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Abstract. We consider multigrid and domain decomposition methods for the
numerical solution of electrostatics problems arising in biophysics. We com-
pare multigrid methods designed for discontinuous coefficients with domain
decomposition methods, including comparisons of standard multigrid meth-
ods, algebraic multigrid methods, additive and multiplicative Schwarz domain
decomposition methods, and acceleration of multigrid and domain decomposi-
tion methods with conjugate gradient methods. As a test problem, we consider
a linearization of the Poisson-Boltzmann equation, which describes the elec-
trostatic potential of a large complex biomolecule lying in an ionic solvent.

1. Introduction

In recent years, multigrid (MG) and domain decomposition (DD) methods have
been used extensively as tools for obtaining approximations to solutions of partial
differential equations (see, for example, the references in [15]). In this paper, we
consider MG and DD methods for the numerical solution of the Poisson-Boltzmann
equation, which describes the electrostatic potential of a large complex biomolecule
lying in an ionic solvent (see, for example, [3, 14] for an overview). We compare MG
methods designed for discontinuous coefficients with DD methods, when applied to
a two-dimensional, linearized Poisson-Boltzmann equation. Several approaches are
considered, including standard MG methods, algebraic MG methods, additive and
multiplicative Schwarz methods, and the acceleration of MG and DD methods with
conjugate gradient (CG) methods.

2. Background Material

The nonlinear Poisson-Boltzmann equation (PBE) for the dimensionless elec-
trostatic potential u(r) = ecφ(r)k−1

B T−1 has the form:

−∇ · (ε(r)∇u(r)) + κ̄2 sinh(u(r)) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri), r ∈ R
3, Φ(∞) = 0,
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where φ(r) denotes the electrostatic potential at field position r. The coefficients
appearing in the equation are necessarily discontinuous by several orders of magni-
tude, describing both the molecular surface (ε(r)) and an ion-exclusion layer (κ̄(r))
around the molecule. The placement and magnitude of atomic charges are repre-
sented by the source terms involving the delta-functions.

Using known analytical solutions for special situations, approximate boundary
conditions are obtained for a finite domain Ω ⊂ R

3 containing the molecule and
some of the surrounding solvent; the problem is then solved as a finite-boundary
problem. A linearized form of the equation is often solved as an approximation to
the full nonlinear problem [5, 9, 12]. Damped-inexact-Newton methods combined
with algebraic MG methods have been shown to be efficient and robust for the full
nonlinear problem [7, 8].

3. Multigrid Methods

Consider a nested sequence of finite-dimensional Hilbert spaces

H1 ⊂ H2 ⊂ · · · ⊂ HJ = H,

each with an associated inner-product (·, ·)k inducing the norm ‖·‖k = (·, ·)
1/2

k . Also
associated with eachHk is an operator Ak, assumed to be SPD with respect to (·, ·)k.
The spaces Hk, which may be finite element function spaces or simply Rnk (where
nk = dim(Hk)), are connected by prolongation operators Ik

k−1 ∈ L(Hk−1,Hk), and

restriction operators Ik−1
k ∈ L(Hk ,Hk−1). It is assumed that the operators satisfy

variational conditions:

(3.1) Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T .

These conditions hold naturally in the finite element setting, and are imposed di-
rectly in algebraic MG methods.

Given B ≈ A−1 in the space H, the basic linear method constructed from the
preconditioned system BAu = Bf has the form:

(3.2) un+1 = un − BAun + Bf = (I − BA)un + Bf.

Now, given some B, or some procedure for applying B, we can either formulate a
linear method using E = I − BA, or employ a CG method for BAu = Bf if B is
SPD.

The recursive formulation of MG methods has been well-known for more than
fifteen years; mathematically equivalent forms of the method involving product er-
ror propagators have been recognized and exploited theoretically only very recently.
In particular, it can be shown [2, 11] that if the conditions (3.1) hold, then the
MG error propagator can be factored as:

EJ = I − BJAJ = (I − TJ;J)(I − TJ;J−1) · · · (I − TJ;1),

where:

Ik
k−i = Ik

k−1I
k−1
k−2 · · · Ik−i+2

k−i+1 Ik−i+1
k−i , Ik−i

k = Ik−i
k−i+1I

k−i+1
k−i+2 · · · Ik−2

k−1 Ik−1
k , Ik

k = I,

TJ;1 = IJ
1 A−1

1 I1
JAJ , TJ;k = IJ

k RkIk
JAJ , k = 2, . . . , J,

where Rk ≈ A−1
k is the “smoothing” operator employed in each space Hk. We make

this remark simply to stress the similarities between MG methods and certain DD
methods discussed in the next section.
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For problems such as the Poisson-Boltzmann equation, the coefficient discon-
tinuities are complex, and they may not lie on coarse mesh element boundaries as
required for accurate finite element approximation (and as required for validity of
finite element error estimates). MG methods typically perform badly, and even the
regularity-free MG convergence theory [2] is invalid.

Possible approaches include coefficient averaging methods (cf. [1]) and the ex-
plicit enforcement of the conditions (3.1) (cf. [1, 6, 13]). By introducing a symbolic
stencil calculus and employing Maple or Mathematica, the conditions (3.1) can be
enforced algebraically in an efficient way for certain types of sparse matrices; details
may be found for example in [7].

4. Domain Decomposition Methods

DD methods were first proposed by H.A. Schwarz as a theoretical tool for
studying elliptic problems on complicated domains, constructed as the union of
simple domains. An interesting early reference not often mentioned is [10], con-
taining both analysis and numerical examples, and references to the original work
by Schwarz.

Given a domain Ω and coarse triangulation by N regions {Ωk} of mesh size
H , we refine (several times) to obtain a fine mesh of size h. The regions defined
by the initial triangulation Ωk are then extended by δk to form the “overlapping
subdomains” Ω′

k. Now, let V and V0 denote the finite element spaces associated
with the h and H triangulation of Ω, respectively. The variational problem in V

has the form:

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V.

The form a(·, ·) is bilinear, symmetric, coercive, and bounded, whereas f(·) is linear
and bounded. Therefore, through the Riesz representation theorem we can associate
with the above problem an abstract operator equation Au = f , where A is SPD.

DD methods can be seen as iterative methods for solving the above operator
equation, involving approximate projections of the error onto subspaces of V associ-
ated with the overlapping subdomains Ω′

k. To be more specific, let Vk = H1
0 (Ω′

k)∩V ,
k = 1, . . . , N ; it is not difficult to show that V = V1 + · · · + VN , where a coarse
space V0 may also be included in the sum.

As with MG methods, we denote Ak as the restriction of the operator A to
the space Vk. Algebraically, it can be shown that Ak = NT

k ANk, where Nk is the
natural inclusion in R

nk , and NT
k is the corresponding projection. In other words,

DD methods automatically satisfy the variation conditions (3.1) in the subspaces
Vk, k 6= 0. Now, if Rk ≈ A−1

k , we can define the approximate A-orthogonal projector
from V onto Vk as Tk = NkRkNT

k A. An overlapping DD method can be written as
a basic linear method as in equation (3.2), where the multiplicative Schwarz error
propagator E is:

E = I − BA = (I − TN )(I − TN−1) · · · (I − T0).

The additive Schwarz error propagator E is:

E = I − BA = I − ω(T0 + T1 + · · · + TN ).

An additive-multiplicative variant has been proposed in [4], which takes only the
coarse space projection an additive term in the following way:

E = I − BA = (I − TN )(I − TN−1) · · · (I − T1) − ωT0.
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Table 1. Various multigrid and domain decomposition methods.

Method Description
MG FEM-based MG, weighted Jacobi smoothing
M multiplicative Schwarz
A additive Schwarz (with a damping parameter)
AM multiplicative Schwarz with additive coarse term
CGMG CG preconditioned with MG
CGM CG preconditioned with M
CGA CG preconditioned with A
CGAM CG preconditioned with AM
MGG Algebraic MG, weighted Jacobi smoothing
CGMGG CG preconditioned with algebraic MG

This approach decouples the coarse problem in V0, allowing it to be solved in parallel
with the other subproblems.

5. An empirical comparison of MG and DD for a 2D PBE

We now compare several MG and DD methods for a two-dimensional, linearized
Poisson-Boltzmann equation. The numerical solution proceeds as follows for two
test problems.

In each case, we begin with a simple “triangular” molecule with three point
charges. In the first case, we force the molecule surface to align with the coarsest
mesh in the MG methods, and to align with the non-overlapped subdomains in the
DD methods. In the second case, the discontinuities do not align with the coarsest
mesh or the subdomain boundaries (the “non-aligned” case).

Beginning with an initial mesh size H , we uniformly refine the mesh five times,
yielding a mesh of size h. Subdomains are then given a small overlap (one fine mesh
triangle, δk = hk). Piecewise linear finite elements are used to discretize the prob-
lem in all subdomains for the DD methods, and on all levels for the MG methods;
the DD methods employ a coarse space. Figure 1 shows the initial triangulation
and a sample overlapped subdomain, and a sample solution. Table 1 gives a key to
the remaining figures.

Figure 2 shows the performance of the methods, as a function of CPU time on
a SPARC 10, for the aligned problem. The MG methods appear to be the most
efficient methods; however, it should be noted that inexact subdomain solvers often
lead to improved DD solve times (we employed a sparse direct method). Also, when
viewed as error reduction per iteration rather than time in Figure 3, multiplicative
Schwarz and multigrid have strikingly similar behavior.

The non-aligned case is illustrated in Figure 4. As expected, the standard MG
method fails when the conditions (3.1) are strongly violated. The DD methods
remain robust for this problem, whereas the algebraic MG methods appear to be
the most efficient. However, note that setup time for the algebraic MG methods
(although negligible for this problem) can be quite substantial for some problems.
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6. Summary and Conclusions

Convergence theorems for MG and DD methods, applicable in the presence
of discontinuous coefficients, rely heavily on the conditions (3.1). Although addi-
tional assumptions must be employed to prove that the convergence rate is inde-
pendent of the meshsize, number of levels, or number of subdomains, very general
proofs (although with no rate information) can be given using essentially only (3.1),
demonstrating the robustness of this approach.

While the conditions (3.1) are enforced for the algebraic MG methods, they also
hold automatically for DD methods, independent of the location of discontinuities
in the coefficients. This is not true for the coarse space, which is identical to the MG
coarse grid problem; the DD methods appearing in the plots here include a coarse
space, but do not explicitly enforce the conditions (3.1) for the coarse problem. If
the discontinuities were made worse, the DD methods presented here might also
have difficulty with the non-aligned case.

MG and DD methods are comparable sequentially for two-dimensional electro-
statics problems. DD methods seem to be naturally more robust, although MG can
be made robust and efficient by enforcing the conditions (3.1) explicitly. While the
MG methods were generally more efficient, the DD methods offer advantages, such
as ease of implementation, as well as parallel implementations.
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Figure 1. An overlapping subdomain and a sample solution.

Figure 2. CPU seconds for Case 1.
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Figure 3. Iterations for Case 1.

Figure 4. CPU seconds for Case 2.
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