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CONVERGENCE OF GOAL-ORIENTED ADAPTIVE FINITE ELEMENT
METHODS FOR NONSYMMETRIC PROBLEMS

MICHAEL HOLST AND SARA POLLOCK

ABSTRACT. In this article we develop convergence theory for a class ofgoal-oriented
adaptive finite element algorithms for second order nonsymmetric linear elliptic equa-
tions. In particular, we establish contraction and quasi-optimality results for a method
of this type for second order Dirichlet problems involving the elliptic operatorLu =
∇ · (A∇u)− b · ∇u− cu, with A Lipschitz, almost-everywhere symmetric positive def-
inite (SPD), withb divergence-free, and withc ≥ 0. We first describe the problem class
and review some standard facts concerning conforming finiteelement discretization and
error-estimate-driven adaptive finite element methods (AFEM). We then describe a goal-
oriented variation of standard AFEM (GOAFEM). Following the recent work of Mom-
mer and Stevenson for symmetric problems, we establish contraction of GOAFEM. We
also then show convergence in the sense of the goal function.Our analysis approach is
signficantly different from that of Mommer and Stevenson, combining the recent con-
traction frameworks developed by Cascon et. al, by Nochetto, Siebert, and Veeser, and
by Holst, Tsogtgerel, and Zhu. In the last part of the paper weperform a complexity
analysis, and establish quasi-optimal cardinality of GOAFEM. We include an appendix
discussion of the duality estimate as we use it here in an effort to make the paper more
self-contained.
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1. INTRODUCTION

In this article we develop convergence theory for a class of goal-oriented adaptive
finite element methods for second order nonsymmetric linearelliptic equations. In par-
ticular, we report contraction and quasi-optimality results for a method of this type for
the problem

−∇ · (A∇u) + b · ∇u+ cu = f, in Ω, (1.1)

u = 0, on∂Ω, (1.2)

with Ω ⊂ Rd a polyhedral domain,d = 2 or 3, with A Lipschitz, almost-everywhere
(a.e.) symmetric positive definite (SPD), withb divergence-free, and withc ≥ 0. The
standard weak formulation of this problem reads: Findu ∈ H1

0 (Ω) such that

a(u, v) = f(v), ∀v ∈ H1
0 (Ω), (1.3)

where

a(u, v) =

∫

Ω

A∇u · ∇v + b · ∇uv + cuv dx, f(v) =

∫

Ω

fv dx. (1.4)

Our approach is to first describe the problem class in some detail, and review some
standard facts concerning conforming finite element discretization and error-estimate-
driven adaptive finite element methods (AFEM). We will then describe a goal-oriented
variation of standard AFEM (GOAFEM). Following the recent work of Mommer and
Stevenson [10] for symmetric problems, we establish contraction of GOAFEM. We also
show convergence in the sense of the goal function. Our analysis approach is signficantly
different from that of Mommer and Stevenson [10], combiningthe recent contraction
frameworks of Cascon et. al [4], of Nochetto, Siebert, and Veeser [11], and of Holst,
Tsogtgerel, and Zhu [8]. We also give a complexity analysis,and establish quasi-optimal
cardinality of GOAFEM.

The goal-oriented problem concerns achieving a target quality in a given linear func-
tional g : H1

0 (Ω) → R of the weak solutionu ∈ H1
0 (Ω) of the problem (1.3). For ex-

ample,g(u) =
∫

Ω
1
|ω|
χωu, the average value ofu over some domainω ⊂ Ω. By writing

down the adjoint operator,a∗(z, v) = a(v, z), we consider theadjoint or dual problem:
find z ∈ H1

0(Ω) such thata∗(z, v) = g(v), for all v ∈ H1
0 (Ω). It has been shown for the

symmetric form (b = 0) of problem (1.1)–(1.2) with piecewise constant SPD diffusion
cofficientA (and withc = 0), that by solving theprimal anddual problems simulta-
neously, one may converge to an approximation ofg(u) faster than by approximatingu
theng(u), when forcing contraction in only the primal problem [10]. We will follow
the same general approach in order to establish similar goal-oriented AFEM results for
nonsymmetric problems. However, in order to handle nonsymmetry, we will follow the
technical approach in [9, 4, 8], and rely largely on establishing quasi-orthogonality. In
particilar, contraction results are established in [9, 4] for (1.1)–(1.2) in the case thatA
is SPD, Lipschitz or piecewise Lipschitz,b is divergence-free, andc ≥ 0. In [8], quasi-
orthogonality is used as the basis for establishing contraction of AFEM for two classes
of nonlinear problems. As in these earlier efforts, relyingon quasi-orthogonality will
require that we assume that the initial mesh is sufficiently fine, and that the solution to
the dual problema∗(w, v) = g(v), g ∈ L2(Ω) is sufficiently smooth, e.g. inH2

loc
(Ω).

Following [8], the contraction argument developed in this paper will follow from first
establishing three preliminary results for two successiveAFEM approximationsu1 and
u2, and then applying the Dörfler marking strategy:
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1) Quasi-orthogonality (§3.1): There existsΛ > 1 such that

|||u− u2|||2 ≤ Λ|||u− u1|||2 − |||u2 − u1|||2.
2) Error estimator as upper bound on error (§3.2): There existsC1 > 0 such that

|||u− uk|||2 ≤ C1η
2
k(uk, Tk), k = 1, 2.

3) Estimator reduction (§3.4): ForM the marked set that takes refinementT1 → T2,
for positive constantsλ < 1 andΛ1 and anyδ > 0

η22(v2, T2) ≤ (1 + δ){η21(v1, T1)− λη21(v1,M}+ (1 + δ−1)Λ1η
2
0|||v2 − v1|||.

The marking strategy used is the original Dörfler strategy;elements are marked for re-
finement based on indicators alone. The marked setM must satisfy

∑

T∈M

η2k(uk, T ) ≥ θ2η2k(uk, Tk).

In the goal-oriented method, a second marked set is chosen based on an error indicator
for the dual problem associated with the given goal functional, and the union of the two
marked sets is then used for refinement.

A main advantage of the approach in [4] is that it does not require an interior node
property. This allows us to establish the necessary resultsfor contraction without taking
full refinements of the mesh at each iteration. This improvement follows from the use
of the local perturbation estimate or local Lipschitz property rather than the estimator
as lower bound on error. We use the standard lower bound estimate as found in [9] for
optimality arguments in the second part of the paper concerning quasi-optimality of the
method.

There are three main notions of error used throughout this paper. The energy error
|||u− uk|||, the quasi-error and the total-error. Theenergy erroris defined by the symmet-
ric part of the bilinear form that arises from the given differential operator in (1.3). The
quasi-erroris thel2 sum of the energy-error and scaled error estimator

Qk(uk, Tk) := (|||u− uk|||2 + γη2k)
1/2,

and this is the quantity that is reduced at each iteration of the algorithm. In§3 the quasi-
error is shown to satisfy

|||u− uk+1|||2 + γη2k+1 ≤ α2
(

|||u− uk|||2 + γη2k
)

, α < 1.

Thetotal error includes the oscillation term rather than the estimator

Ek(uk, Tk) := (|||u− uk|||2 + osc2k)
1/2.

The oscillation term captures the higher-frequency oscillations in the residual missed by
the averaging of the finite element method. While the quasi-error is the focus of the
contraction arguments, it is the total error that will be critical to complexity analysis.
Therefore, we will need to establish various preliminary results for both types of error.

The quasi-optimality of the goal oriented method in§4 is developed with respect to
the total error which is shown to satisfy Cea’s lemma. The cardinality result

#Tk −#T0 ≤ S(θ)

{

Mp

(

1 +
γp
c2

)1/2s

Q
−1/s
k (uk, Tk)

+Md

(

1 +
γd
c2

)1/2t

Q
−1/t
k (zk, Tk)

}
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bounds the growth of the adaptive mesh with respect to the quasi-error of both problems.
An equivalence between the quasi-error and total error is established in§4.

A final brief comment is in order concerning the notation usedhere compared to that
in [4] and the related literature. In [4], the number of timeseach marked element is
refined is denotedb. In this article, each marked element is refined once. Therefore, b
will be reserved for the convection term in the nonsymmetricproblem. The constantC
will denote a generic but global constant that may depend on the data and the condition
of the initial meshT0, and may change from step to step.

Outline of the paper. The remainder of the paper is structured as follows. In§2, we
first describe the problem class and review some standard facts concerning conforming
finite element discretization and error-estimate-driven adaptive finite element methods
(AFEM). In §2.3, we then describe a goal-oriented variation of the standard approach to
AFEM (GOAFEM). Following the recent work of Mommer and Stevenson for symmet-
ric problems, in§3 we establish contraction of goal-oriented AFEM. We also then show
convergence in§3.6 in the sense of the goal function. Our analysis approach is signfi-
cantly different, combining the recent contraction frameworks developed by Cascon et.
al [4], Nochetto, Siebert, and Veeser [11], and by Holst, Tsogtgerel, and Zhu [8]. In§4,
we consider complexity questions, and establish quasi-optimal cardinality of GOAFEM.
We recap the results in§5, and point out some remaining open problems.

2. PROBLEM CLASS, DISCRETIZATION, GOAL-ORIENTED AFEM

2.1. Problem class, weak formulation, spaces and norms. Consider the nonsymmet-
ric problem (1.3), where as in (1.4) we have

a(u, v) = 〈A∇u,∇v〉+ 〈b · ∇u, v〉+ 〈cu, v〉.
Here we have introduced the notation〈·, ·〉 for theL2 inner-product overΩ ⊂ Rd. The
adjoint or dual problem is: Findz ∈ H1

0 (Ω) such that

a∗(z, v) = g(v) for all v ∈ H1
0 (Ω) (2.1)

wherea∗( · , · ) is the formal adjoint ofa( · , · ), and where the functional is defined
through

g(u) =

∫

Ω

gu dx, (2.2)

for some giveng ∈ L2(Ω). We will make the following assumptions on the data:

Assumption 2.1 (Problem data). The problem dataD = (A, b, c, f) and dual problem
dataD∗ = (A,−b, c, g) satisfy

1) A : Ω → Rd×d, Lipschitz, and a.e. symmetric positive-definite:

ess infx∈Ωλmin(A(x)) = µ0 > 0, (2.3)

ess supx∈Ωλmax(A(x)) = µ1 < ∞. (2.4)

2) b : Ω → Rd, with bk ∈ L∞(Ω) , andb divergence-free.
3) c : Ω → R, with c ∈ L∞(Ω), andc(x) ≥ 0 for all x ∈ Ω.
4) f, g ∈ L2(Ω).

The native norm is the SobolevH1 norm given by

‖v‖2H1 = 〈∇v,∇v〉+ 〈v, v〉. (2.5)
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TheLp norm of a vector valued functionv over domainω is defined here as thel2 norm
of theLp(ω) norm of each component

‖v‖Lp(ω) =

(

d
∑

j=1

(
∫

ω

vpj

)2/p
)1/2

, p = 1, 2, . . .

‖v‖L∞(ω) =

(

d
∑

j=1

(

ess sup
ω

vj

)2
)1/2

. (2.6)

Similarly, theLp norm of a matrix valued functionM over domainω is defined as the
Frobenius norm of theLp(ω) norm of each component

‖M‖Lp(ω) =

(

d
∑

i,j=1

(
∫

ω

Mp
ij

)2/p
)1/2

, p = 1, 2, . . .

‖M‖L∞(ω) =

(

d
∑

ij=1

(

ess sup
ω

Mij

)2
)1/2

. (2.7)

We note that one could employ other equivalent discretelp norms in the definitions (2.6)
and (2.7), however this choice simplifies the analysis.

Continuity ofa( · , · ) follows from the Hölder inequality, and bounding theL2 norm
of the function and its gradient by theH1 norm

a(u, v) ≤ (µ1 + ‖b‖L∞
+ ‖c‖L∞

) ‖u‖H1‖v‖H1 = Mc‖u‖H1‖v‖H1. (2.8)

Coercivity follows from the Poincaré inequality with constantCΩ and the divergence-free
condition

a(v, v) ≥ µ0|v|2H1 ≥ CΩµ0‖v‖2H1 = m2
E‖v‖2H1, (2.9)

where the coercivity constantm2
E := CΩµo. Continuity and coercivity imply existence

and uniqueness of the solution by the Lax-Milgram Theorem [7]. The adjoint operator
a∗( , ) is given by

a∗(v, u) := a(u, v), u, v ∈ H1
0 (Ω).

Integration by parts on the convection term and the divergence-free condition imply

a∗(z, v) := 〈A∇z,∇v〉 − 〈b · ∇z, v〉+ 〈cz, v〉. (2.10)

Define the energy semi-norm by

|||v|||2 := a(v, v). (2.11)

Non-negativity follows directly from the coercivity estimate (2.9)

|||v|||2 ≥ m2
E‖v‖2H1, (2.12)

which establishes the energy semi-norm as a norm. Putting this together with the reverse
inequality

|||v|||2 ≤ µ1|∇v|2L2
+ ‖c‖L∞

‖v‖2L2
=⇒ |||v||| ≤ ME‖v‖H1, (2.13)

establishes the equivalence between the native and energy norms with the constantME =
(µ1 + ‖c‖L∞

)1/2.
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2.2. Finite element approximation. We employ a standard conforming piecewise poly-
nomial finite element approximation below.

Assumption 2.2 (Finite element mesh). We make the following assumptions on the un-
derlying simplex mesh:

1) The initial meshT0 is conforming.
2) The mesh is refined by newest vertex bisection[2], [10] at each iteration.
3) The initial meshT0 is sufficiently fine. In particular, it satisfies (3.6).

Based on assumptions 2.2 we have the following mesh constants.

1) Define
hT := max

T∈T
hT , wherehT = |T |1/d. (2.14)

In particular,h0 is the initial mesh diameter.
2) Define the mesh constantγN = 2γr where

γr =
h0

hmin

and hmin = min
T∈T0

hT

then for any two elementsT, T̃ in the same generation

hT ≤ γrhT̃

and as neighboring elements may differ by at most one generation for any two
neighboring elementsT andT ′

hT ≤ 2γrhT ′ = γNhT ′ (2.15)

3) The minimal angle condition satisfied by newest vertex bisection implies the mesh-
sizehT is comparable tohσ, the size of any true-hyperfaceσ of T . In particular,
there is a constant̄γ

hσ

hT

≤ γ̄2 for all T. (2.16)

Let T the set of conforming meshes derived from the initial meshT0. DefineTN ⊂ T

by
TN = {T ∈ T

∣

∣ #T −#T0 ≤ N}.
For a conforming meshT1 with a conforming refinementT2 we sayT2 ≥ T1. The set of
refined elements is given by

R1→2 := RT1→T2 := T1 \ (T2 ∩ T1). (2.17)

An overlayof two meshesT1 ≥ T0 andT2 ≥ T0 whereT2 is not generally a refinement
of T1 is given by

T1 ⊕ T2 := {T ∈ T1

∣

∣T ⊆ T ′ for someT ′ ∈ T2} ∪ {T ∈ T2

∣

∣T ⊆ T ′ for someT ′ ∈ T1}
(2.18)

and is itself conforming. Define the finite element space

VT := H1
0 (Ω) ∩

∏

T∈T

Pn(T ) andVk := VTk . (2.19)

For subsetsω ⊆ T ,

VT (ω) := H1
0 (Ω) ∩

∏

T∈ω

Pn(T ), (2.20)
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wherePn(T ) is the space of polynomials degree degreen overT . Denote the patch about
T ∈ T

ωT := T ∪ {T ′ ∈ T
∣

∣ T ∩ T ′ is a true-hyperface ofT}. (2.21)

For ad-simplexT , an true-hyperface is ad− 1 dimensional face ofT , e.g., a face in 3D
or an edge in 2D. Define the discrete primal problem: Finduk ∈ Vk such that

a(uk, vk) = f(vk), vk ∈ Vk, (2.22)

and the discrete dual problem

a∗(zk, vk) = g(vk), vk ∈ Vk. (2.23)

2.3. Goal oriented AFEM (GOAFEM). As in [10] the goal oriented adaptive finite
element method (GOAFEM) is based on the standard AFEM algorithm:

SOLVE → ESTIMATE → MARK → REFINE .

In the goal oriented method, one enforces contraction of thequasi-error in both the primal
problem and an associated dual problem. As shown in section§3.6, the error in the goal-
function satisfies the bound

|g(u)− g(uk)| = |a(u− uk, z − zk)| ≤ 2|||u− uk||||||z − zk|||.
This motivates driving down the energy-error in both the primal and dual problems at
each iteration. As noted in [4] the residual-based error estimator does not exhibit mono-
tone behavior in general, although it is monotone non-increasing with respect to nested
mesh refinement when applied to the same (coarse) function. The quasi-error is shown
to contract for each problem for which mesh refinement satisfies the Dörfler property.
However, refining the mesh with respect to the primal problemdoes not guarantee the
quasi-error in the dual problem will be non-increasing, andvice-versa. As such, the
procedures SOLVE and ESTIMATE are performed for each of the primal and dual prob-
lems. The marked set is taken to be the union of marked sets from the primal and dual
problems, each chosen to satisfy the Dörfler property. Thismethod produces a sequence
of refinements for which both the error in the primal and dual problems contract at each
step.

Procedure SOLVE. The contraction result supposes the exact Galerkin solution is
found on each mesh refinement. In practice a linear-time iterative method is employed
so that the Galerkin solution is found up to a given tolerance.

Procedure ESTIMATE. The estimation of the error on each element is determined
by a standard residual-based estimator. The residuals overelement interiors and jump-
residuals over the boundaries are based on thelocal strong formsof the elliptic operator
and its adjoint as follows.

L(v) = ∇ · (A∇v)− b · ∇v − cv; L∗(v) = ∇ · (A∇v) + b · ∇v − cv. (2.24)

Theresidualsfor the primal and dual problems using the sign convention in[4] are:

R(v) := f + L(v); R∗(v) := g + L∗(v), v ∈ VT . (2.25)

While the primal and dual solutionsu andz of (1.3) and (2.1) respectively satisfy

f(z) = a(u, z) = a∗(z, u) = g(u)

the residuals for the primal and dual problems are in generaldifferent. Thejump residual
for the primal and dual problems is

JT (v) := J[A∇v] · nK∂T (2.26)
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wherejump operatorJ · K is given by

JφK∂T := lim
t→0

φ(x+ tn)− φ(x− tn) (2.27)

andn is taken to be the appropriate outward normal defined piecewise on∂T . On bound-
ary edgesσb we have

J[A∇v] · nKσb
≡ 0

so thatJ[A∇v] · nK∂T = J[A∇v] · nK∂T∩Ω. For clarity, we will also employ the notation

RT (v) := R(v)
∣

∣

T
, v ∈ VT ,

and similarly for the other strong form operators. The errorindicator is given as

ηpT (v, T ) := hp
T‖R(v)‖pL2(T ) + h

p/2
T ‖JT (v)‖pL2(∂T ), v ∈ VT . (2.28)

The dual error-indicator is then given by

ζpT (w, T ) := hp
T‖R∗(w)‖pL2(T ) + h

p/2
T ‖JT (w)‖pL2(∂T ), w ∈ VT . (2.29)

The error estimators are given by thelp sum of error indicators over elements in the space
wherep = 1 or 2.

ηpT (v) :=
∑

T∈T

ηpT (v, T ), v ∈ VT . (2.30)

The dual energy estimator is:

ζpT (w) :=
∑

T∈T

ζpT (w), w ∈ VT . (2.31)

The contraction results for the quasi-error presented below will be shown to hold for
p = 1, 2 where the error estimator and oscillation are defined in terms of thelp norm.
While complexity results are shown only forp = 2, the contraction results forp = 1 are
useful for nonlinear problems; see [8].

For analyzing oscillation, forv ∈ VT let Π2
m the orthogonal projector defined by the

bestL2 approximation inPm over meshT andP 2
m = I−Π2

m. Define now the oscillation
on the elementsT ∈ T for the primal problem by

oscT (v, T ) := hT‖P 2
2n−2R(v)‖L2(T ) (2.32)

and analogously for the dual problem. For subsetsω ⊆ T set

oscpT (v, ω) :=
∑

T∈ω

oscpT (v, T ). (2.33)

The data estimator and data oscillation, identical for boththe primal and dual problems,
are given by

ηpT (D, T ) := hp
T

(

‖divA‖pL∞(T ) + h−p
T ‖A‖pL∞(ωT ) + ‖c‖pL∞(T ) + ‖b‖pL∞(T )

)

, (2.34)

oscpT (D, T ) := hp
T

(

‖P∞
n−1divA‖pL∞(T ) + h−p

T ‖P∞
n A‖pL∞(T )

+hp
T‖P∞

n−2c‖pL∞(T ) + ‖P∞
2n−2c‖pL∞(T ) + ‖P∞

n−1b‖pL∞(T )

)

. (2.35)

The data estimator and oscillation over the meshT or a subsetω ⊂ T are given by the
maximum data estimator (oscillation) over elements in the mesh or subset: Forω ⊆ T

ηT (D,ω) = max
T∈ω

ηT (D, T ) and oscT (D,ω) = max
T∈ω

oscT (D, T ).

The data estimator and data oscillation on the initial mesh

η0 := ηT0(D, T0), and osc0 := oscT0(D, T0).
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As the grid is refined, the data estimator and data oscillation terms satisfy the monotonic-
ity property [4] for refinementsT2 ≥ T1

η2(D, T2) ≤ η1(D, T1) and osc2(D, T2) ≤ osc1(D, T1). (2.36)

Procedure MARK. The Dörfler marking strategy for the goal-oriented problemis
based on the following steps as in [10]:

1) Givenθ ∈ (0, 1), mark sets for each of the primal and dual problems:

• Mark a setMp ⊂ Tk such that,
∑

T∈Mp

η2k(uk, T ) ≥ θ2η2k(uk, Tk) (2.37)

• Mark a setMd ⊂ Tk such that,
∑

T∈Md

ζ2k(zk, T ) ≥ θ2ζ2k(zk, Tk) (2.38)

2) Let M = Mp ∪ Md the union of sets found for the primal and dual problems
respectively.

The setM differs from that in [10], where the set of lesser cardinality between
Mp andMd is used. In the case of the nonsymmetric problem the error reduced at each
iteration is the quasi-error rather than the energy error asin the symmetric problem [10].
This error for each problem is guaranteed to contract based on the refinement satisfy-
ing the Dörfler property. As such, refining the mesh with respect to one problem does
not guarantee the quasi-error in the other problem is nonincreasing. SetsMp andMd

with optimal cardinality (up to a factor of 2) can be chosen inlinear time by binning the
elements rather than performing a full sort [10].

Procedure REFINE. The refinement (including the completion) is performed accord-
ing to newest vertex bisection [2]. The complexity and otherproperties of this procedure
are now well-understood, and will simply be exploited here.

3. CONTRACTION AND CONVERGENCE THEOREMS

The key elements of the main contraction argument constructed below are quasi-
orthogonality 3.1, error estimator as upper-bound on energy-norm error 3.2 and estimator
reduction 3.4. Estimator-reduction is shown via the local-perturbation estimate 3.3. The
local perturbation of the oscillation is presented here andused in§4. Mesh refinements
T1 andT2 (respectivelyTj) are assumed conforming, anduj is assumed the Galerkin so-
lution on refinementTj . The following results hold for both the primal and dual problems
which differ by the sign of the convection term; therefore, they are established here only
for the primal problem.

3.1. Quasi-orthogonality. Orthogonality in the energy-norm|||u− u2|||2 = |||u− u1|||2−
|||u2 − u1|||2 does not generally hold in the nonsymmetric problem. We use the weaker
quasi-orthogonality result to establish contraction of AFEM (GOAFEM). The following
is a variation on Lemma 2.1 in [9] (see also [8]).

Lemma 3.1 (Quasi-orthogonality). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy conditions (1) and (2) of Assumption 2.2. LetT1, T2 ∈ T with T2 ≥ T1. Let
uk ∈ Vk the solution to(2.22), k = 1, 2. There exists a constantC∗ > 0 depending on the
problem dataD and initial meshT0, and a number0 < s ≤ 1 dictated only by the angles
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of∂Ω, such that if the meshsizeh0 of the initial mesh satisfies̄Λ := C∗h
s
0‖b‖L∞

µ
−1/2
0 < 1,

then

|||u− u2|||2 ≤ Λ|||u− u1|||2 − |||u2 − u1|||2, (3.1)

where
Λ := (1− C∗h

s
0‖b‖L∞

µ
−1/2
0 )−1.

Equality holds (usual orthogonality) whenb = 0 in Ω, in which case the problem is
symmetric.

Proof. The proof follows close that of Lemma 2.1 in [9]. Let

e2 := u− u2, e1 := u− u1, andε1 := u2 − u1.

By Galerkin orthogonality

|||e1|||2 = a(e1, e1) = |||e2|||2 + |||ε1|||2 + a(ε1, e2). (3.2)

Rearranging and applying the divergence-free condition onthe convection term

|||e2|||2 = |||e1|||2 − |||ε1|||2 − 2〈b · ∇ε1, e2〉.
Applying Hölder’s inequality and coercivity (2.9)|ε1|H1 ≤ µ

−1/2
0 |||ε1||| followed by Young’s

inequality with constantδ to be determined,

−2〈b · ∇ε1, e2〉 ≤ δ‖e2‖2L2
+

‖b‖2L∞

δµ0

|||ε1|||2. (3.3)

By a duality argument for someC∗ > 0 assumingu ∈ H1+s(Ω) for some0 < s ≤ 1
depending on the angles of∂Ω

‖e2‖L2
≤ C∗h

s
0|||e2|||. (3.4)

The details of this argument as described in the appendix§6 may also be found in [1]
and [5]. Applying (3.4) and (3.3) to (3.2),

(1− δC2
∗h

2s
0 )|||u− u2|||2 ≤ |||u− u1|||2 −

(

1− ‖b‖2L∞

δµ0

)

|||u1 − u2|||2. (3.5)

Chooseδ to equate coefficients

δC2
∗h

2s
0 =

‖b‖2L∞

δµ0
=⇒ δ =

‖b‖L∞

C∗hs
0

√
µ0

,

then

|||u− u2|||2 ≤
(

1− ‖b‖L∞
C∗h

s
0µ

−1/2
0

)−1

|||u− u1|||2 − |||u1 − u2|||2.
Assuming the initial mesh as characterized byh0 satisfies

Λ̄ = ‖b‖L∞
C∗h

s
0µ

−1/2
0 < 1, (3.6)

the quasi-orthogonality result holds. �

Note that by (3.2) we also have

|||ε1|||2 = |||e1|||2 − |||e2|||2 − 2〈b · ∇e2, ε1〉. (3.7)

Similarly to (3.3)

−2〈b · ∇e2, ε1〉 ≥ −2|〈b · ∇e2, ε1〉| ≥ −δ‖ε1‖2L2
− ‖b‖2L∞

δµ0
|||e2|||2, (3.8)
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which under the same assumptions yields the estimate

|||u2 − u1|||2 ≥ (1 + Λ̄)−1|||u− u1|||2 − |||u− u2|||2, (3.9)

whereΛ̄ < 1 =⇒ (1 + Λ̄)−1 > 1/2.

3.2. Error estimator as global upper-bound. We now recall the property that the error
estimator is a global upper bound on the error. The proof is fairly standard; see e.g. [10]
(Proposition 4.1), [9] (3.6), and [8].

Lemma 3.2 (Error estimator as global upper-bound). Let the problem data satisfy As-
sumption 2.1 and the mesh satisfy conditions (1) and (2) of Assumption 2.2. LetT1, T2 ∈
T with T2 ≥ T1. Letuk ∈ Vk the solution to(2.22), k = 1, 2 andu the solution to(1.3).
Let

G = G(T2, T1) := {T ⊂ T1

∣

∣ T ∩ T̃ 6= ∅ for someT̃ ∈ T1, T̃ /∈ T2}.
Then for global constantC1 depending on the problem dataD and initial meshT0

|||u2 − u1||| ≤ C1η1(u1, G) (3.10)

and in particular
|||u− u1||| ≤ C1η1(u1, T1). (3.11)

3.3. Local perturbation. The local perturbation property established in [4], analogous
to the local Lipshitz property in [8], is a key step in establishing the contraction result.
This is a minor variation on Proposition 3.3 in [4] which deals with a symmetric prob-
lem. Here, we include a convection term in the estimate. In particular, (3.12) shows
that the difference in the error indicators over an elementT between two functions in
a given finite element space may be bounded by a fixed factor of the native norm over
the patchωT of the difference in functions. In contrast with the analogous result in [4]
the estimate (3.13) involves a fixed factor of the native normover an individual element
rather than a patch as by the continuity ofA the oscillation term does not involve the
jump residual.

We include the proof of (3.12) for completeness. The proof of(3.13) may be found
in [4] with the final result inferred by the absence of the jumpresidual in the oscillation
term.

Lemma 3.3 (Local perturbation). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy condition (1) of Assumption 2.2. LetT ∈ T. For all T ∈ T and for any
v, w ∈ VT

ηT (v, T ) ≤ ηT (w, T ) + Λ̄1ηT (D, T )‖v − w‖H1(ωT ) (3.12)

oscT (v, T ) ≤ oscT (w, T ) + Λ̄2oscT (D, T )‖v − w‖H1(T ) (3.13)

where recalling(2.21)ωT is the union ofT with elements inT sharing a true-hyperface
with T . The constants̄Λ1, Λ̄2 > 0 depend on the initial meshT0, the dimensiond and the
polynomial degreen.

Proof of (3.12). From (2.28)

ηpT (v, T ) := hp
T‖R(v)‖pL2(T ) + h

p/2
T ‖JT (v)‖pL2(∂T ), v ∈ VT . (3.14)

DenoteηT (v, T ) by η(v, T ). Sete = v − w. By linearity

R(v) = R(w + e) = f + L(w + e) = f + L(w) + L(e) = R(w) + L(e)
and

J(v) = J(w + e) = J(w) + J(e).
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Forp = 1 by the triangle inequality

η(v, T ) = hT‖R(w) + L(e)‖L2(T ) + h
1/2
T ‖J(w) + J(e)‖L2(∂T )

≤ η(w, T ) + hT‖L(e)‖L2(T ) + h
1/2
T ‖J(e)‖L2(∂T ).

Forp = 2 using the generalized triangle-inequality
√

(a + b)2 + (c+ d)2 ≤
√
a2 + c2 + b+ d, for a, b, c, d > 0 (3.15)

we have

η(v, T ) =
(

h2
T ‖R(w) + L(e)‖2L2(T ) + hT‖J(w) + J(e)‖2L2(∂T )

)1/2

≤ η(w, T ) + hT‖L(e)‖L2(T ) + h
1/2
T ‖J(e)‖L2(∂T ).

Consider the second term on the RHShT‖L(e)‖L2(T ). By definition (2.24) ofL( · ), the
product rule applied to the diffusion term and the triangle-inequality

‖L(e)‖L2(T ) ≤ ‖divA · ∇e‖L2(T ) + ‖A : D2e‖L2(T ) + ‖ce‖L2(T ) + ‖b · ∇e‖L2(T )

whereD2e is the Hessian ofe. Consider each term. The first diffusion term

‖divA · ∇e‖L2(T ) ≤ ‖divA‖L∞(T )‖∇e‖L2(T ) (3.16)

by the inequality

‖v · z‖L2(T ) ≤ ‖v‖L∞(T )‖z‖L2(T ), v ∈ L∞(T ), z ∈ L2(T ). (3.17)

Applying (3.17) and inverse-estimate [3] to the second diffusion term

‖A : D2e‖L2(T ) ≤ ‖A‖L∞(T )‖D2e‖L2(T )

≤ CIh
−1
T ‖A‖L∞(T )‖∇e‖L2(T ). (3.18)

For the reaction term

‖ce‖L2(T ) ≤ ‖c‖L∞(T )‖e‖L2(T ). (3.19)

For the convection term applying (3.17)

‖b · ∇e‖L2(T ) ≤ ‖b‖L∞(T )‖∇e‖L2(T ). (3.20)

Consider the the jump-residual term‖J(e)‖L2(∂T ). For each interior true-hyperfaceσ =
T ∩ T ′, T, T ′ ∈ T by (2.27)

J(e)
∣

∣

σ
:= lim

t→0+
(A∇e)(x+ tnσ)− lim

t→0−
(A∇e)(x− tnσ)

= nσ · (A∇e)
∣

∣

T
− nσ · (A∇e)

∣

∣

T ′
(3.21)

where(A∇e)
∣

∣

T
is understood to refer to the product of the limiting value ofA∇e as the

element boundary is approached from the interior ofT . By the triangle-inequality

‖J(e)‖L2(σ) ≤ ‖nσ · (A∇e)
∣

∣

T
‖L2(σ) + ‖nσ · (A∇e)

∣

∣

T ′
‖L2(σ).

By bounds for the inner-product with a unit normal and a matrix-vector product

‖φ · n‖L2(σ) ≤ ‖φ‖L2(σ), φ ∈ L2(σ), (3.22)

‖Mφ‖L2(T ) ≤ ‖M‖L∞(T )‖φ‖L2(T ), M ∈ L∞(T ), φ ∈ L2(T ) (3.23)

obtain

‖nσ · (A∇e)
∣

∣

T
‖L2(σ) ≤ ‖(A∇e)

∣

∣

T
‖L2(σ) ≤ ‖A

∣

∣

T
‖L∞(σ)‖∇e

∣

∣

T
‖L2(σ). (3.24)

Applying the trace theorem and an inverse inequality to‖∇e
∣

∣

T
‖L2(σ) via the inequality

‖φ‖L2(σ) ≤ Ch
−1/2
T ‖φ‖L2(T ), φ ∈ L2(T ) (3.25)
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we have
‖∇e

∣

∣

T
‖L2(σ) ≤ CT (γ̄)

d−1h
−1/2
T ‖∇e‖L2(T ). (3.26)

By the Lipschitz property ofA

‖A
∣

∣

T
‖L∞(σ) = ‖A‖L∞(σ) ≤ ‖A‖L∞(T ). (3.27)

By (3.24), (3.26), (3.27) and comparability of mesh diameters (2.15)

‖J(e)‖L2(σ) ≤ 2CT (γ̄)
d−1γ

1/2
N h

−1/2
T ‖A‖L∞(ωT )‖∇e‖L2(ωT ).

ElementT has at mostd+ 1 interior true-hyperfaces yielding

‖J(e)‖L2(∂T ) ≤ 2(d+ 1) CT (γ̄)
d−1γ

1/2
N h

−1/2
T ‖A‖L∞(ωT )‖∇e‖L2(ωT )

= CJh
−1/2
T ‖A‖L∞(ωT )‖∇e‖L2(ωT ).

Putting together the terms fromL and from the jump residual,

η(v, T ) ≤ η(w, T ) + hT

(

‖divA‖L∞(T ) + CIh
−1
T ‖A‖L∞(T )

+ ‖c‖L∞(T ) + ‖b‖L∞(ω)

)

‖e‖H1(T ) + h
1/2
T CJh

−1/2
T ‖A‖L∞(ωT )‖e‖H1(ωT )

≤ η(w, T ) + CTOT ′ ηT (D, T )‖v − w‖H1(ωT )

whereCTOT ′ differs by a factor of2 for p = 1, 2. �

3.4. Estimator reduction. We now establish one of the three key results we need,
namely estimator reduction. This result is a minor variation of [4] Corollary 2.4 and
is stated here for completeness.

Theorem 3.4 (Estimator reduction). Let the problem data satisfy Assumption 2.1 and
the mesh satisfy conditions (1) and (2) of Assumption 2.2. Let T1 ∈ T, M ⊂ T1 and
T2 = REFINE(T1,M). For p = 1 let

Λ1 := (d+ 2)2Λ̄2
1m

−2
E and λ := (1− 2−1/2d)2 > 0

and forp = 2 let

Λ1 := (d+ 2)Λ̄2
1m

−2
E and λ := 1− 2−1/d > 0

with Λ̄1 from 3.3 (Local Perturbation). Then for anyv1 ∈ V1 andv2 ∈ V2 andδ > 0

η22(v2, T2) ≤(1 + δ)
{

η21(v1, T1)− λη21(v1,M)
}

+ (1 + δ−1)Λ1η
2
0|||v2 − v1|||2. (3.28)

Proof. The proofs forp = 1 andp = 2 are similar. Forp = 1 it is necessary to sum over
elements before squaring and forp = 2 square first then sum over elements.

Proof for the casep = 1. By the local Lipschitz property (3.12)

η2(v2, T ) ≤ η2(v1, T ) + Λ̄1η2(D, T )‖v2 − v1‖H1(ωT ). (3.29)

Summing over all elementsT ∈ T2, the sum of norms overωT covers each element at
most(d + 2) times as each patchωT is the union of elementT and the (up to)d + 1
elements sharing a true-hyperface withT . Then by the coercivity (2.12) overΩ

η2(v2, T2) ≤ η2(v1, T2) + (d+ 2)Λ̄1mE
−1η22(D, T2)|||v2 − v1|||. (3.30)

Squaring (3.30) and applying Young’s inequality with constantδ to the cross-term,

η22(v2, T2) ≤ (1 + δ)η22(v1, T2) + (1 + δ−1)(d+ 2)2Λ̄2
1m

−2
E η22(D, T2)|||v2 − v1|||2

= (1 + δ)η22(v1, T2) + (1 + δ−1)Λ1η
2
2(D, T2)|||v2 − v1|||2. (3.31)
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For an elementT ∈ M marked for refinement, letT2,T := {T ′ ∈ T2

∣

∣ T ′ ⊂ T}. As
v1 ∈ V1 has no discontinuities across element boundaries inT2,T , we haveJ(v1) = 0 on
true hyperfaces in the interior ofT2,T .

Recall the element diameterhT = |T |1/d. For an elementT marked for refinement,T ′

must be a proper subset ofT , in particular a product of at least one bisection so that

|T ′| ≤ 1

2
|T | ↔ |T ′|1/d ≤ 1

21/d
|T |1/d ↔ hT ′ ≤ 1

21/d
hT . (3.32)

Then
∑

T ′∈T2,T

η2(v1, T
′) ≤

∑

T ′∈T2,T

hT ′‖R(v1)‖L2(T ′) +
∑

T ′∈T2,T

h
1/2
T ′ ‖J(v)‖L2(∂T ′∩∂T )

≤ 2−1/dhT

∑

T ′∈T2,T

(

‖R(v1)‖L2(T ′)

)

+ 2−1/2dh
1/2
T ‖J(v)‖L2(∂T )

≤ 2−1/2d
(

hT‖R(v1)‖L2(T ) + h
1/2
T ‖J(v)‖L2(∂T )

)

= 2−1/2dη1(v1, T ). (3.33)

For an elementT /∈ M, that isT ′ = T the indicator is reproduced

η2(v1, T
′) = η1(v1, T ). (3.34)

Sum over allT ∈ T2 by estimates (3.33), (3.34) writing the sum of indicators over the
T1 \ M as the total estimator less the indicators over the refinement setM. Let the
refined setR := {T ∈ T2

∣

∣ T ′ ⊂ T̃ for someT̃ ∈ M} then

η2(v1, T2) =
∑

T∈T2

η2(v1, T )

=
∑

T∈T2\R

η2(v1, T ) +
∑

T∈R

η2(v1, T )

≤ η1(v1, T1)− η1(v1,M) + 2−1/2dη1(v1,M)

= η1(v1, T1)− λ1 η1(v1,M) (3.35)

whereλ1 = 1− 2−1/2d < 1. Squaring (3.35)

η22(v1, T2) ≤ η21(v1, T1) + λ2
1 η

2
1(v1,M)− 2λ2

1 η
2
1(v1,M)

= η21(v1, T1)− λ η21(v1,M) (3.36)

whereλ = λ2
1 = (1− 2−1/2d)2. Applying (3.36) to (3.31) and applying monotonicity of

the data-estimator

η22(v2, T2) ≤ (1 + δ)
(

η21(v1, T1)− λ η21(v1,M)
)

+ (1 + δ−1)Λ2
1η

2
0(D, T0)|||v2 − v1|||2.

The proof for the casep = 2 is similar and may be found in [4]. �

3.5. Contraction of AFEM. We now establish the main contraction results. The con-
traction result 3.5 is a modification of [4] Theorem 4.1. Herewe use quasi-orthogonality
to establish contraction of each of the nonsymmetric problems (1.3) and (2.1).

Theorem 3.5 (GOAFEM contraction). Let the problem data satisfy Assumption 2.1 and
the mesh satisfy Assumption 2.2. Letu the solution to(1.3). Let θ ∈ (0, 1], and let
{Tk,Vk, uk}k≥0 be the sequence of meshes, finite element spaces and discretesolutions
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produced by GOAFEM. Then there exist constantsγ > 0 and0 < α < 1, depending on
the initial meshT0 and marking parameterθ such that

|||u− uk+1|||2 + γη2k+1 ≤ α2
(

|||u− uk|||2 + γη2k
)

. (3.37)

The analogous result holds for the dual problem with{Tk,Vk, zk}k≥0 the sequence of
meshes, finite element spaces and discrete solutions produced by GOAFEM.

Proof. Denote

ek = u− uk, ek+1 = u− uk+1 and εk = uk+1 − uk.

Let

ηk = ηk(uk, Tk), ηk(Mk) = ηk(uk,Mk) and ηk+1 = ηk+1(uk+1, Tk+1).

By the result of Estimator Reduction 3.4, for anyδ > 0

η2k+1 ≤ (1 + δ)
{

η2k − λη2k(Mk)
}

+ (1 + δ−1)Λ1η
2
0|||εk|||2.

Multiplying this inequality by positive constantγ (to be determined) and adding the
quasi-orthogonality estimate|||ek+1|||2 ≤ Λ|||ek|||2 − |||εk|||2 obtain

|||ek+1|||2 + γη2k+1 ≤ Λ|||ek|||2 − |||εk|||2 + γ(1 + δ)
{

η2k − λη2k(Mk)
}

+ γ(1 + δ−1)Λ1η
2
0|||εk|||2. (3.38)

Chooseγ to eliminate|||εk||| the error between consecutive estimates by setting

γ(1 + δ−1)Λ1η
2
0 = 1 ⇐⇒ γ =

1

(1 + 1/δ)Λ1η20
⇐⇒ γ(1 + δ) =

δ

Λ1η20
. (3.39)

Applying (3.39) to (3.38) obtain

|||ek+1|||2 + γη2k+1 ≤ Λ|||ek|||2 + γ(1 + δ)η2k − γ(1 + δ)λη2k(Mk). (3.40)

By the Dörfler marking strategyη2k(Mk) ≥ θ2η2k so that

|||ek+1|||2 + γη2k+1 ≤ Λ|||ek|||2 + γ(1 + δ)η2k − γ(1 + δ)λθ2η2k. (3.41)

Split the last term by factors ofβ and(1− β) for anyβ ∈ (0, 1) to arrive at

|||ek+1|||2 + γη2k+1 ≤ Λ|||ek|||2 + γ(1 + δ)η2k − βγ(1 + δ)λθ2η2k

− (1− β)γ(1 + δ)λθ2η2k. (3.42)

Applying the upper-bound estimate (3.11)|||ek|||2 ≤ C1η
2
k to the term multiplied byβ

then by (3.39)

|||ek+1|||2 + γη2k+1 ≤ Λ|||ek|||2 −
βγ(1 + δ)λθ2

C1
|||ek|||2 + γ(1 + δ)η2k

− (1− β)γ(1 + δ)λθ2η2k (3.43)

= Λ|||ek|||2 − β
δλθ2

C1Λ1η20
|||ek|||2 + γ(1 + δ)η2k

− (1− β)γ(1 + δ)λθ2η2k (3.44)

=

(

Λ− β
δλθ2

C1Λ1η20

)

|||ek|||2 + γ(1 + δ)
(

1− (1− β)λθ2
)

η2k (3.45)

= α2
1(δ, β)|||ek|||2 + γα2

2(δ, β)η
2
k (3.46)
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where

α2
1(δ, β) := Λ− β

λθ2

C1Λ1η
2
0

δ, α2
2(δ, β) := (1 + δ)

(

1− (1− β)λθ2
)

. (3.47)

Chooseδ small enough so that

α2 := max{α2
1, α

2
2} < 1.

To ensure such aδ exists in light of the quasi-orthogonality constantΛ > 1 observe

α2
1 < 1 whenδ > (Λ− 1)

C1Λ1η
2
0

βλθ2

and

α2
2 < 1 whenδ <

(

1− (1− β)λθ2
)−1 − 1 =

(1− β)λθ2

1− (1− β)λθ2

so to obtain an interval of positive measure whereδ may be found we require

(Λ− 1)
C1Λ1η

2
0

βλθ2
<

(1− β)λθ2

1− (1− β)λθ2

placing a second constraint on the quasi-orthogonality constant

Λ < 1 +
λ2θ4β(1− β)

C1Λ1η20 (1− (1− β)λθ2)
(3.48)

where0 < β < 1 andθ < 1 may be chosen. In order to place bounds on the growth rate
of the mesh, we further requireθ < θ∗ given by (4.5) as discussed in section§4. �

Notice the choice ofδ small enough to satisfyα2 < 1 is always possible, as each term
may be independently driven below unity by a sufficiently small value of δ, so long as
the quasi-orthogonality constantΛ is sufficiently close to one. For a discussion on the
optimal contraction factor see Remark 4.3 in [4]; see also the discussion in [8].

3.6. Convergence of GOAFEM. We now derive a bound on error in the goal function.

Theorem 3.6 (GOAFEM functional convergence). Let the problem data satisfy Assump-
tion 2.1 and the mesh satisfy Assumption 2.2. Letu the solution to(1.3)andz the solution
to (2.1). Let θ ∈ (0, 1], and let{Tk,Vk, uk, zk}k≥0 be the sequence of meshes, finite el-
ement spaces and discrete primal and dual solutions produced by GOAFEM. Letγp the
constantγ from Theorem 3.5 applied to the primal problem(2.22)andγd the constantγ
from Theorem 3.5 applied to the dual(2.23). Then for constantα < 1 as determined by
Theorem 3.5

|g(u)− g(uk)| ≤ 2
{

α2k
(

|||u− u0|||2 + γpη
2
0(u0, T0)

)

− γpη
2
k

}1/2

×
{

α2k
(

|||z − z0|||2 + γdζ
2
0 (z0, T0)

)

− γdζ
2
k

}1/2
.

Proof. On the primal side for allvk ∈ Vk

a(u− uk, vk) = a(u, vk)− a(uk, vk) = f(vk)− f(vk) = 0,

the primal Galerkin orthogonality property. On the dual side, g(u) = a∗(z, u) and
g(uk) = a∗(z, uk, ) so that

g(u)− g(uk) = a∗(z, u− uk)

= a(u− uk, z)

= a(u− uk, z − zk). (3.49)
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Define an inner-productα by the symmetric part ofa( · , · )
α(v, w) = 〈A∇v,∇w〉+ 〈cv, w〉,

then

|||v|||2 = a(v, v) = α(v, v),

and

a(v, w) = α(v, w) + 〈b · ∇v, w〉.
Then asα(·, ·) is a symmetric bilinear form on Hilbert space; it is an inner product and it
induces a norm identical to the energy norm induced bya( · , · ). As such we may apply
the Cauchy-Schwarz inequality [6] toα and we’re left to handle the convection term.

a(u− uk, z − zk) = α(u− uk, z − zk) + 〈b · ∇(u− uk), z − zk〉
≤ |||u− uk||||||z − zk|||+ 〈b · ∇(u− uk), z − zk〉. (3.50)

By Hölder’s inequality followed by a duality estimate as in§6 on the dual error and
coercivity on the primal,

〈b · ∇(u− uk), z − zk〉 ≤ ‖b‖L∞
C∗h

s
0µ

−1/2
0 |||z − zk||||||u− uk|||. (3.51)

RecallingΛ̄ = ‖b‖L∞
C∗h

s
0µ

−1/2
0

a(u− uk, z − zk) ≤ |||u− uk||||||z − zk|||+ Λ̄|||u− uk||||||z − zk|||. (3.52)

Under assumption (3.6)(Λ̄ < 1) on the initial mesh and from (3.49),

|g(u)− g(uk)| = |a(u− uk, z − zk)| ≤ 2|||u− uk||||||z − zk|||. (3.53)

From 3.5 there is anα < 1 such that for the primal problem with estimatorηk

|||u− uk+1|||2 ≤ α2
(

|||u− uk|||2 + γpη
2
k

)

− γpη
2
k+1 (3.54)

and for the dual problem with estimatorζk

|||z − zk+1|||2 ≤ α2
(

|||z − zk|||2 + γdζ
2
k

)

− γdζ
2
k+1. (3.55)

Iterating, we have from (3.54) and (3.55)

|||u− uk|||2 + γpη
2
k ≤ α2k

(

|||u− u0|||2 + γpη
2
0

)

(3.56)

|||z − zk|||2 + γdζ
2
k ≤ α2k

(

|||z − z0|||2 + γdζ
2
0

)

. (3.57)

From (3.53), (3.56) and (3.57) obtain the contraction of error in quantity of interest

|g(u)− g(uk)| ≤ 2
{

α2k
(

|||u− u0|||2 + γpη
2
0(u0, T0)

)

− γpη
2
k

}1/2

×
{

α2k
(

|||z − z0|||2 + γdζ
2
0 (z0, T0)

)

− γdζ
2
k

}1/2
, (3.58)

or more simply

|g(u)− g(uk)|+ γpη
2
k + γdζ

2
k ≤ α2k

(

|||u− u0|||2 + γpη
2
0(u0, T0)

+|||z − z0|||2 + γdζ
2
0(z0, T0)

)

(3.59)

= α2kQ2
0 (3.60)

with Q0 the quasi-error on the initial mesh.
�
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4. QUASI-OPTIMAL CARDINALITY OF GOAFEM

In this section we establish the quasi-optimality of GOAFEM. The result in§4.5 fol-
lows from bounding the cardinality of the marked set for eachof the primal and dual
problems at each iteration as shown in Lemma 4.9. This is achieved by assuming the
primal and dual solutions belong to appropriate approximation classes as discussed in
§4.4, the optimality assumptions addressed in§4.2, and the supporting results below.
Under the optimality assumptions, the error-indicator as an upper-bound on energy-error
as shown in§4.1 and a bound for the oscillation term as the mesh is refined as shown in
§4.2, a suitable reduction in global error between two consecutive iterations implies the
respective refinement set satisfies the Dörfler property. Weaddress the effect of quasi-
orthogonality on the necessary reduction to achieve this result.

The estimator as global lower bound on total error in§4.1 is used to relate the total-
error to the quasi-error in§4.5, connecting the contraction property for the quasi-error
established in§3 to the quasi-optimality of the total error in§4.3 which shows the total
error satisfies Céa’s Lemma.

4.1. Estimator as global lower bound and localized upper bound. We start with two
fairly standard results that will be needed in the complexity analysis. Theglobal lower
boundmay be found in [9] Lemma 3.1 and a similar result in [10] Proposition 4.3 and
Corollary 4.4. Thelocalized upper boundis established in [4] Lemma 3.6.

Lemma 4.1 (Global lower bound). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy Assumption 2.2. LetT1, T2 ∈ T andT2 ≥ T1 a full refinement. Letuk ∈ Vk

the solution to(2.22), k = 1, 2. Then there is a global constantc2 > 0 such that

c2η
2
1(u1, T1) ≤ |||u− u1|||2 + osc21(u1, T1). (4.1)

Lemma 4.2 (Localized upper bound). Let the problem data satisfy Assumption 2.1 and
the mesh satisfy conditions (1) and (2) of Assumption 2.2. Let T1, T2 ∈ T with T2 ≥ T1.
LetR := RT1→T2 the set of refined elements. Letuk ∈ Vk the solution to(2.22), k = 1, 2.
Then there is a global constantC1 with

|||u2 − u1|||2 ≤ C1η
2
1(u1,R). (4.2)

4.2. Optimality assumptions and optimal marking. In this section we consider the
assumptions on marking parameterθ and the marking strategy which allow us to char-
acterize the growth of the adaptive mesh at each iteration with respect to the total error
in 4.5.

We first consider oscillation on the refined mesh, following closely [4], Corollary 3.5.

Lemma 4.3 (Oscillation on refined mesh). Let the problem data satisfy Assumption 2.1
and the mesh satisfy condition (1) of Assumption 2.2. LetT1, T2 ∈ T with T2 ≥ T1. Let
Λ2 = Λ̄2

2m
−2
E with Λ̄2 from (3.13). Then for allv1 ∈ V1 andv2 ∈ V2

osc21(v1, T1 ∩ T2) ≤ 2osc22(v2, T1 ∩ T2) + 2Λ2osc20|||v1 − v2|||2, (4.3)

whereosc20 := osc2T0(D, T0).

Proof. For all elementsT in the intersectionT ∈ T1 ∩ T2

osc1(v1, T ) = osc2(v1, T ).

Applying this, v1 ∈ V1 ⊂ V2 and oscj(D, T ) ≤ osc0(D, T ), j = 1, 2, we have
from (3.13)

osc2(v1, T ) ≤ osc2(v2, T ) + Λ̄2osc0‖v − w‖2H1(T ).
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Squaring and applying Young’s inequality withε = 1 yields

osc21(v1, T ) ≤ 2osc22(v2, T ) + 2Λ̄2
2osc20‖v1 − v2‖2H1(T ). (4.4)

Summing over allT ∈ T1 ∩ T2 and bounding the norm overT1 ∩ T2 to the entire domain
to apply the coercivity estimate (2.9)

osc21(v1, T1 ∩ T2) ≤ 2osc22(v2, T1 ∩ T2) + 2Λ2osc20|||v1 − v2|||2.
�

We now discuss some basic assumptions for complexity analysis. The optimality as-
sumptions follow those found in [4] with modifications in (4.5) to account for the non-
symmetric problem, the continuity ofA and the goal-oriented method.

Assumption 4.4 (Optimality assumptions). Assume the following conditions.

1) The marking parameterθ satisfiesθ ∈ (0, θ∗) with

θ∗ =
c2

1 + C1(1 + Λ̄ + 2Λ2osc20)
, with osc0 = osc20(D, T0) (4.5)

and Λ̄ given by(3.6). As the data oscillation given by(2.35) is identical for the
primal and dual problems and the other constants depend onlyon global data,θ∗
may be assumed the same for both the primal an dual problems.

2) A marked setMk of optimal cardinality (up to a factor of two) is selected
(see[10]).

3) The distribution of refinement edges onT0 satsifies condition (b) of section 4
in [12].

We now consider a basic result on optimal marking. This lemmais a variation of
Lemma 5.9 in [4], modified to use quasi-orthogonality 3.1 rather than Galerkin orthogo-
nality.

Lemma 4.5 (Optimal marking). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy Assumption 2.2. LetT1, T2 ∈ T. Let uk ∈ Vk the solution to(2.22),
k = 1, 2. Let the marking parameterθ satisfy condition (1) of Assumption 4.4.

LetT2 ≥ T1 satisfy

|||u− u2|||2 + osc22 ≤
µ

α

(

|||u− u1|||2 + osc21
)

(4.6)

which implies
α|||u− u2|||2 + osc22 ≤ µ

(

|||u− u1|||2 + osc21
)

(4.7)

for µ := 1
2
(1− θ2

θ2∗
) andα = (1+ Λ̄), Λ̄ ∈ (0, 1) given by(3.6) in the quasi-orthogonality

argument and where

osc1 = osc1(u1, T1), osc2 = osc2(u2, T2), andη1 = η1(u1, T1).

Then the setR := RT1→T2 satisfies the D̈orfler property

η1(u1,R) ≥ θη1(u1, T1).

Proof. (See [4] Lemma 5.9). As0 < 2µ < 1, multiply inequality (4.1) by1 − 2µ to
obtain

(1− 2µ)c2η
2
1 ≤ |||u− u1|||2 + osc21 − 2µ

(

|||u− u1|||2 + osc21
)

.

Applying (4.7)

(1− 2µ)c2η
2
1 ≤ |||u− u1|||2 − α|||u− u2|||2 + osc21 − 2osc22.
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Rearranging terms obtain

osc21 − 2osc22 ≥ (1− 2µ)c2η
2
1 + α|||u− u2|||2 − |||u− u1|||2. (4.8)

By the second quasi-orthogonality estimate (3.9)

(1 + Λ̄)|||u− u2|||2 − |||u− u1|||2 ≥ −(1 + Λ̄)|||u1 − u2|||2

where0 < Λ̄ < 1. Applying (4.2)

(1 + Λ̄)|||u− u2|||2 − |||u− u1|||2 ≥ −(1 + Λ̄)C1η
2
1(u1,R). (4.9)

Combining (4.9) with (4.8) obtain

osc21 − 2osc22 ≥ (1− 2µ)c2η
2
1 − (1 + Λ̄)C1η

2
1(u1, R). (4.10)

For refined elementsT ∈ R use the dominance of the estimator over the oscillation

osc21(u1, T ) ≤ η21(u1, T ).

For elementsT ∈ T1 ∩ T2 (4.3) yields

osc21(u1, T1 ∩ T2)− 2osc22(u2, T1 ∩ T2) ≤ 2Λ2osc20|||u1 − u2|||2.
Then

osc21(u1, T1)− 2osc22(u2, T2) ≤ η21(u1,R) + 2Λ2osc20|||u1 − u2|||2.
Applying (4.2) to the last term

osc21(u1, T1)− 2osc22(u2, T2) ≤ (1 + 2C1Λ2osc20)η
2
1(u1,R). (4.11)

Rearranging terms in (4.11) and applying (4.10)

η21(u1,R) ≥ (1− 2µ)c2η
2
1 − (1 + Λ̄)C1η

2
1(u1, R)

(1 + 2C1Λ2osc20)
.

Combining like terms obtain

η21(u1,R) ≥ (1− 2µ)c2
1 + C1(1 + Λ̄ + 2Λ2osc20)

η21.

Applying the definitions ofµ andθ∗ obtain the result

η21(u1,R) ≥ θ2η21.

�

Due to the use of quasi-orthogonality, the required assumption (4.7) is stronger than

|||u− u2|||2 + osc22 ≤ µ
(

|||u− u1|||2 + osc21
)

the condition in [4] for the symmetric problem, but it is alsoweaker than

|||u− u2|||2 + osc22 ≤
µ

α

(

|||u− u1|||2 + osc21
)

whereα = 1 + Λ̄ > 1, formally similar to the symmetric estimate. We may impose this
stronger condition for ease of analysis, however in practice this says that the increase
in error-reduction we require of the finer mesh needs only come from the energy-norm
error, not the oscillation.

We recall a standard result on the mesh overlap, see [4] Lemma3.7.

Lemma 4.6 (Overlay of meshes). Let the mesh satisfy condition (1) of Assumption 2.2.
LetT1, T2 ∈ T. Then the overlayT = T1 ⊕ T2 is conforming and satisfies

#T ≤ #T1 +#T2 −#T0.
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4.3. Quasi-optimality of total errror. We show the total error satisfies Céa’s Lemma;
e.g. see [4] Lemma 5.2. This version appropriate for the non-symmetric problem relies
quasi-orthogonality 3.1 rather than Galerkin orthogonality.

Theorem 4.7 (Quasi-optimality of total error). Let the problem data satisfy Assump-
tion 2.1 and the mesh satisfy Assumption 2.2. LetT1 ∈ T. Let u the solution of(1.3)
andu1 ∈ V1 the solution of(2.22). Then there is a constantCD depending on the initial
meshT0 and the problem dataD such that

|||u− u1|||2 + osc21(u1, T1) ≤ CD inf
v∈V1

(

|||u− v|||2 + osc21(v, T1)
)

. (4.12)

Proof. For ε > 0 choosevε ∈ V1 with

|||u− vε|||2 + osc21(vε, T1) ≤ (1 + ε) inf
v∈V1

(

|||u− v|||2 + osc21(v, T1)
)

.

By (4.3) withT2 = T1 obtain

osc21(v1, T1) ≤ 2osc21(vε, T1) + 2Λ2osc20|||u1 − vε|||2. (4.13)

By the same reasoning as (3.1) obtain

|||u− u1|||2 + |||u1 − vε|||2 ≤ Λ|||u− vε|||2

which implies

|||u− u1|||2 ≤ Λ|||u− vε|||2 and|||u1 − vε|||2 ≤ Λ|||u− vε|||2. (4.14)

From (4.13) and (4.14) obtain

|||u− u1|||2 + osc21(u1, T1) ≤ Λ|||u− vε|||2 + 2osc21(vε, T1) + 2Λ2osc20|||u1 − vε|||2

≤ Λ
(

1 + 2Λ2osc20
)

|||u− vε|||2 + 2osc1(vε, T1).

SetCD := max{2,Λ (1 + 2Λ2osc20)} then

|||u− u1|||2 + osc21(u1, T1) ≤ CD

(

|||u− vε|||2 + osc1(vε, T1)
)

≤ CD(1 + ε) inf
v∈V1

(

|||u− v|||2 + osc21(v, T1)
)

.

Lettingε → 0 establishes the result. �

4.4. Approximation classes and approximation property. For problem with solution,
forcing function and data(u, f,D) and dual problem(z, g,D∗), membership in an ap-
propriate approximation class says the solutionu (respectivelyz) may be approximated
within a given tolerance by finite element approximation while the cardinality of the
mesh required to achieve the tolerance satisfies (4.18).

ForN > 0 letTN the set of conforming triangulations generated from the initial mesh
T0 such that the increase in cardinality is at mostN

TN := {T ∈ T
∣

∣ #T −#T0 ≤ N}.
For s > 0 define the standard approximation classes for solutions based on the energy
error

As :=

{

v ∈ V
∣

∣ sup
N>0

(N s inf
T ∈TN

inf
vT ∈VT

|||v − vT ||| < ∞
}

(4.15)

and forL2 data

Ās :=

{

g ∈ L2(Ω)
∣

∣ sup
N>0

(N s inf
T ∈TN

‖h(g −Π2
2n−2g)‖L2(Ω)) < ∞

}

. (4.16)
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Define a measure of approximation based on thetotal error

σ(N ; v, f,D) := inf
T ∈TN

inf
vT ∈VT

(

|||v − vT |||2 + osc2T (vT , T )
)

1

2

and denote the total error ofvT ∈ VT by

E(v, T ) :=
(

|||v − vT |||2 + osc2T (vT , T )
)1/2

and the approximation class based on the total error fors > 0

As :=

{

(v, f,D)
∣

∣ |v, f,D|s := sup
N>0

(N sσ(N ; v, f,D)) < ∞
}

. (4.17)

See [4] Lemma 5.3 and Lemma 5.4 for a discussion on the relation between the classes
As,As andĀs. The results in this paper are developed with respect to the classAs based
on the total error.

Membership of the primal and dual solutions in the approximation classesAs andAt

is applied via the use of the two properties discussed in thissection.

Lemma 4.8 (Approximation property). Let the mesh satisfy condition (1) of Assumption
2.2. Letu the solution to(1.3). Assumeu ∈ As andσ(1; u, f,D) > 0. Then givenε > 0
there is a global constantC depending only on the initial meshT0 and the problem data
D, a partitionTε ∈ T and avε ∈ VTε such that

C|u, f,D|s ≥ (#T0 − Tε)
sε (4.18)

E(vε, Tε) ≤ ε. (4.19)

Proof. By (4.17) and property of the supremum, for anyN > 0

|u, f,D|s ≥ N sσ(N ; u, f,D) (4.20)

whereN = #T −#T0. Givenε > 0 consider allN > 0 such thatσ(N ; u, f,D) ≥ ε. If
there is no suchN , letNε = 1. By (4.20)

|u, f,D|s ≥ σ1 =
σ1

ε
ε whereσ1 := σ(1; u, f,D).

Applying the assumptionσ(1; u, f,D) > 0
ε

σ1
|u, f,D|s ≥ ε

establishing (4.18) withC = ε/σ1. Also

σ(1; u, f,D) = inf
T ∈T1

inf
v∈VT1

E(v, T ) < ε

so there isTε ∈ T1 andvε ∈ VTε so thatE(vε, Tε) ≤ ε establishing (4.19). Otherwise,
there isN > 0 with σ(N ; u, f,D) ≥ ε. As the infimum over the total error goes to zero
asN → ∞ this holds for finitely manyN so define

K := max{N > 0
∣

∣ σ(N ; u, f,D) ≥ ε}. (4.21)

By (4.20) and (4.21)

|u, f,D|s ≥ Ksσ(K; u, f,D) ≥ Ksε. (4.22)

Let Nε = 2K.

|u, f,D|s ≥ Ksε = 2−sN s
ε ε =⇒ C|u, f,D|s ≥ N s

ε ε

with C = 2s establishing (4.18). By (4.21) and property of the infimum withNε > K

σ(Nε; u, f ;D) = inf
T ∈TNε

inf
v∈Vε

E(v, T ) ≤ inf
T ∈TNK

inf
v∈Vε

E(v, T ) < ε
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implyingE(vε, Tε) ≤ ε for someTε ∈ Tε and avε ∈ VTε establishing (4.19). �

4.5. Cardinality of Mk and quasi-optimality of the mesh. The results on the cardi-
nality of Mk and quasi-optimality are variations on [4] Lemma 5.10 and Theorem 5.11.
Here we address the goal-oriented method discussed in 2.3.

Lemma 4.9 (Cardinality ofMk). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy Assumption 2.2. Assume conditions (1) and (2) of Assumption 4.4. Letu
the solution of(1.3) and z the solution of(2.1). Let {Tk,Vk, uk, zk}k≥0 the sequence
of meshes, finite element spaces and discrete primal and dualsolutions produced by
GOAFEM. If(u, f,D) ∈ As and(z, g,D∗) ∈ At we have

#Mk ≤ 2C

{

(1 + Λ̄)1/2s
(

1− θ2

θ2∗

)−1/2s

|u, f,D|1/ss C
1/2s
D E

−1/s
k (uk, Tk)

+(1 + Λ̄)1/2t
(

1− θ2

θ2∗

)−1/2t

|z, g,D∗|1/tt C
1/2t
D E

−1/t
k (zk, Tk)

}

(4.23)

whereCD is the constant from(4.12)and the total errors in the primal and dual problems

E2
k(uk, Tk) := |||u− uk|||2 + osc2k(uk, Tk)

E2
k(zk, Tk) := |||z − zk|||2 + osc2k(zk, Tk).

Proof. Setµ̃ = 1
2

(

1− θ2

θ2∗

)

(1 + Λ̄)−1 with Λ̄ given by (3.6).

ε2p := µ̃C−1
D E2

k(uk, Tk), andε2d := µ̃C−1
D E2

k(zk, Tk).

As (u, f,D) ∈ As, by the properties in section 4.4 there is aTp ∈ T and avp ∈ VTp such
that

#Tp −#T0 ≤ C|u, f,D|1/ss ε−1/s
p (4.24)

|||u− vp|||2 + osc2Tp(vp, Tp) ≤ ε2p. (4.25)

Similarly for (z, g,D∗) ∈ At, there is aTd ∈ T and awd ∈ VTd such that

#Td −#T0 ≤ C|z, g,D∗|1/tt ε
−1/t
d (4.26)

|||z − wd|||2 + osc2Td(wd, Td) ≤ ε2d. (4.27)

Let T2 := Tk ⊕ (Tp ⊕ Td) as in Lemma 4.6. Letu2 ∈ V2 the Galerkin solution to (2.22)
andz2 ∈ V2 the respective solution to (2.23) . See there is a reduction in the total error
by a factor ofµ̃ from uk to u2 (respectivelyzk to z2). SinceT2 ≥ Tp by Theorem 4.7,
monotonicity of infimum over total error and (4.25)

|||u− u2|||2 + osc22(u2, T2) ≤ CD inf
v∈V2

(

|||u− v|||2 + osc22(v,T2)
)

≤ CDε
2
p

= µ̃
(

|||u− uk|||2 + osc2k(uk, Tk)
)

. (4.28)

Similarly for the dual problem

|||z − z2|||2 + osc22(z2, T2) ≤ µ̃
(

|||z − zk|||2 + osc2k(zk, Tk)
)

. (4.29)

This satisfies the hypothesis (4.6) in each problem so applying 4.2 the refining subset
R := RTk→T2 ⊂ Tk satisfies the Dörfler property forθ ≤ θ∗. The marking procedure
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selects a subset for markingMk ⊂ Tk of minimal cardinality up to a factor of two so
that by Lemma 4.6

#Mk ≤ 2#R ≤ 2(#T2 −#Tk) ≤ 2 {(#Tp −#T0) + (#Td −#T0)} . (4.30)

By (4.30), (4.24), the definition ofεp andεd, (4.28) and the definition ofµ

#Mk ≤ 2 {(#Tp −#T0) + (#Td −#T0)}
≤ 2C

{

|u, f,D|1/ss ε−1/s
p + |z, g,D∗|1/tt ε

−1/t
d

}

= 2C

{

(1 + Λ̄)1/2s
(

1− θ2

θ2∗

)−1/2s

|u, f,D|1/ss C
1/2s
D E

−1/s
k (uk, Tk)

+(1 + Λ̄)1/2t
(

1− θ2

θ2∗

)−1/2t

|z, g,D∗|1/tt C
1/2t
D E

−1/t
k (zk, Tk).

}

�

Theorem 4.10 (Quasi-optimality). Let the problem data satisfy Assumption 2.1 and the
mesh satisfy Assumption 2.2. Let Assumption 4.4 be satisfiedby GOAFEM. Letu the so-
lution of (1.3)andz the solution of(2.1). Let{Tk,Vk, uk, zk}k≥0 the sequence of meshes,
finite element spaces and discrete primal and dual solutionsproduced by GOAFEM. Let
(u, f,D) ∈ As and(z, g,D∗) ∈ At. Then

#Tk −#T0 ≤ S(θ)

{

Mp

(

1 +
γp
c2

)1/2s

Q
−1/s
k (uk, Tk)

+ Md

(

1 +
γd
c2

)1/2t

Q
−1/t
k (zk, Tk)

}

.

Proof. Let the total error in primal and dual problemsEk(uk, Tk) andEk(zk, Tk) as in
Lemma 4.9. Denote the quasi-error in each problem by

Q2
k(uk, Tk) := |||u− uk|||2 + γpη

2
k(uk, Tk),

Q2
k(zk, Tk) := |||z − zk|||2 + γdζ

2
k(zk, Tk).

As shown in [2] Theorem 2.4 there is a global constantCf which satisfies

#Tk −#T0 ≤ Cf

k−1
∑

j=0

#Mj for all k ≥ 1

and by (4.23)

#Mk ≤ 2C

{

(1 + Λ̄)1/2s
(

1− θ2

θ2∗

)−1/2s

|u, f,D|1/ss C
1/2s
D E

−1/s
k (uk, Tk)

+(1 + Λ̄)1/2t
(

1− θ2

θ2∗

)−1/2t

|z, g,D∗|1/tt C
1/2t
D E

−1/t
k (zk, Tk)

}

then we have

#Tk −#T0 ≤ Mp

k−1
∑

j=0

Ek(uk, Tk)
−1/s +Md

k−1
∑

j=0

Ek(zk, Tk)
−1/t (4.31)
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with the constants

Mp := 2CfC(1 + Λ̄)1/2s
(

1− θ2

θ2∗

)−1/2s

|u, f,D|1/ss C
1/2s
D

Md := 2CfC(1 + Λ̄)1/2t
(

1− θ2

θ2∗

)−1/2t

|z, g,D∗|1/tt C
1/2t
D .

From the domination of the error estimator over the oscillation and the lower bound on
total error (4.1) we have the equivalence of the total-errorand quasi-error

|||u− uj|||2 + γposc2j (uj, Tj) ≤ |||u− uj|||2 + γpη
2
j (uj, Tj)

≤
(

1 +
γp
c2

)

E2(uj, Tj). (4.32)

or

E
−1/s
j (uj, Tj) ≤

(

1 +
γp
c2

)1/2s

Q
−1/s
j (uj, Tj) (4.33)

and similarly for the dual problem

E
−1/t
j (zj , Tj) ≤

(

1 +
γd
c2

)1/2t

Q
−1/t
j (zj , Tj). (4.34)

By the contraction result on the quasi-error (3.37) for0 ≤ j ≤ k − 1

Q2
k(uk, Tk) ≤ α2(k−j)Q2

j (uj, Tj) and Q2
k(zk, Tk) ≤ α2(k−j)Q2

j (zj , Tj). (4.35)

Putting together (4.31), (4.33) and (4.35) obtain

#Tk −#T0 ≤ Mp

k−1
∑

j=0

Ek(uk, Tk)
−1/s +Md

k−1
∑

j=0

Ek(zk, Tk)
−1/t

≤
{

Mp

(

1 +
γp
c2

)1/2s

Qk(uk, Tk)
−1/s

+Md

(

1 +
γd
c2

)1/2t

Qk(zk, Tk)
−1/t

}

k
∑

j=1

αj/s

where the geometric series inα < 1 is bounded byS(θ) = α1/s(1− α1/s)−1. Then

#Tk −#T0 ≤ S(θ)

{

Mp

(

1 +
γp
c2

)1/2s

Qk(uk, Tk)
−1/s

+Md

(

1 +
γd
c2

)1/2t

Qk(uk, Tk)
−1/t

}

≤ S(θ)

{

Mp

(

1 +
γp
c2

)1/2s
(

|||u− uk|||2 + γposc2k(uk, Tk)
)−1/2s

+ Md

(

1 +
γd
c2

)1/2t
(

|||z − uk|||2 + γdosc2k(zk, Tk)
)−1/2t

}

.

As seen in (4.32) the total error and quasi-error are equivalent up to a constant so this
result may be viewed with respect to either the quasi- or total-error. �
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5. CONCLUSION

In this article we developed convergence theory for a class of goal-oriented adaptive
finite element methods for second order nonsymmetric linearelliptic equations. In par-
ticular, we established contraction and quasi-optimalityresults for a method of this type
for the elliptic problem (1.1)–(1.2) withA Lipschitz, almost-everywhere (a.e.) symmet-
ric positive definite (SPD), withb divergence-free, and withc ≥ 0. We first described
the problem class in some detail, with a brief review of conforming finite element dis-
cretization and error-estimate-driven adaptive finite element methods (AFEM). We then
described a goal-oriented variation of standard AFEM (GOAFEM). Following the recent
work of Mommer and Stevenson [10] for symmetric problems, weestablished contrac-
tion of GOAFEM. We also showed convergence in the sense of thegoal function. Our
analysis approach was signficantly different from that of Mommer and Stevenson [10],
and involved the combination of the recent contraction frameworks of Cascon et. al [4],
Nochetto, Siebert, and Veeser [11], and of Holst, Tsogtgerel, and Zhu [8]. We also did a
careful complexity analysis, and established quasi-optimal cardinality of GOAFEM.

Problems that were not yet addressed include allowing for jump discontinuities in the
diffusion cofficient, and allowing for lower-order nonlinear terms. We will address both
of these aspects in a future work.

6. APPENDIX

Duality. We include an appendix discussion of the duality argument used in the quasi-
orthogonality estimate in an effort to make the paper more self-contained.

Let u the variational solution to (1.3) andu1 ∈ V1 the Galerkin solution to (2.22).
Assume for anyg ∈ L2(Ω) the solutionw to the dual problem (2.1) belongs toH2(Ω) ∩
H1

0 (Ω) and
|w|H2(Ω) ≤ KR‖g‖L2(Ω). (6.1)

Then
‖u− u1‖L2

≤ Ch0|||u− u1|||. (6.2)

If w ∈ H2
loc(Ω) ∩H1

0 (Ω) butw /∈ H2(Ω) due to the angles of a nonconvex polyhedral
domainΩ thenw ∈ H1+s for some0 < s < 1 wheres depends on the angles of∂Ω.
Assume in this case for anyg ∈ L2

|w|H1+s(Ω) ≤ KR‖g‖L2(Ω) (6.3)

then
‖u− u1‖L2

≤ Chs
0|||u− u1|||. (6.4)

As discussed in [5], [6] and [1] the regularity assumptions are reasonable based on the
continuity of the diffusion coefficientsaij and the convection and reaction coefficientsbi
andc in L∞(Ω).

Proof of (6.2): The proof follows the duality arguments in [1] and [3].
Letw ∈ H1

0(Ω) the solution to the dual problem

a∗(w, v) = 〈u− u1, v〉, v ∈ H1
0 (Ω). (6.5)

Let Ih a global interpolator based on refinementT1. AssumeIhw is C0 and the
corresponding shape functions have approximation orderm. Form = 2

‖w − Ihw‖H1 ≤ CIhT1 |w|H2. (6.6)

As discussed in [1] the interpolation estimate over reference element̂T follows from
the Bramble-Hilbert lemma applied to the bounded linear functionalf(û) = 〈û−Ihû, v̂〉
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wherev̂ ∈ H t(T̂ ) is arbitrary then set tôu− Ihû. The Sobolev semi-norms fort = 0, 1
over elementsT ∈ T are bounded via change of variables to the reference element.
Summing overT ∈ T and combining semi-norms into a norm estimate establishes (6.6).

By (6.1) we have the bound

|w|H2 ≤ KR‖u− u1‖L2
. (6.7)

By the identitya(v, y) = a∗(y, v) write the primal form of the variational problems

a(u, v) = f(v), v ∈ H1
0 (Ω) (6.8)

a(u1, v) = f(v), v ∈ V1 (6.9)

a(v, w) = 〈u− u1, v〉, v ∈ H1
0 (Ω). (6.10)

Takingv = u− u1 ∈ H1
0 in (6.10)

a(u− u1, w) = 〈u− u1, u− u1〉 = ‖u− u1‖2L2
. (6.11)

Combining (6.8) and (6.9) we have the Galerkin orthogonality result

a(u− u1, v) = 0, v ∈ V1. (6.12)

Then by (6.11) and (6.12) noting the interpolant of the dual solutionIhw ∈ V1

‖u− u1‖2L2
= a(u− u1, w) = a(u− u1, w − Ihw). (6.13)

Starting with (6.13) and applying continuity (2.8), interpolation estimate (6.6) and
elliptic regularity (6.7)

‖u− u1‖2L2
≤ Mc‖u− u1‖H1‖w − Ihw‖H1

≤ Mc‖u− u1‖H1CIhT1 |w|H2

≤ KRMcCIh0‖u− u1‖H1‖u− u1‖L2
.

Canceling one factor of‖u− u1‖L2
and applying coercivity (2.9)

‖u− u1‖L2
≤ Mc

mE

CIKRh0|||u− u1|||. (6.14)

Depending on the regularity of the boundary∂Ω the solutionw may have less regu-
larity: w ∈ H2

loc(Ω) but w /∈ H2(Ω). In particular, we may havew ∈ H1+s for some
s ∈ (0, 1). In that case obtain the more general estimate

‖w − Ihw‖H1 ≤ C̃Ih
s
0|w|1+s

yielding

‖u− u1‖L2
≤ Mc

mE

C̃IKRh
s
0|||u− u1|||.

The value ofs is found by considering all corners of boundary∂Ω. Writing the interior
angle at each corner byω = π/α it holds forα > 0 and arbitraryε > 0

ω = π/α =⇒ w ∈ H1+α−ε

and ifπ/(pj +1) ≤ ω ≤ π/pj for a set of integerspj characterizing the corners of∂Ω

‖w − Ihw‖H1 ≤ Chs|w|1+s

wheres = min{pj, 1} ands = 1 in the case of a smooth boundary or a convex polyhedral
domain. Details may be found in [1] and [13].
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