive
singular values,

α1(x) ≥ · · · ≥ αm(x) > 0.

These singular values are orthogonally invariant, so they are independent of the
choice of basis at each x and ϕh(x). Hence, they are an intrinsic property of the
diffeomorphism, and thus we refer to them as the singular values of ϕh at x.

Theorem 4.1 (Stern [29], Corollary 6). Let (Mh, gh) and (M, g) be oriented,
m-dimensional Riemannian manifolds, and let ϕh : Mh → M be an orientation-
preserving diffeomorphism with singular values α1(x) ≥ · · · ≥ αn(x) > 0 at each
x ∈ Mh. Given p, q ∈ [1,∞] such that 1/p + 1/q = 1, and some k = 0, . . . ,m,
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suppose that the product (α1 · · ·αm−k)
1/p

(αm−k+1 · · ·αm)
−1/q

is bounded uniformly
on Mh. Then, for any ω ∈ LpΩk (Mh),∥∥(α1 · · ·αk)

1/q
(αk+1 · · ·αm)

−1/p∥∥−1

∞ ‖ω‖p
≤ ‖ϕh∗ω‖p ≤

∥∥(α1 · · ·αm−k)
1/p

(αm−k+1 · · ·αm)
−1/q∥∥

∞ ‖ω‖p .

Sketch of proof. At each point, a k-form is k-linear and totally antisymmetric.
Therefore, the pullback is controlled pointwise by the product of the k largest
singular values of ϕh, while the pushforward is controlled by the product of the k
largest singular values of ϕ−1

h (i.e., the reciprocals of the k smallest singular values
of ϕh). Thus, we obtain pointwise inequalities

|ϕ∗hη| ≤ α1 · · ·αk (|η| ◦ ϕh) , |ϕh∗ω| ≤
[
(αm−k+1 · · ·αm)

−1 |ω|
]
◦ ϕ−1

h .

For the Lp upper bound, we can apply the pushforward inequality to get a factor
of (αm−k+1 · · ·αm)

−p
in the integrand. Using the change of variables theorem

introduces the Jacobian determinant α1 · · ·αm, so multiplying by this gives a factor
of α1 · · ·αm−k (αm−k+1 · · ·αm)

−p+1
. We can then use Hölder’s inequality to pull

out the L∞-norm of this expression, and raising to the exponent 1/p gives∥∥(α1 · · ·αm−k)
1/p

(αm−k+1 · · ·αm)
−1+1/p∥∥

∞

=
∥∥(α1 · · ·αm−k)

1/p
(αm−k+1 · · ·αm)

−1/q∥∥
∞,

as desired. The lower bound follows in a similar fashion, starting with the identity
ω = ϕ∗hϕh∗ω and applying the pointwise pullback inequality. �

Since M and Mh are compact, the uniform boundedness hypothesis of this
theorem is clearly satisfied. Therefore, taking p = q = 2, it follows that the diffeo-
morphism ϕh induces Hilbert complex isomorphisms ϕh∗ : L2Ω (Mh) → L2Ω(M)
and ϕ∗h : L2Ω (M)→ L2Ω (Mh).

Now, take W = L2Ω(M), and suppose that we have discrete subcomplexes Wh ⊂
L2Ω (Mh) with inclusion morphisms i′h : Wh ↪→ L2Ω (Mh), as well as projection
morphisms π′h : L2Ω (Mh)→Wh bounded uniformly in h. Following the approach
of Theorem 3.7, we can pull these back to obtain the injection morphisms ih =
ϕh∗ ◦ i′h : Wh ↪→W and projection morphisms πh = π′h ◦ϕ∗h : W →Wh, which satisfy
πh ◦ ih = idWh

. An important consequence of this is stated in the following corollary
of Theorem 3.7 and Theorem 4.1.

Corollary 4.2. Orientation-preserving diffeomorphisms induce an equivalence of
families of finite element subcomplexes of the L2-de Rham complex with bounded
cochain projections. In particular, any triangulation Th →M gives corresponding
P−r and Pr families (cf. Arnold, Falk, and Winther [2, 3]) of piecewise-polynomial
differential forms on M .

Finally, let us see how this definition of ih can be used to control the error term
‖I − Jh‖. Theorem 4.1 implies that, for any vh ∈ V kh , we have the estimate∥∥(α1 · · ·αk)

1/2
(αk+1 · · ·αm)

−1/2∥∥−1

∞ ‖vh‖h
≤ ‖ihvh‖ ≤

∥∥(α1 · · ·αm−k)
1/2

(αm−k+1 · · ·αm)
−1/2∥∥

∞ ‖vh‖h ,
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and since Jh = i∗hih, this implies∥∥α1 · · ·αk (αk+1 · · ·αm)
−1∥∥−1

∞ ‖vh‖h
≤ ‖Jhvh‖h ≤

∥∥α1 · · ·αm−k (αm−k+1 · · ·αm)
−1∥∥

∞ ‖vh‖h .

This bounds the spectrum of the self-adjoint operator Jh, so finally we obtain a
bound on the error term ‖I − Jh‖ in terms of the singular values,

(11)
‖I − Jh‖ ≤ max

{ ∣∣∣1− ∥∥α1 · · ·αk (αk+1 · · ·αm)
−1∥∥−1

∞

∣∣∣ ,∣∣∣1− ∥∥α1 · · ·αm−k (αm−k+1 · · ·αm)
−1∥∥

∞

∣∣∣}.
It follows that, if each singular value satisfies |1− αi| ≤ Chs+1, then ‖I − Jh‖ ≤
Chs+1 as well, and moreover this will hold for every k = 0, . . . ,m. Obtaining such
bounds on the singular values, for particular choices of ϕh, will be the topic of the
next subsection.

4.3. Tubular neighborhoods and Euclidean hypersurfaces. Suppose that
(N, γ) is an oriented, n-dimensional Riemannian manifold, and let j : M ↪→ N be
the inclusion of a submanifold M , endowed with the metric g = j∗γ inherited from
N . If M is compact, then it is possible to construct a tubular neighborhood U
around M ; this is diffeomorphic to an open neighborhood of the zero section of the
normal bundle of M , so there is a normal projection map a : U →M . In particular,
there exists some δ0 > 0 such that the set Mδ0 , consisting of points in N whose
Riemannian distance to M is less than δ0, is contained in U . (For details, see, e.g.,
Abraham and Marsden [1], Lang [23], Lee [24].) Now, let jh : Mh ↪→ N be a family
of inclusions of m-dimensional submanifolds Mh, parametrized by h, each endowed
with the Riemannian metric gh = j∗hγ. If Mh lies inside the tubular neighborhood
U and is transverse to a (i.e., Mh corresponds to a section of a), then it is possible
to define the diffeomorphism ϕh = a|Mh

: Mh →M .
An important case is when N = Rn, where n = m + 1 and γ is the standard

Euclidean metric, so that M ⊂ Rn is an oriented Euclidean hypersurface. It is
possible to define a signed distance function δ : U → R on the tubular neighborhood,
so that |δ(x)| = dist (x,M) and ∇δ(x) = ν(x) is the outward-facing unit normal
to M at a(x). Every point x ∈ U in the tubular neighborhood has a unique
decomposition

x = a(x) + δ(x)ν(x),

so the normal projection map a : U →M can be written as

a(x) = x− δ(x)ν(x).

Therefore,

∇a = I −∇δ ⊗ ν − δ∇ν = I − ν ⊗ ν − δ∇ν = P + δS,

where P = I − ν ⊗ ν is the projection map onto TM and S = −∇ν = −∇2δ
is the shape operator, or Weingarten map. (Note that Dziuk [16], Demlow and
Dziuk [15], Demlow [14] define a Weingarten map H = −S using the opposite sign
convention, but this is less common in the differential geometry literature.)

Instead of directly computing the tangent map Ta : U → M , we can look at
its adjoint, which “lifts” vectors on M to those on U . Given the pullback map
a∗ : Ω1(M)→ Ω1(U), the metric can then be used to identify covectors with vectors,
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thereby obtaining a pullback map of vector fields X(M)→ X(U). Specifically, let
Y ∈ TyM and x ∈ a−1(y) ⊂ U . Then define the lifted vector a∗Y ∈ TxU satisfying

X · a∗Y = Ta(X) · Y, ∀X ∈ TxU.
In terms of the Riemannian sharp and flat maps, this can be written as

[a∗(Y )]
[

= a∗
(
Y [
)
⇐⇒ a∗Y =

[
a∗
(
Y [
)]]
.

The following theorem allows us to compute this lifted vector explicitly, in terms of
the signed distance function and shape operator.

Theorem 4.3. Let M be an oriented, compact, m-dimensional hypersurface of
Rm+1 with a tubular neighborhood U . If Y ∈ TyM and x ∈ a−1(y) ⊂ U , then the
lifted vector a∗Y ∈ TxU satisfies

a∗Y = (I + δS)Y.

Proof. Extend Y to a constant vector field on Rm+1, so that Y = ∇ψ(y) for the

scalar function ψ(x) = x · Y . Using the definition of the gradient ∇ψ = (dψ)
]
,

and the fact that the exterior derivative d commutes with pullback, we have the
following chain of equalities:

a∗Y = a∗ (∇ψ) = [a∗ (dψ)]
]

= [d (a∗ψ)]
]

= ∇ (ψ ◦ a) .

Therefore, applying the chain rule, we get

a∗Y = ∇a(x) · ∇ψ (a(x)) = (P + δS)Y = (I + δS)Y,

where the last equality follows from PY = Y . �

Finally, when x ∈Mh, we can restrict to TxMh by composing with the adjoint of
jh, i.e., the projection Ph = I − νh ⊗ νh, which gives

Yh = j∗ha
∗Y = Ph (I + δS)Y.

This map j∗ha
∗ = Ph (I + δS) is immediately seen to be the adjoint of the restricted

tangent map Tϕh = T (a|Mh
) = T (a ◦ jh) = Ta ◦ Tjh. In the next theorem, we

bound the singular values of this map, thereby obtaining an estimate for the error
term ‖I − Jh‖ in the case of Euclidean hypersurfaces.

Theorem 4.4. Given an oriented, compact, m-dimensional hypersurface M ⊂ Rm+1

with a tubular neighborhood U , let Mh be a family of hypersurfaces lying in U and
transverse to its fibers, such that ‖δ‖∞ , ‖ν − νh‖∞ → 0 as h → 0. Then, for
sufficiently small h,

‖I − Jh‖ ≤ C
(
‖δ‖∞ + ‖ν − νh‖2∞

)
.

Proof. To obtain bounds on Yh = Pha
∗Y , and hence on the singular values, suppose

without loss of generality that |Y | = 1. By the triangle inequality,∣∣∣1− |Yh|2∣∣∣ ≤ ∣∣∣1− |a∗Y |2∣∣∣+
∣∣∣|a∗Y |2 − |Yh|2∣∣∣ .

For the first term, the eigenvalues of the shape operator are the principal curvatures
κ1 (x) , . . . , κm(x) for a surface parallel to M at x; as noted in Demlow and Dziuk
[15], Demlow [14], these are related to the principal curvatures at a(x) ∈M by

κi(x) =
κi (a(x))

1 + δ(x)κi (a(x))
.
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It follows that the eigenvalues of δS at x can be estimated by∣∣∣∣ δ(x)κi (a(x))

1 + δ(x)κi (a(x))

∣∣∣∣ =

∣∣∣∣1− 1

1 + δ(x)κi (a(x))

∣∣∣∣ ≤ C |δ(x)| .

Since a∗Y = (I + δS)Y and |Y | = 1, this immediately implies∣∣∣1− |a∗Y |2∣∣∣ ≤ C |δ| .
For the remaining term, observe that since Yh = Pha

∗Y ,

|Yh|2 = |a∗Y − νh (νh · a∗Y )|2 = |a∗Y |2 − (νh · a∗Y )
2
,

and therefore∣∣∣|a∗Y |2 − |Yh|2∣∣∣ = (νh · a∗Y )
2

= (Pνh · a∗Y )
2 ≤ |Pνh|2 |a∗Y |2 .

Now,

|Pνh|2 = |νh − ν (ν · νh)|2 = 1− (ν · νh)
2

= (1 + ν · νh) (1− ν · νh) ≤ 2 (1− ν · νh) ,

and since 2 (1− ν · νh) = |ν − νh|2, it follows that∣∣∣|a∗Y |2 − |Yh|2∣∣∣ ≤ |ν − νh|2 |a∗Y |2 ≤ |ν − νh|2 (1 +
∣∣∣1− |a∗Y |2∣∣∣) ≤ C |ν − νh|2 .

Putting these together, we have∣∣∣1− |Yh|2∣∣∣ ≤ C (|δ|+ |ν − νh|2) ,
from which it follows that at each x ∈Mh, the singular values satisfy

|1− αi| ≤ C
(
|δ|+ |ν − νh|2

)
, i = 1, . . . ,m.

Finally, applying (11), we obtain the uniform bound

‖I − Jh‖ ≤ C
(
‖δ‖∞ + ‖ν − νh‖2∞

)
,

which completes the proof. �

We now apply this theory to an important class of examples, where Mh corre-
sponds to a family of piecewise-linear triangulations (as in Dziuk [16], Demlow and
Dziuk [15]), or more generally, to the family of approximate surfaces obtained by
degree-s Lagrange interpolation over each element of the triangulation (as in Demlow
[14]), where the piecewise-linear case corresponds to s = 1. Here, the elements of
this triangulation are assumed to be “shape-regular and quasi-uniform of diameter
h” [14]. Note that Mh is always constructed from an underlying piecewise-linear
triangulation, even in the case of higher-order polynomial interpolation. Thus, by
Corollary 4.2, we can define the P−r and Pr families of finite element differential
forms on Mh, and obtain bounded cochain projections, even when s > 1.

By Demlow [14, Proposition 2.3], for sufficiently small h, the surfaces Mh obtained
by degree-s Lagrange interpolation satisfy

(12) ‖δ‖∞ ≤ Ch
s+1, ‖ν − νh‖∞ ≤ Ch

s.

Therefore, we obtain the following corollary to Theorem 4.4.

Corollary 4.5. If Mh is a family of surfaces approximating M , obtained by degree-s
Lagrange interpolation, then ‖I − Jh‖ ≤ Chs+1.
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Proof. Applying (12), we have

‖I − Jh‖ ≤ C
(
‖δ‖∞ + ‖ν − νh‖2∞

)
≤ Chs+1 + Ch2s ≤ Chs+1,

which completes the proof. �

This result generalizes Demlow [14, Proposition 4.1]—which applies only to scalar
functions (k = 0) on hypersurfaces of dimension m = 2, 3—to hold for arbitrary
k-forms, k = 0, . . . ,m, on hypersurfaces of any dimension. In particular, the special
case k = 0, m = 2, s = 1, gives ‖I − Jh‖ ≤ Ch2, which recovers the original estimate
of Dziuk [16] for piecewise-linear triangulation of surfaces in R3. The correspondence
between this framework, and that of Dziuk and Demlow, will be made explicit in
the following worked example.

Example 4.6 (The Hodge–Laplace operator on a 2-D surface). Let M be a closed,
two-dimensional surface, embedded in R3, and suppose the approximate surface Mh

is obtained from degree-s Lagrange interpolation over a piecewise-linear triangulation
Th. Assume that Th is contained in a tubular neighborhood of M , that its vertices
lie on M , and that its triangles are shape-regular and quasi-uniform of diameter h.

Take the continuous Hilbert complex to be the L2-de Rham complex on M , i.e.,
W = L2Ω(M) and V = HΩ(M). Since Th is piecewise-linear and simplicial, we
can take the discrete complex to be any of those considered in Arnold, Falk, and
Winther [2, 3]. For this example, let us take V kh to be the space of Pr k-forms, and

V k−1
h to be the space of Pr+1 (k − 1)-forms. We emphasize that the fact that Th is

a surface embedded in R3, rather than a flat region in R2, does not introduce any
additional complications as far as the discrete complex is concerned. Indeed, the
shape functions are defined with respect to a two-dimensional reference triangle,
and this reference triangle can be mapped onto a triangle embedded in R3 just
as easily as one in R2. These shape functions can, likewise, be lifted up from Th
to the curved triangles on the interpolated surface Mh. For nodal Lagrange finite
elements (k = 0), this observation was made by Dziuk [16] in the piecewise linear
case, leading to the development of surface finite elements, while Demlow [14] later
extended this argument to higher-order Lagrange polynomials. (Similar ideas had
also been used in the development of isoparametric finite elements for Euclidean
domains with curved boundaries.)

Now, given some f ∈ L2Ωk(M), we obtain a solution (σ, u, p) to the variational
problem (3) on M . For the discrete variational problem (5), we can use the tubular
neighborhood projection to take fh = a|∗Mh

f , thus obtaining a discrete solution
(σh, uh, ph) on Mh. The modified discrete solution (σ′h, u

′
h, p
′
h)—which is used only

for the analysis, but is not necessary for computation—also lives on Mh, while its
image (ihσ

′
h, ihu

′
h, ihp

′
h) lives on M itself.

Therefore, assuming sufficient elliptic regularity, the “improved estimates” of
Arnold, Falk, and Winther [2, 3] yield the L2 estimates for the modified problem,

‖u− ihu′h‖+ ‖p− ihp′h‖ ≤ Chr+1 ‖f‖Hr−1 ,

‖d (u− ihu′h)‖+ ‖σ − ihσ′h‖ ≤ Chr ‖f‖Hr−1 ,

‖d (σ − ihσ′h)‖ ≤ Chr−1 ‖f‖Hr−1 ,
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which can be combined into the single estimate

‖u− ihu′h‖+ ‖p− ihp′h‖+ h (‖d (u− ihu′h)‖+ ‖σ − ihσ′h‖)
+ h2 ‖d (σ − ihσ′h)‖ ≤ Chr+1 ‖f‖Hr−1 .

Applying Corollary 4.5 to account for the surface approximation error, we obtain
the final error estimate for the discrete problem,

‖u− ihuh‖+ ‖p− ihph‖+ h (‖d (u− ihuh)‖+ ‖σ − ihσh‖)
+ h2 ‖d (σ − ihσh)‖ ≤ C

(
hr+1 ‖f‖Hr−1 + hs+1 ‖f‖

)
.

In particular, this implies that choosing isoparametric elements, with r = s, yields
the optimal rate of convergence.

The case k = 0 and r = s = 1 corresponds to the lowest-order approximation
of the Laplace–Beltrami equation, where Mh is piecewise-linear and V 0

h consists of
piecewise-linear “hat functions” on Mh. In this case, the estimate above becomes

‖u− ihuh‖+ ‖p− ihph‖+ h ‖∇ (u− ihuh)‖ ≤ Ch2 ‖f‖ ,

which precisely recovers the estimate of Dziuk [16], Demlow and Dziuk [15]. More
generally, taking k = 0 with arbitrary r and s, we have

‖u− ihuh‖+ ‖p− ihph‖+ h ‖∇ (u− ihuh)‖ ≤ C
(
hr+1 ‖f‖Hr−1 + hs+1 ‖f‖

)
,

which agrees with Demlow [14].
On the other hand, we can also extend these estimates to the cases k = 1, which

corresponds to the mixed formulation of the vector Laplacian, and k = 2, which
corresponds to the mixed formulation of the scalar Laplacian. For k = 1, the
estimate for general r and s becomes

‖u− ihuh‖+ ‖p− ihph‖+ h (‖∇ × (u− ihuh)‖+ ‖σ − ihσh‖)
+ h2 ‖∇ (σ − ihσh)‖ ≤ C

(
hr+1 ‖f‖Hr−1 + hs+1 ‖f‖

)
,

while for k = 2, we obtain

‖u− ihuh‖+ ‖p− ihph‖+ h ‖σ − ihσh‖
+ h2 ‖∇ · (σ − ihσh)‖ ≤ C

(
hr+1 ‖f‖Hr−1 + hs+1 ‖f‖

)
.

4.4. Other variational crimes. The variational crimes framework developed in
Section 3 is quite general, representing a natural extension of the Strang lemmas
from Hilbert spaces to Hilbert complexes. As such, the standard “crimes” that are
typically analyzed in Hilbert spaces with the Strang lemmas may now be analyzed
in the setting of Hilbert complexes. These crimes—including numerical quadrature,
approximate coefficients, approximate boundary data, approximate domains, as
well as isoparametric and other geometric approximations to more complex domain
shapes—can all be represented as an approximate bilinear form Bh, an approximate
linear functional Fh, and an approximation subspace Vh 6⊂ V , as in (2). In addition,
techniques such as mass-lumping, which yield a number of benefits, such as discrete
maximum principles and more efficient evolution algorithms for parabolic equations,
are often analyzed in a similar way, and as such may now be analyzed in Hilbert
complexes through the framework developed in Section 3.
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5. Conclusion

We began the article in Section 2 with a review of the mathematical concepts
that play a fundamental role in finite element exterior calculus, as developed in
Arnold, Falk, and Winther [3]; these included abstract Hilbert complexes and their
morphisms, domain complexes, Hodge decomposition, the Poincaré inequality, the
Hodge Laplacian, mixed variational problems, and approximation using Hilbert
subcomplexes. In Section 3, we then considered approximation of a Hilbert complex
by a second complex, related to the first complex through an injective morphism
rather than through subcomplex inclusion. We developed several key results for this
pair of complexes and the maps between them, and then derived error estimates
for generalized Galerkin-type approximations of solutions to variational problems
using the approximating complex; these estimates can be viewed as generalizing
the results of Arnold, Falk, and Winther [3] to “external” approximations. Our
main abstract results are thus essentially Strang-type lemmas for approximating
variational problems in Hilbert complexes.

As an application of the new framework developed in Section 3, we developed a
second distinct set of results in Section 4 for the case of the Hodge–de Rham complex
of differential forms on a compact, oriented Riemannian manifold. We first reviewed
Hodge–de Rham theory, and then considered a pair of Riemannian manifolds related
by diffeomorphisms. We then established estimates for the maps needed to apply the
generalized Hilbert complex approximation framework from Section 3, subsequently
specializing this analysis to the case of a Euclidean hypersurface, with approximating
hypersurfaces living in a tubular neighborhood. The surface finite element methods,
as analyzed in Dziuk [16], Demlow and Dziuk [15], Demlow [14], fit precisely into
this class of approximation problems; as such, we illustrated how our results recover
the analysis framework and a priori estimates of Dziuk [16], Demlow and Dziuk
[15], Demlow [14], and also extend their results from scalar functions on 2- and
3-surfaces to general k-forms on arbitrary dimensional hypersurfaces. Our results
also generalize those earlier estimates from nodal finite element methods for the
Laplace–Beltrami operator to mixed finite element methods for the Hodge Laplacian.
By analyzing surface finite element methods using a combination of general tools
from differential geometry and functional analysis, we are led to a more geometric
analysis of surface finite element methods, whereby the main results become more
transparent.

There remain a number of interesting and challenging problems that were not
addressed in the current article. One such problem is the extension of the pointwise
error estimates of Demlow [14] for 0-forms to general k-forms; this analysis relies
on known results for the Green’s function of the Laplace–Beltrami operator on
the continuous surface (cf. [4]), and analogous results would be needed for general
k-forms. A second problem of interest is an extension of the Hilbert complex
framework to more general Banach complexes, as would be needed to handle some
nonlinear problems. This leads to a third interesting problem, which would involve
the extension of the weak-∗ convergence and contraction frameworks, used for
adaptive finite element methods for linear [9, 25] and nonlinear [22] problems, to
the setting of finite element exterior calculus, as well as to the surface finite element
setting.
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from: http://tel.archives-ouvertes.fr/tel-00004520/.

[11] Deckelnick, K., and G. Dziuk (1995), Convergence of a finite element method
for non-parametric mean curvature flow. Numer. Math., 72 (2), 197–222.
doi:10.1007/s002110050166.

[12] Deckelnick, K., and G. Dziuk (2003), Numerical approximation of mean curva-
ture flow of graphs and level sets. In Mathematical aspects of evolving interfaces
(Funchal, 2000), volume 1812 of Lecture Notes in Math., pages 53–87. Springer,
Berlin.

[13] Deckelnick, K., G. Dziuk, and C. M. Elliott (2005), Computation of geometric
partial differential equations and mean curvature flow. Acta Numer., 14, 139–
232. doi:10.1017/S0962492904000224.

http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1090/S0273-0979-10-01278-4
http://dx.doi.org/10.1090/S0025-5718-99-01072-8
http://dx.doi.org/10.1016/0022-1236(92)90147-B
http://dx.doi.org/10.1137/07069047X
http://tel.archives-ouvertes.fr/tel-00004520/
http://dx.doi.org/10.1007/s002110050166
http://dx.doi.org/10.1017/S0962492904000224


GEOMETRIC VARIATIONAL CRIMES 27

[14] Demlow, A. (2009), Higher-order finite element methods and pointwise error
estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47 (2),
805–827. doi:10.1137/070708135.

[15] Demlow, A., and G. Dziuk (2007), An adaptive finite element method for
the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J. Numer.
Anal., 45 (1), 421–442 (electronic). doi:10.1137/050642873.

[16] Dziuk, G. (1988), Finite elements for the Beltrami operator on arbitrary
surfaces. In Partial differential equations and calculus of variations, vol-
ume 1357 of Lecture Notes in Math., pages 142–155. Springer, Berlin.
doi:10.1007/BFb0082865.

[17] Dziuk, G. (1991), An algorithm for evolutionary surfaces. Numer. Math., 58 (6),
603–611. doi:10.1007/BF01385643.

[18] Dziuk, G., and C. M. Elliott (2007), Finite elements on evolving surfaces. IMA
J. Numer. Anal., 27 (2), 262–292. doi:10.1093/imanum/drl023.

[19] Dziuk, G., and J. E. Hutchinson (2006), Finite element approximations to
surfaces of prescribed variable mean curvature. Numer. Math., 102 (4), 611–648.
doi:10.1007/s00211-005-0649-7.

[20] Gross, P. W., and P. R. Kotiuga (2004), Electromagnetic theory and compu-
tation: a topological approach, volume 48 of Mathematical Sciences Research
Institute Publications. Cambridge University Press, Cambridge.

[21] Holst, M. (2001), Adaptive numerical treatment of elliptic systems on manifolds.
Adv. Comput. Math., 15 (1-4), 139–191. doi:10.1023/A:1014246117321.

[22] Holst, M., G. Tsogtgerel, and Y. Zhu (2010), Local convergence of
adaptive methods for nonlinear partial differential equations. Preprint.
arXiv:1001.1382 [math.NA].

[23] Lang, S. (2002), Introduction to differentiable manifolds. Universitext, Springer-
Verlag, New York, second edition.

[24] Lee, J. M. (1997), Riemannian manifolds, volume 176 of Graduate Texts in
Mathematics. Springer-Verlag, New York.

[25] Morin, P., K. G. Siebert, and A. Veeser (2008), A basic convergence result for
conforming adaptive finite elements. Math. Models Methods Appl. Sci., 18 (5),
707–737. doi:10.1142/S0218202508002838.
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