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LOCAL CONVERGENCE OF ADAPTIVE METHODS
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

MICHAEL HOLST, GANTUMUR TSOGTGEREL, AND YUNRONG ZHU

ABSTRACT. In this article we develop convergence theory for a generalclass of adaptive
approximation algorithms for abstract nonlinear operatorequations on Banach spaces,
and then use the theory to obtain convergence results for practical adaptive finite element
methods (AFEM) applied to several classes of nonlinear elliptic equations. In the first
part of the paper, we develop a weak-* convergence frameworkfor nonlinear operators,
whose Gateaux derivatives are locally Lipschitz and satisfy a local inf-sup condition.
The framework can be viewed as extending the recent convergence results for linear
problems of Morin, Siebert and Veeser to a general nonlinearsetting. We formulate an
abstract adaptive approximation algorithm for nonlinear operator equations in Banach
spaces with local structure. The weak-* convergence framework is then applied to this
class of abstract locally adaptive algorithms, giving a general convergence result. The
convergence result is then applied to a standard AFEM algorithm in the case of sev-
eral semilinear and quasi-linear scalar elliptic equations and elliptic systems, including:
a semilinear problem with subcritical nonlinearity, the steady Navier-Stokes equations,
and a quasilinear problem with nonlinear diffusion. This yields several new AFEM
convergence results for these nonlinear problems. In the second part of the paper we
develop a second abstract convergence framework based on strong contraction, extend-
ing the recent contraction results for linear problems of Cascon, Kreuzer, Nochetto, and
Siebert and of Mekchay and Nochetto to abstract nonlinear problems. We then establish
conditions under which it is possible to apply the contraction framework to the abstract
adaptive algorithm defined earlier, giving a contraction result for AFEM-type algorithms
applied to nonlinear problems. The contraction result is then applied to a standard AFEM
algorithm in the case of several semilinear scalar ellipticequations, including: a semi-
linear problem with subcritical nonlinearity, the Poisson-Boltzmann equation, and the
Hamiltonian constraint in general relativity, yielding AFEM contraction results in each
case.
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1. INTRODUCTION

Due to the pioneering work of Babuska and Rheinboldt [5], adaptive finite element
methods (AFEM) based ona posteriorierror estimators become standard tools in solving
PDEs arising in scientific and engineering. A standard adaptive algorithm has the general
iterative structure:

Solve −→ Estimate −→ Mark −→ Refine (1.1)

whereSolve computes the discrete solutionuk in a subspaceXk ⊂ X; Estimate com-
putes certain error estimators based onuk, which are reliable and efficient in the sense
that they are good approximation of the true erroru − uk in the energy norm;Mark ap-
plies certain marking strategies based on the estimators; and finally,Refine divides each
marked element and completes the mesh to to obtain a new partition, and subsequently
an enriched subspaceXk+1. The fundamental problem with the adaptive procedure (1.1)
is guaranteeing convergence of the solution sequence. Fora posteriorierror analysis, we
refer to the books [2, 69, 59] and the references cited therein.

The first convergence result for (1.1) was obtained by Babuska and Vogelius [6] for
linear elliptic problems in one space dimension. The multi-dimensional case was open
until Dörfler [26] proved convergence of (1.1) for Poisson equation, under the assump-
tion that the initial mesh was fine enough to resolve the influence of data oscillation. This
result was improved by Morin, Nochetto, and Siebert [46], inwhich the convergence was
proved without conditions on the initial mesh, but requiring the so-calledinterior node
property, together with an additional marking step driven by data oscillation. Since these
seminal papers, a number of substantial steps have been taken to generalize these con-
vergence results for linear elliptic problems in various directions. Of particular interest
to us here are the following. In [49, 47, 61] the asymptotic convergence results were
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obtained for a general class adaptive methods for a large class of linear problems. The
theory does not require marking due to oscillation, or the interior node property, and al-
lows more general marking strategies than what had been usedin Dörfler’s arguments,
with differenta posteriori errorestimators. In another direction, it was showed by Binev,
Dahmen and DeVore [11] for the first time that AFEM for Poissonequation in the plane
has optimal computational complexity by using a critical coarsening step. This result
was improved by Stevenson [62] by showing the optimal complexity in general spatial
dimension without coarsening step. These error reduction and optimal complexity results
were improved recently in several aspects in [17]. In the analysis of [17], the artificial
assumptions of interior node and extra marking due to data oscillation were removed,
and the convergence result is applicable to general linear elliptic equations. The main
ingredients of this new convergence analysis are the globalupper bound on the error give
by thea posterioriestimator, orthogonality (or possibly only quasi-orthogonality) of the
underlying bilinear form arising from the linear problem, and a type of error indicator
reduction produced by each step of AFEM. We refer to [50] for arecent survey of con-
vergence analysis of AFEM for linear elliptic PDEs which gives an overview of all of
these results through late 2009.

There are a number of recent and not-so-recent articles concerninga posteriorierror
analysis for nonlinear partial differential equations; cf. [8, 68, 55, 9, 58, 40, 57, 39, 59,
18]. However, to date there have been only a handful of AFEM convergence results for
nonlinear problems. Some of the results are: AFEM convergence for a scalar problem
involving thep-Laplacian was shown in [66, 25]; AFEM convergence for a class of con-
vex nonlinear problems arising in elasticity in [15, 14]; and AFEM convergence for the
nonlinear Poisson-Boltzmann equation in [20]. These results typically involve problem-
specific handling of the nonlinearity. A recent article in a more general direction is the
paper of Ortner and Praetorius [52] where the convergence analysis of an adaptive algo-
rithm for a large class of nonlinear equations is discussed based on energy minimization,
including the cases lacking an Euler-Lagrange equation dueto low differentiability prop-
erties of the energy. However, their argument is tailored specifically for non-conforming
finite element methods, with some remaining obstacles for the conforming case.

In this article we develop convergence theory for a general class of adaptive approxi-
mation algorithms for abstract nonlinear operator equations on Banach spaces, and then
use the theory to obtain convergence results for practical adaptive finite element meth-
ods (AFEM) applied to several classes of nonlinear ellipticequations. In the first part of
the paper, we develop a weak-* convergence framework for nonlinear operators, whose
Gateaux derivatives are locally Lipschitz and satisfy a local inf-sup condition. The frame-
work can be viewed as extending the recent convergence results for linear problems of
Morin, Siebert and Veeser [49, 47, 61] to a general nonlinearsetting. We formulate an
abstract adaptive approximation algorithm for nonlinear operator equations in Banach
spaces with local structure. The weak-* convergence framework is then applied to this
class of abstract locally adaptive algorithms, giving a general convergence result. The
convergence result is then applied to a standard AFEM algorithm in the case of sev-
eral semilinear and quasi-linear scalar elliptic equations and elliptic systems, including
a semilinear problem with polynomial nonlinearity, the steady Navier-Stokes equations,
and a more general quasilinear problem. This yields severalnew AFEM convergence
results for these nonlinear problems.

A disadvantage of the weak-* convergence framework is that it does not give informa-
tion on adaptive finite element convergencerate; strict error contraction results are key
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to complexity analysis of specific instances of the AFEM algorithms. To allow for com-
plexity results of this type, in the second part of the paper we develop a second abstract
convergence framework based on strong contraction, extending the recent contraction re-
sults for linear problems of Cascon, Kreuzer, Nochetto, andSiebert [17] and of Mekchay
and Nochetto [45] to abstract nonlinear problems. We then establish conditions under
which it is possible to apply the contraction framework to the abstract adaptive algorithm
defined earlier, giving a contraction result for AFEM-type algorithms applied to nonlin-
ear problems. The contraction result is then applied to a standard AFEM algorithm in
the case of several semilinear scalar elliptic equations, including a semilinear problem
with polynomial nonlinearity, the Poisson-Boltzmann equation [31] and the Hamiltonian
constraint [35] in general relativity, yielding AFEM contraction results in each case.

The remainder of this paper is organized as follows. In Section 2, we develop an ab-
stract framework for ensuring that a sequence of Petrov-Galerkin (PG) approximations to
the nonlinear problem converges to the solution of a nonlinear equation, by ensuring the
weak-* convergence to zero of the sequence of correspondingnonlinear residuals. This
involves first establishinga priori estimates and a general convergence result in Sec-
tion 2.1, together with recalling some (mostly standard)a posteriorierror estimates in
Section 2.2. In Section 3, we present a class of abstract adaptive algorithms which (under
reasonable assumptions) fit into both the weak-* convergence framework developed in
Section 2 and the contraction framework developed in Section 6. The class of algorithms
is general enough to include both classical adaptive finite element methods (AFEM) for
two- and three-dimensional elliptic systems, as well as AFEM algorithms for geometric
elliptic PDE on Riemannian manifolds (cf. [35, 30]). In Section 4, we give the main
convergence results for the class of adaptive algorithms described in Section 3. In partic-
ular, we prove that the adaptive algorithm generates a sequence of approximate solutions
which converge strongly to the solution, by showing that thecorresponding sequence of
nonlinear residuals weak-* converges to zero. We present a sequence of examples in Sec-
tion 5 to illustrate the weak-* convergence framework. In Section 6, we outline a second
distinct abstract framework for ensuring that a sequence ofapproximations to the nonlin-
ear problem produced by an adaptive algorithm converges to the solution of a nonlinear
equation, by ensuring strict contraction of thequasi-error (the sum of the error norm
and the error indicator). This framework is based on establishing strengthened Cauchy
and quasi-orthogonality-type inequalities for successive PG approximations produced by
adaptive algorithms in Sections 6.2–6.3, together with a general abstract contraction re-
sult derived in Section 6.4. The contraction result is an abstraction of the contraction
arguments used in [45, 16, 35, 31], suitable for use with approximation techniques for
nonlinear problems. As in these existing frameworks, it is based on establishing: (1)
quasi-orthogonality; (2) error indicator bound on the error; (3) a type of indicator reduc-
tion. We prove that under these assumptions, the adaptive algorithm generates a sequence
of approximate solutions for which the quasi-error strictly contracts. Finally, we present
several examples of increasing difficulty in Section 7 to illustrate this framework.

2. AN ABSTRACT WEAK* CONVERGENCEFRAMEWORK

In this section, we focus on developing a general convergence framework for abstract
nonlinear equations. To explain the problem class, the adaptive approximation algorithm,
and the set of convergence results we wish to establish, letX andY be real Banach
spaces (complete normed vector spaces over the fieldR) with norms‖ · ‖X and‖ · ‖Y ,
respectively. Denote the topological dual spaces of bounded linear functionals onX and
Y asX∗ andY ∗ respectively. In this paper, we are interested in the convergence of a
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general class of adaptive algorithms for solving the nonlinear equation:

Find u ∈ X, such thatF (u) = 0,

or in aweak form:

Find u ∈ X, such that〈F (u), v〉 = 0, ∀v ∈ Y, (2.1)

based on placing some minimal conditions on the first (Gateaux or Frechet) derivative
of F . We note that (2.1) often itself arises naturally through Gateaux differentiation of
a scalar-valued energyJ : X → R, as theEuler Conditionfor stationarity ofJ(u),
although we will consider the general case here whereby there may not be an underlying
energy functional. In any case, recall (cf. [65, 38, 51]) that the Gateaux variation ofF at
u ∈ X in the directionw ∈ X is given as:

F ′(u)w =
d

dǫ
F (u+ ǫw)

∣∣∣∣
ǫ=0

, (2.2)

and recall that when they exist as bounded linear operators,the Gateaux and Frechet
derivatives atu in the directionw agree withF ′(u) above, uniquely generated by (2.2).
Note that in general, the solution to equation (2.1) may not be unique. In this paper,we
are interested in thelocally unique solution, which is unique in a neighborhood:

Definition 2.1. We sayu ∈ X is a locally uniquesolution to(2.1) in a neighborhood
U ⊂ X of u, if u is the only solution of(2.1) in U.

Our aim now is to show that:For any convergent sequence{uk} in X, if the residuals
F (uk) of the nonlinear equation(2.1) weak-* converge to zero, then the sequence con-
verges to the solution of(2.1). Based on this abstract convergence result, the remainder
of this section will be devoted to establishing existence,a priori error estimates, anda
posteriorierror estimates, for Petrov-Galerkin approximations to equation (2.1).

The following simple theorem will form the basis for our convergence analysis.

Theorem 2.2. For a continuous (nonlinear) mapF : X → Y ∗, suppose thatu ∈ X is
a locally unique solution to(2.1) in a neighborhoodU ⊆ X of u. Let {uk} ⊂ U be a
sequence converging to someu∗ ∈ U , such that

lim
k→∞

〈F (uk), v〉 = 0, ∀v ∈ Y. (2.3)

Then we haveu∗ = u.

Proof. We have

〈F (u∗), v〉 = 〈F (u∗)− F (uk), v〉+ 〈F (uk), v〉

6 ‖F (u∗)− F (uk)‖Y ∗‖v‖Y + | 〈F (uk), v〉 |.

The conclusion follows by the continuity ofF, (2.3) and uniqueness ofu in U. �

One of our central goals in the paper is now to develop a practical way to generate the
sequence{uk} satisfying the conditions in Theorem 2.2. To this end, we introduce two
sequences of nested (finite-dimensional) subspaces

X0 ⊂ X1 ⊂ . . . ⊂ X andY0 ⊂ Y1 ⊂ . . . ⊂ Y,

wheredim(Xk) = dim(Yk) for eachk ∈ N. In addition, we introduce the spaces
(X∞, Y∞) :

X∞ =
⋃

k

Xk

‖·‖X

, and Y∞ =
⋃

k

Yk

‖·‖Y

.
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We focus on a class of approximation methods whereby the sequence of approximations
{uk ∈ Xk} ⊂ X to the exact solutionu ∈ X to (2.1) are generated by solving the
Petrov-Galerkin (PG) problems

Finduk ∈ Xk, such that〈F (uk), vk〉 = 0, ∀vk ∈ Yk. (2.4)

We next consider conditions onF to establish well-posedness of (2.4), and derivea
priori error estimates for the approximationsuk ≈ u.

2.1. A Priori Error Estimates. Let G be aC1 mapping fromX → Y ∗, understood as
an approximation ofF. AssumeG satisfies the following conditions:

(H1) There exists a constantδ > 0 such thatG′ satisfies

‖G′(u)−G′(x)‖L(X,Y ∗) 6 L‖u− x‖X , ∀x ∈ X with ‖u− x‖X 6 δ.

(H2) G′(u) is an isomorphism fromX → Y ∗, and there exists a constantM > 0 such
that ∥∥∥G′−1

(u)
∥∥∥
L(Y ∗,X)

6 M.

(H3) ‖G(u)‖Y ∗ 6 C, whereC = min{ δ
2M

, 1
4M2L

}.

Assumptions (H2) and (H3) are stability and consistency conditions, respectively. IfG
satisfies (H1)-(H3), then we have the following lemma, similar to [55, Theorem 2].

Lemma 2.3. LetG satisfy the assumptions (H1)-(H3), then there exist a constantδ0 > 0
and a uniqueuG ∈ X such thatG(uG) = 0, and ‖u− uG‖X 6 δ0. Moreover, we have
the followinga priorierror estimate:

‖u− uG‖X 6 2
∥∥G′(u)−1

∥∥
L(Y ∗,X)

‖G(u)‖Y ∗ .

Proof. We show existence and uniqueness by fixed-point argument. Define first

T (x) = x−G′(u)−1G(x), ∀x ∈ X.

This new operatorT is well-defined becauseG′(u) is an isomorphism by Assumption
(H2). Then for anyx1, x2 ∈ X we have

‖T (x1)− T (x2)‖X =
∥∥(x1 − x2) +G(u)′−1(G(x2)−G(x1))

∥∥
X

=

∥∥∥∥(x1 − x2)−G(u)′−1

∫ 1

0

G′(x1 + t(x2 − x1))(x1 − x2)dt

∥∥∥∥
X

=

∥∥∥∥G
′(u)−1

∫ 1

0

(G′(u)−G′(x1 + t(x2 − x1)))(x1 − x2)dt

∥∥∥∥
X

Let δ0 > 0 such thatδ0 = min{δ, 1
2LM

}. We try to show thatT is a contraction mapping
in the ballB(u, δ0) ⊂ X. By Assumption (H1), we have

‖G′(u)−G′((x1 + t(x2 − x1))‖L(X,Y ∗) 6 Lδ0, ∀x1, x2 ∈ B(u, δ0).

Therefore, by the choice ofδ0 and (H2) we have

‖T (x1)− T (x2)‖X 6 Lδ0
∥∥G′(u)−1

∥∥
L(Y ∗,X)

‖x1 − x2‖X 6
1

2
‖x1 − x2‖X .
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In addition, by using the above inequality and Assumption (H3), for anyx ∈ B(u, δ0)
we have

‖T (x)− u‖X 6 ‖T (x)− T (u)‖X + ‖T (u)− u‖X

6
1

2
‖x− u‖X +

∥∥G′(u)−1G(u)
∥∥
X

6
1

2
δ0 +MC 6 δ0.

Therefore,T is a contraction mapping fromB(u, δ0) to B(u, δ0). Thus, there exists a
uniqueuG ∈ B(u, δ0) such thatuG = T (uG), that is,G(uG) = 0. Moreover,

‖u− uG‖X = ‖u− T (uG)‖X 6 2
∥∥G′(u)−1

∥∥
L(Y ∗,X)

‖G(u)‖Y ∗ ,

which completes the proof. �

Lemma 2.3 provides us with an abstract framework for existence, uniqueness, and
thea priori error estimate (giving continuous dependence) for the approximated scheme
G(x) = 0. Based on this lemma, we now try to construct such a nonlinear operatorG
for the Petrov-Galerkin formulation (2.4). This turns out to be nontrivial, since Petrov-
Galerkin formulations are built only on the subspaces(Xk, Yk), whereas the operator
G : X → Y ∗ is defined on the pair(X, Y ). Therefore, for each pair(Xk, Yk), we need
to construct an operatorFk : X → Y ∗ such that the weak solution ofFk(x) = 0 is
equivalent to the solution of (2.4).

To this end, let us first introduce a bilinear formb : X × Y → R atu ∈ X:

b(x, y) = 〈F ′(u)x, y〉, ∀x ∈ X, ∀y ∈ Y, (2.5)

which is the linearization ofF atu. Denote by‖b‖ the norm ofb:

‖b‖ := sup{b(x, y) : x ∈ X, y ∈ Y s.t.‖x‖X = ‖y‖Y = 1} = ‖F ′(u)‖L(X,Y ∗).

We assume “inf-sup” conditions hold forb, i.e., there exists a constantβ0 > 0 such that

inf
x∈X,‖x‖X=1

sup
y∈Y,‖y‖Y =1

b(x, y) = inf
y∈Y,‖y‖Y =1

sup
x∈X,‖x‖X=1

b(x, y) = β0 > 0. (2.6a)

This condition is equivalent to assuming thatF ′(u) is an isomorphism fromX to Y ∗

with

‖F ′(u)−1‖L(Y ∗,X) = β−1
0 .

In the finite-dimensional spaces(Xk, Yk), we assume thatb satisfies a discrete inf-sup
condition of the form

inf
x∈Xk,‖x‖X=1

sup
y∈Yk,‖y‖Y =1

b(x, y) = inf
y∈Yk ,‖y‖Y =1

sup
x∈Xk,‖x‖X=1

b(x, y) > β1 > 0. (2.6b)

Based on these inf-sup conditions, we have thatb(·, ·) also satisfies the following inf-sup
condition for the pair of spaces(X∞, Y∞).

Lemma 2.4.Let the bilinear formb(·, ·) satisfies the inf-sup condition(2.6b)on(Xk, Yk)
for k = 1, 2, . . . . Then it satisfies the inf-sup condition on(X∞, Y∞) :

inf
x∈X∞,‖x‖X=1

sup
y∈Y∞,‖y‖Y =1

b(x, y) = inf
y∈Y∞,‖y‖Y =1

sup
x∈X∞,‖x‖X=1

b(x, y) > β1 > 0. (2.6c)

Proof. See [49, Lemma 4.2]. �
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For eachk = 0, 1, · · · ,∞, inf-sup condition (2.6b) or (2.6c) implies existence of two
projectors

ΠX
k : X → Xk and ΠY

k : Y → Yk,

defined by

b(x−ΠX
k x, yk) = 0 ∀yk ∈ Yk ∀x ∈ X, (2.7)

b(xk, y − ΠY
k y) = 0 ∀xk ∈ Xk ∀y ∈ Y. (2.8)

These operators are stable in the following sense:

‖ΠX
k ‖L(X,Xk) 6

‖b‖

β1
and ‖ΠY

k ‖L(Y,Yk) 6
‖b‖

β1
. (2.9)

In fact, take projectorΠX
k as an example, by the discrete inf-sup condition (2.6b), we

have

β1‖Π
X
k x‖X 6 sup

yk∈Yk,‖yk‖Y =1

b(ΠX
k x, yk)

= sup
yk∈Yk,‖yk‖Y =1

b(x, yk)

6 ‖b‖‖x‖X .

Moreover, the discrete inf-sup condition (2.6b) guarantees that

(ΠX
k )

2 = ΠX
k and(ΠY

k )
2 = ΠY

k .

Now we are ready to define the nonlinear operatorFk : X → Y ∗ for k = 0, 1, . . . ,∞ :

〈Fk(x), y〉 := 〈F (x),ΠY
k y〉+ b(x, y −ΠY

k y), ∀x ∈ X, y ∈ Y. (2.10)

By a direct calculation, we observe that

〈F ′
k(x)w, y〉 := 〈F ′(x)w,ΠY

k y〉+ 〈F ′(u)w, y −ΠY
k y〉. (2.11)

In particular, we haveF ′
k(u) = F ′(u). This operatorFk gives rise to another nonlinear

problem:
Find w ∈ X, such that 〈Fk(w), y〉 = 0, ∀y ∈ Y. (2.12)

The equation (2.12) is posed on the whole spaces(X, Y ). However, it is not difficult to
verify that the solution to (2.4) and the zero of (2.10) are equivalent:

Lemma 2.5([55, Lemma 1]). uk ∈ Xk is a solution of(2.4) if and only ifuk ∈ X is a
solution of (2.12).

Proof. We include the proof here for completeness. Ifuk ∈ Xk ⊂ X is a solution
to (2.4), then

〈F (uk), vk〉 = 0, ∀vk ∈ Yk.

Therefore,
〈F (uk),Π

Y
k y〉 = 0, ∀y ∈ Y.

For the second term in (2.10), notice thatuk ∈ Xk, and by the definition ofΠY
k , we have

b(uk, y −ΠY
k y) = 0, ∀y ∈ Y.

Thus,uk ∈ X is a solution to (2.12).
Conversely, letw ∈ X satisfy〈Fk(w), y〉 = 0, ∀y ∈ Y, that is

〈F (w),ΠY
k y〉+ b(w, y −ΠY

k y) = 0, ∀y ∈ Y.
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By choosingy = v − ΠY
k v, we obtainb(w, v − ΠY

k v) = 0, ∀v ∈ Y. By the definition
of ΠY

k andΠX
k , we then have

b(w − ΠX
k w, v) = b(w, v − ΠY

k v) = 0, ∀v ∈ Y.

Since the inf-sup condition holds forb, we havew = ΠX
k w ∈ Xk. On the other hand, by

choosingy = vk ∈ Yk, we then have

〈F (w), vk〉 = 0, ∀vk ∈ Yk,

which implies thatw ∈ Xk is a solution to (2.4). �

Lemma 2.5 shows that (2.12) is actually a reformulation of (2.4), which posed in
(Xk, Yk), into the whole spaces(X, Y ). It enables us to obtain the well-posedness and a
priori error estimate of (2.4) by applying Lemma 2.3 toFk. More precisely, we have the
following main result.

Theorem 2.6.Suppose equation(2.1)and the discretization(2.4)satisfy the inf-sup con-
ditions (2.6a), (2.6b)respectively. Moreover, suppose thatF ′ is Lipschitz continuous at
u, that is,

∃δ andL such that for allw ∈ X, ‖u− w‖X 6 δ

‖F ′(u)− F ′(w)‖L(X,Y ∗) 6 L‖u− w‖X.

If in addition the subspaceX0 satisfies the approximation condition

inf
χ0∈X0

‖u− χ0‖X 6 ‖b‖−1

(
1 +

‖b‖

β1

)−1

min

{
δβ0

2
,
β2
0

4L

}
, (2.13)

then there exist a constantδ1 > 0 such that equation(2.4)has a locally unique solution
uk ∈ Xk in B(u, δ1) for anyk > 0 such thatX0 ⊂ Xk. Moreover, we have thea priori
error estimates:

‖u− uk‖X 6
2‖b‖

β0

(
1 +

‖b‖

β1

)
min
χk∈Xk

‖u− χk‖X . (2.14)

Proof. By Lemma 2.5, a solution to equation (2.4) is equivalent to a solution to the
equation (2.12). By choosingG = Fk in Lemma 2.3, we only need to verify Assumptions
(H1)-(H3).

Note that (2.11) impliesF ′
k(u) = F ′(u). Therefore, we have

‖F ′(u)−1‖L(Y ∗,X) = β−1
0

from the inf-sup condition (2.6a). The assumption (H2) follows. Again, by (2.11) we
deduce that for anyw, x ∈ X andy ∈ Y,

〈(F ′
k(u)− F ′

k(x))w, y〉 = 〈(F ′(u)− F ′(x))w,ΠY
k y〉.

Therefore,

‖F ′
k(u)− F ′

k(x)‖L(X,Y ∗) 6 ‖F ′(u)− F ′(x)‖L(X,Y ∗)

∥∥ΠY
k

∥∥
L(Y,Yk)

6
‖b‖

β1
‖F ′(u)− F ′(x)‖L(X,Y ∗)

6
‖b‖

β1
L‖u− x‖X ,

where in the second inequality we used stability (2.9) ofΠY
k . Hence,Fk satisfies (H1).
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For Assumption (H3), we have

‖Fk(u)‖Y ∗ = sup
v∈Y, ‖v‖Y =1

〈Fk(u), v〉

= sup
v∈Y, ‖v‖Y =1

b(u, v − ΠY
k v)

= sup
v∈Y, ‖v‖Y =1

b(u−ΠX
k u, v)

6 ‖b‖‖u− ΠX
k u‖X .

By triangle inequality and stability (2.9) ofΠX
k , we have

‖u− ΠX
k u‖X 6 ‖u− χk‖X + ‖ΠX

k (u− χk)‖X 6

(
1 +

‖b‖

β1

)
inf

χk∈Xk

‖u− χk‖X .

Therefore, we obtain

‖Fk(u)‖Y ∗ 6 ‖b‖

(
1 +

‖b‖

β1

)
inf

χk∈Xk

‖u− χk‖X .

Notice thatX0 ⊂ Xk, and by assumption (2.13) we have

‖Fk(u)‖Y ∗ 6 ‖b‖

(
1 +

‖b‖

β1

)
inf

χ0∈X0

‖u− χ0‖X 6 min

{
δβ0

2
,
β2
0

4L

}
.

Hence, Assumption (H3) is satisfied. Therefore by Lemma 2.3,the there exists a constant
δ1 > 0 such that equation (2.4) has a locally unique solutionuk ∈ Xk in B(u, δ1) for any
k > 0. Furthermore, we have the following a priori error estimate:

‖u− uk‖X 6 2
∥∥F ′

k(u)
−1
∥∥
L(Y ∗,X)

‖Fk(u)‖Y ∗ 6
2‖b‖

β0

(
1 +

‖b‖

β1

)
inf

χk∈Xk

‖u− χk‖X .

This completes the proof. �

Remark 2.7. Theorem 2.6 is similar to[55, Theorem 4]. However, instead of assuming
the approximation property

lim
h→0

inf
xk∈Xk

‖u− xk‖X = 0

as used in their proof, we only assume that the initial subspaceX0 satisfies(2.13). This
is important because in the adaptive setting, we cannot (andof course, do not want to)
guarantee thath → 0 uniformly. The assumption(2.13)is essentially the approximation
property of the subspaceX0, since that

inf
χ0∈X0

‖u− χ0‖X 6 ‖u− IX0 u‖X .

In most of the applications we consider, the finite element spaceX0 has certain approx-
imation property, i.e.,‖u − IX0 u‖X = O(hα

0 ) for someα > 0, whereIX0 is inclusion
or quasi-interpolation. Therefore, the condition(2.13)can be satisfied by choosing the
meshsizeh0 of the initial triangulation to be sufficiently small.

Based on Theorem 2.6, there exists a locally unique solutionu∞ ∈ B(u, δ1) ⊂ X∞

with the test spaceY∞. In the remainder of this section, we will show that the PG so-
lution sequence{uk ∈ Xk} converges to the solutionu∞ ∈ X∞ of (2.4) in (X∞, Y∞).
Therefore, we indeed constructed a convergent sequenceuk → u∞ ask → ∞ by the
Petrov-Galerkin approximation.

With thisu∞, let us introduce another bilinear formb∞(·, ·) : X∞ × Y∞ → R as

b∞(x, y) := 〈F ′(u∞)x, y〉, ∀x ∈ X∞ ; y ∈ Y∞, (2.15)
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which is formed by linearizingF atu∞ ∈ X∞. Comparing with (2.5), we have

sup
y∈Y∞,‖y‖Y =1

b∞(x, y) = sup
y∈Y∞,‖y‖Y =1

(b(x, y) + b∞(x, y)− b(x, y))

≥ β0 − sup
y∈Y∞,‖y‖Y =1

〈(F ′(u∞)− F ′(u))x, y〉

≥ β0 − ‖F ′(u)− F ′(u∞)‖L(X,Y ∗), ∀x ∈ X∞, ‖x‖X = 1.

Therefore, ifF ′ satisfies the Lipschitz continuity condition for someδ > 0 as stated
in Theorem 2.6, then we can choose a constantδ1 > 0 sufficiently small such that the
following inf-sup condition holds inB(u, δ1) :

inf
y∈Y∞,‖y‖Y =1

sup
x∈X∞,‖x‖x=1

b∞(x, y) = inf
x∈X∞,‖x‖X=1

sup
y∈Y∞,‖y‖Y =1

b∞(x, y) = β̃0 > 0.

(2.16a)
Similarly, we can show the discrete inf-sup condition holdsin B(u, δ1) :

inf
y∈Yk,‖y‖Y =1

sup
x∈Xk,‖x‖X=1

b∞(x, y) = inf
x∈Xk,‖x‖X=1

sup
y∈Yk,‖y‖Y =1

b∞(x, y) = β̃1 > 0.

(2.16b)
These inf-sup conditions imply that there exists stable projectionsΠ̃X

k andΠ̃Y
k similar

to (2.7)-(2.8). Same as before, we can define a sequence of nonlinear equations:

Findx ∈ X∞, such that〈F̃k(x), y〉 = 0, ∀y ∈ Y∞, (2.17)

where

F̃k(x), y〉 = 〈F (x), Π̃Y
k y〉+ b∞(x, y − Π̃Y

k y).

Following the same lines of the proof of Lemma 2.5, one can show the solution to the
nonlinear equation (2.17) is the solution to the PG problem (2.4) for eachk = 0, 1, . . . .

In the proof of Theorem 2.6 , if we replace(X, Y ) by (X∞, Y∞), u by u∞ and the
inf-sup conditions (2.6a)-(2.6b) by (2.16a)-(2.16b), then we have the following theorem.

Theorem 2.8.Let the assumptions in Theorem 2.6 be fulfilled. Then there exists a neigh-
borhoodB(u, δ1) ofu such that the equation(2.4)has a locally unique solutionuk ∈ Xk

for eachk > 0. We also have the followinga priori error estimate:

‖u∞ − uk‖X 6 C inf
χk∈Xk

‖u∞ − χk‖X , ∀k = 0, 1, · · · .

Consequently, the PG sequence{uk} converges tou∞, that is, lim
k→∞

uk = u∞ in X.

Proof. By the same argument as in Theorem 2.6, equation (2.4) has a locally unique
solutionuk ∈ Xk for eachk > 0. Furthermore, we have the quasi-optimal estimate:

‖u∞ − uk‖X 6 C inf
χk∈Xk

‖u∞ − χk‖X , ∀k = 0, 1, · · · .

By density of
⋃∞

k=1Xk in X∞, we then havelim
k→∞

‖uk − u∞‖X = 0. �

Remark 2.9. Theorem 2.8 confirms that the approximate sequence{uk} has a limit
u∞ ∈ X∞. However, thisu∞ does not necessarily coincide with the exact solutionu.
Note thatu∞ = u if and only if the residualF (u∞) = 0. Obviously, this is the case when
X∞ = X. However, in general adaptive settings, one hasX∞ 6= X. Nevertheless, by
Theorem 2.2, it suffices to verify the weak-* convergence:F (uk) ⇀ 0.
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2.2. A Posteriori Error Estimates. Given any approximationuk of u, the nonlinear
residualF (uk) can be used to estimate the error‖u − uk‖X , through the use of alin-
earization theorem[43, 68]. An example due to Verfürth is the following.

Theorem 2.10. [68] Let u ∈ X be a regular solution of(2.1) so that the Gateaux
derivativeF ′(u) is a linear homeomorphism ofX ontoY ∗. Assume thatF ′ is Lipschitz
continuous atu, that is,

∃δ andL such that for allw ∈ X, ‖u− w‖X 6 δ

‖F ′(u)− F ′(w)‖L(X,Y ∗) 6 L‖u− w‖X.

LetR = min{δ, L−1‖F ′(u)−1‖L(Y ∗,X), 2L
−1‖F ′(u)‖L(X,Y ∗)}. Then for alluk ∈ X such

that‖u− uk‖ < R,

C1‖F (uk)‖Y ∗ 6 ‖u− uk‖X 6 C2‖F (uk)‖Y ∗ , (2.18)

whereC1 =
1
2
‖F ′(u)‖−1

L(X,Y ∗) andC2 = 2‖F ′(u)−1‖L(Y ∗,X).

Proof. See [68]. � �

The linearization is controlled by the choice ofδ sufficiently small, whereδ is the
radius of an open ball inX aboutu. The strength of the nonlinearity is represented
by the factors in (2.18) involving the linearizationF ′(u) and its inverse. To build an
asymptotic estimate of the error, one focuses on two-sided estimates for the nonlinear
residual‖F (uk)‖Y ∗ appearing on each side of (2.18).

3. A GENERAL ADAPTIVE ALGORITHM

The analysis in Section 2 reveals that under reasonable assumptions on the nonlinear
operatorF (·), the Petrov-Galerkin problem (2.4) is well-posed. Moreover, given the
nested subspaces{Xk} and{Yk}, the solution sequence{uk ∈ Xk} converges to the
exact solutionu ∈ X if the corresponding residual sequence{F (uk)} ⊂ Y ∗ weak-*
converges to zero, that is

lim
k→∞

〈F (uk), v〉 = 0, ∀v ∈ Y. (3.1)

In this section, we show how to construct subspaces(Xk, Yk) in an adaptive setting so
as to ensure (3.1). In particular, based on a few assumptionson the algorithm, we show
that the solution sequence generated by the algorithm produces a residual sequence that
satisfies (3.1).

3.1. The Setting: Banach Spaces with Local Structure.Since the algorithm to be
analyzed is of a finite element type, we need to have as the spacesX andY function
spaces defined over a domainΩ in R

d, or over a manifold. The manifold setting is more
general because a domain is trivially a manifold; however, in order to avoid the necessary
differential geometric language to also cover the case of geometric PDE on manifolds,
we consider here the even more general setting of measure spaces, which allows for a
simple and transparent discussion of the core ideas. (In [36, 34], we consider specifically
this geometric PDE setting.)

Let (Ω,Σ, µ) be a measure space, whereΩ is a set (a subset ofRd or ad-manifold),
Σ is aσ-algebra, andµ : Σ → [0,∞] is a measure. Recall that aσ-algebraΣ ⊆ 2Ω

overΩ is a partition (a collection of subsets or elements) ofΩ which containsΩ, and
is closed under the complement inΩ and countable union operations. Then ameasure
µ : Σ → [0,∞] is a function withµ(∅) = 0 and additive under disjoint countable unions.
We say thatT is apartition (a set of subsets) ofΩ with elements(simply connect subsets)
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{τ}τ∈T if
⋃

τ∈T τ = Ω andτ1∩τ2 = ∅ for anyτ1, τ2 ∈ T such thatτ1 6= τ2. We introduce
the meshsize functionhT associated toT as

hT (x) = µ(τ)
1

d , ∀x ∈ τ ∈ T .

Note thathT is well defined up to ad-dimensional Lebesgue measure zero skeleton.
Thus, we can understandhT ∈ L∞(Ω) as a piecewise constant function. Given any
subsetS ⊂ T , we denoteΩS =

⋃
τ∈S τ. Let X(τ) and be the finite element subspaces

defined on each elementτ ∈ T . We denoteX(ΩS) :=
⋃

τ∈S X(τ). For simplicity, let
X(T ) := X(ΩT ). We use similar notation forY andZ below.

We assume now that the Banach spacesX(T ) andY (T ) associated with the partition
T have certain local structures provided by the associated measure space(Ω,Σ, µ). In
particular, we assume that the induced norms‖ · ‖X and‖ · ‖Y are subadditive in the
underlying domain:

∥∥∥
{
‖w‖X(τ)

}
τ∈T

∥∥∥
ℓp

≃ ‖w‖X, ∀w ∈ X(T );

∥∥∥
{
‖v‖Y (τ)

}
τ∈T

∥∥∥
ℓq

≃ ‖v‖Y , ∀v ∈ Y (T ).

(3.2a)

In addition, we assume that the norms are absolutely continuous with respect to the
measureµ(·) in the sense that, for anyw ∈ X andv ∈ Y, there holds

‖w‖X(ω) → 0 and‖v‖Y (ω) → 0, asµ(ω) → 0. (3.2b)

Furthermore, we assume that the abstract or generalized finite element spaces have the
following local approximation property: LetY ⊂ Y be a dense subspace ofY ; we
assume that for any partitionT , there exists an interpolation operatorIT : Y → Y (T )
such that for allv ∈ Y ,

‖v − IT v‖Y (τ) . ‖hs
T ‖∞,τ‖v‖Y (τ), ∀τ ∈ T , (3.2c)

wheres > 0 is a constant.
The two most relevant examples of such Banach spaces with this type of local struc-

ture are subspacesX ⊂ Lp(Ω), whereΩ is either a bounded open subset ofR
n, or where

Ω is a RiemannianW t,q-manifold (a differentiable manifold with metric inW t,q), and
whereT is a partition ofΩ into elementsτ . Such subspaces then include Sobolev spaces
of scalar and vector functions over domains and partitions in R

n (cf. [42, 1]), as well
as Sobolev spaces ofW s,p-sections of vector bundles overΩ and partition elementsτ
(see [53, 29, 32] for a discussion of these spaces). See [30, 33, 35] and Section 7.4 for
examples in the case of manifold domains. We note that to show(3.2c) holds in specific
cases, it is not enough to assume thathτ (x) is sufficiently small, but also that certain
geometric (e.g. geodesic angle) conditions hold for the elements{τ}. In this article,
we assume that the subspace contruction schemes produce partitions {τ} satisfying the
appropriate geometric conditions so that (3.2c) holds. Finally, we remark that an inter-
mediate spaceZ such thatX ⊂ Z, with continuous (even compact) embedding

X(T ) →֒ Z(T ), (3.3)

will sometimes play a critical role. It is assumed thatZ has the same local structure as
X andY over a measure space(Ω,Σ, µ), in that both (3.2a) and (3.2b) hold forZ. The
role ofZ will usually be played byLp(Ω) for suitably chosen exponentp.
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3.2. The Algorithm: SOLVE-ESTIMATE-MARK-REFINE. We now formulate an
adaptive algorithm based on enriching the local structure using error indicators, parti-
tion marking, and partition refinement. LetXk := X(Tk) andYk := Y (Tk) be the
abstract finite element spaces defined on the partitionTk. Given an initial partitionT0 of
the domain, the adaptive algorithm for solving equation (2.1) is an iteration involving the
following main steps:

(1) uk := SOLVE (Xk, Yk) ;
(2) {η(uk, τ)}τ∈Tk := ESTIMATE (uk, Tk) ;
(3) Mk := MARK ({η(uk, τ)}τ∈Tk , Tk) ;
(4) Tk+1 := REFINE (Tk,Mk, ℓ) , increment k.

(3.4)

We will handle each of the four steps as follows:

• SOLVE: We use standard inexact Newton + multilevel solvers for equation (2.4)
to produceuk ∈ Xk on each partitionTk (cf. [7, 30, 24]). To simplify the analysis
here, we assume that the discrete solutionuk is the exact solution to (2.4).

• ESTIMATE: Given a partitionTk and the corresponding outputuk ∈ Xk of the
SOLVE modules, this module computes and outputs thea posteriorierror esti-
mator{η(uk, τ)}τ∈Tk , where for each elementτ ∈ Tk the indicatorη(uk, τ) > 0.

• MARK: Based on thea posteriorierror indicators{η(uk, τ)}τ∈Tk , this module
gives a strategy to choose a subset of elementsMk of Tk for refinement.

• REFINE: Given the set of marked elementsMk and the partitionTk, this pro-
cedure produces a new partitionTk+1 by refining (subdividing) all elements in
Mk ℓ > 1 times. Some other elements inTk \ Mk may also be refined based
on some requirement of the partition, such as geometric relationships between
neighboring elements (sometimes calledgeometric conformity) in order to sup-
port construction of the spacesX(T ). This procedure is known ascompletion.

Now we state some basic assumptions on these modules, which will be used in the
convergence analysis in Section 4.

3.2.1. REFINE. We suppose that refinement relies on unique quasi-regular element sub-
divisions. More precisely, there exist constantsc1, c2 ∈ (0, 1) independent of the parti-
tion T , such that any elementτ ∈ T can be subdivided inton(τ) > 2 subelements
τ ′1, . . . , τ

′
n(τ) such that

τ = τ ′
1 ∪ · · · ∪ τ ′n(τ), µ(τ) =

n(τ)∑

i=1

µ(τ ′i), (3.5a)

and

c1µ(τ) 6 µ(τ ′i) 6 c2µ(τ), i = 1, . . . , n(τ). (3.5b)

We define now the classG admissible partitionsof Ω as the subclass of all partitions
of Ω that satisfy the two properties:

• The partition is subordinate to (a refinement of)T0;
• The partition is locally quasi-uniform in the sense that

sup
T ∈G

max
τ∈T

#NT (τ) . 1, sup
T ∈G

max
τ ′∈NT (τ)

µ(τ)

µ(τ ′)
. 1, (3.5c)

whereNT (τ) := {τ ′ ∈ T |τ ′ ∩ τ 6= ∅} denotes the set of neighboring elements
of τ in T .



CONVERGENCE OF ADAPTIVE METHODS FOR NONLINEAR PDE 15

In addition, we suppose that the output partition

T ′ := REFINE(T ,M, ℓ)

satisfies the requirement
∀τ ∈ M ⊂ T , τ /∈ T ′, (3.5d)

that is, each marked element of the input partition is subdivided at least once in the
output partition. Additional elements inT \ M may be refined in order to fulfill some
other requirements for partitions coming from classG; for example, properties such as
geometric conformity may need to also hold in specific case ofconstructions ofX(T )
overT in order to ensure that (3.2c) holds.

3.2.2. SOLVE. We assume that the abstract finite element spacesX(T ) andY (T ) build
overT have the following two natural properties. LetT , T ′ ∈ G. The spacesX(T ) and
Y (T ) are calledconformingif

X(T ) ⊂ X andY (T ) ⊂ Y, and dimX(T ) = dim Y (T ), (3.6a)

and are callednestedif

if T ′ is a refinement ofT thenX(T ) ⊂ X(T ′) andY (T ) ⊂ Y (T ′). (3.6b)

We note that the underlying parititionT does not need to begeometrically conformingin
order for the spaces built overT to be conforming in the sense of (3.6a). We also assume
that the discrete inf-sup condition (2.6b) holds:

inf
x∈X(T ),‖x‖X=1

sup
y∈Y (T ),‖y‖Y =1

b(x, y) = inf
y∈Y (T ),‖y‖Y =1

sup
x∈X(T ),‖x‖X=1

b(x, y) > β1, (3.6c)

with some constantβ1 > 0. In most conforming finite element spaces in Sobolev spaces,
this is an immediate consequence of the usual interpolationerror estimates, cf. [22]. In
Theorem 2.6 for the well-posedness of the discrete equation, we require the spaceX0

satisfies (2.13):

inf
χ0∈X0

‖u− χ0‖X 6 ‖b‖−1

(
1 +

‖b‖

β1

)−1

min

{
δβ0

2
,
β2
0

4L

}
, (3.6d)

where‖b‖ = ‖F ′(u)‖L(X,Y ∗), β0, β1 are the inf-sup constants in (2.6a) and (2.6b) respec-
tively, L is the Lipschitz constant forF ′(u) andδ is the Lipschitz radius. Moreover, we
suppose that the output

uT := SOLVE (X(T ), Y (T ))

is thePetrov-Galerkin approximationof u with respect to(X(T ), Y (T )) :

uT ∈ X(T ) : 〈F (uT ), v〉 = 0, ∀v ∈ Y (T ).

Thanks to (3.6a), (3.6c) and the assumption on the initial partition (3.6d), by Theorem 2.6
the Petrov-Galerkin approximationuT exists, is unique, and is a‖ · ‖X -quasi-optimal
choice fromX(T ).

3.2.3. ESTIMATE. Now we make some assumptions on the output

{η(uT , τ)}τ∈T := ESTIMATE(uT , T )

for any admissible partitionT ∈ G. First, we assume that the following estimate holds
for the Petrov-Galerkin approximationuT : for any subsetS ⊂ T andv ∈ Y,

〈F (uT ), v〉 . η(uT ,S)‖v‖Y (ΩS) + η(uT , T \ S)‖v‖Y (ΩT \S), (3.7a)
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whereη(uT ,S) =
∥∥{η(uT , τ)}τ∈S

∥∥
ℓp

andΩS =
⋃

σ∈S σ for S ⊂ T . We note that the
estimate (3.7a) implies the global upper-bound

‖u− uT ‖X . η(uT , T ). (3.7b)

Second, we assume the error indicatorη(uT , τ) satisfies local stability. More precisely,
there exists a functionD ∈ Z(Ω) such that

η(uT , τ) . ‖uT ‖X(ωT (τ)) + ‖D‖Z(ωT (τ)), ∀τ ∈ T , (3.7c)

whereωT (τ) ⊂ Ω is the patch (union) of elements inNT (τ), and where the spaceZ is
the appropriate auxillary space as in (3.3) in Section 3.1.

Remark 3.1. We remark that the stability assumption(3.7c) is weaker than the local
lower bound bound. As we can see from the examples in Section 5, one can obtain the
stability estimate(3.7c)from the usual local lower bound estimates.

3.2.4. MARK. We suppose that the output

M := MARK ({η(uT , τ)}τ∈T , T )

of marked elements has the property

η(uT , τ) 6 ξ
(
max
σ∈M

η(uT , σ)
)
, τ ∈ T \M, (3.8)

whereξ : R+ → R+ is a continuous function satisfyingξ(0) = 0. Most marking strate-
gies used in practice satisfy (3.8). For instance, the maximum strategy or equidistribution
strategy, cf. [48]. In particular, the following Dörfler marking strategy also satisfies the
assumption (3.8): Givenθ ∈ (0, 1], a marked subsetM of elements is constructed to
satisfy

η(uT ,M) > θη(uT , T ). (3.9)

This marking strategy, which was proposed by Dörfler [26] inhis original AFEM con-
vergence paper, is proven to be crucial in the proof of contraction, cf. [46, 16]. We refer
to Section 7 for more detail.

4. CONVERGENCEANALYSIS

Based on the assumptions on the adaptive algorithm, and on the abstract framework
discussed in Sections 2, we are now ready to state and prove the abstract convergence
result based on a weak-* residual convergence.

Theorem 4.1(Abstract Convergence). Letu be a locally unique exact solution of(2.1).
Assume that the nonlinear operatorF ′(u) satisfies the inf-sup condition(2.6a)and is
Lipschitz continuous in a neighborhood ofu. Let {uk} be the sequence of approximate
solutions generated by iteration(3.4).

If the finite element spaces(Xk, Yk) satisfy(3.2), and the modulesREFINE, SOLVE,
ESTIMATE, and MARK satisfy, respectively,(3.5), (3.6), (3.7), and (3.8), then there
existsu∞ ∈ X such thatlim

k→∞
uk = u∞. Moreover, the sequence{uk} satisfies

lim
k→∞

〈F (uk), v〉 = 0, ∀v ∈ Y. (4.1)

Consequently, we haveu∞ = u, that is lim
k→∞

‖uk − u‖X = 0.
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We split the partitionTk into two setsT +
k andT 0

k , where

T +
k = {τ ∈ Tk : τ ∈ Ti, ∀i > k}

contains all the elements that will not be refined afterk-th step, andT 0
k = Tk \ T

+
k is the

set of elements that will be refined at least once afterk-th step. Here the superscript ‘+’
means the measure of the elements inT +

k is positive. We denote

Ω0
k = ΩT 0

k
:=

⋃

τ∈T 0
k

τ and Ω+
k = ΩT +

k
:=

⋃

τ∈T +

k

τ.

For simplicity, we denoteΩ0 =

∞⋂

i=0

Ω0
i .

We note that the sequence{hk} ⊂ L∞(Ω) of the meshsize function is bounded and
monotone decreasing for a.e.x ∈ Ω. Moreover, we have

Lemma 4.2([48, Corollary 4.5]). The sequences{hk} and{Ω0
k} satisfy

lim
k→∞

‖hk‖L∞(Ω0
k
) = 0.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1.Theorem 2.8 shows the existence of the Petrov Galerkin solutions
uk ∈ Xk andu∞ ∈ X such that

lim
k→∞

uk = u∞.

If we can show (4.1), that is, the residuals weak-* converge to 0, then Theorem 2.2
implies thatu∞ = u. Therefore, we need to prove (4.1). Notice thatY is dense inY, we
only need to show that

lim
k→∞

〈F (uk), v〉 = 0, ∀v ∈ Y . (4.2)

By definition, the setsT +
k are nested, that is for anyj 6 k,

T +
j ⊂ T +

k ⊂ Tk and Ω0
j = ΩTk\T

+

j
.

Applying the upper bound (3.7a) withT = Tk andS = T +
j , for anyv ∈ Y we have

〈F (uk), v〉 = 〈F (uk), v − v̄〉 . η(uk, Tk \ T
+
j )‖v − v̄‖Y (Ω0

j )
+ η(uk, T

+
j )‖v − v̄‖Y (Ω+

j ),

(4.3)
wherev̄ is arbitrary inYk. Given anyε > 0, we need to show that for sufficiently large
k andj, and for a suitablēv ∈ Yk, each term in the right hand side of the above estimate
can be bounded by a multiple ofε.

By the local approximation assumption (3.2c), there existsa v̄ := Ijv ∈ Yj ⊂ Yk such
that

‖v − v̄‖Y (τ) . ‖hs
j‖∞,τ‖v‖Y (τ).

So according to Lemma 4.2 for sufficiently largej, we have‖v − v̄‖Y (Ω0) 6
ε
2
. On the

other hand, it is easy to see thatµ(Ω0
j \ Ω0) → 0 asj → ∞. Therefore, by (3.2b) for

sufficiently largej one has‖v − v̄‖Y (Ω0
j\Ω

0) 6
ε
2
. Hence by (3.2a), we obtain

‖v − v̄‖Y (Ω0
j )
. ‖v − v̄‖Y (Ω0) + ‖v − v̄‖Y (Ω0

j\Ω
0) 6 ε.
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Notice thatη(uk, Tk \ T
+
j ) is uniformly bounded because

η(uk, Tk \ T
+
j ) 6

∥∥{η(uk, τ)}τ∈Tk
∥∥
ℓp

.
∥∥∥
{
‖uk‖X(ωk(τ))

}
τ∈Tk

∥∥∥
ℓp
+
∥∥∥
{
‖D‖Z(ωk(τ))

}
τ∈Tk

∥∥∥
ℓp

. ‖uk‖X + ‖D‖Z

6 ‖uk − u∞‖X + ‖u∞‖X + ‖D‖Z ,

where in the second inequality, we used the inequality (3.7c), and in the third inequality,
we used (3.5c) and (3.2a). Now sincelim

k→∞
‖uk − u∞‖X = 0, for sufficiently largej 6 k

we have
η(uk, Tk \ T

+
j ) 6 2‖u∞‖X + ‖D‖Z.

Therefore, the first term in the right hand side of (4.3) satisfies:

η(uk, Tk \ T
+
j )‖v − v̄‖Y (Ω0

j )
. (2‖u∞‖X + ‖D‖Z)ǫ.

We fix thisj and consider the second term in the right hand side of (4.3), and letk > j.
By marking strategy (3.8), for allτ ∈ T +

j ⊂ T +
k , we have

η(uk, τ) 6 ξ
(
max
σ∈T 0

k

η(uk, σ)
)
,

and moreover forσ ∈ T 0
k we have

η(uk, σ) . ‖uk‖X(ωk(σ)) + ‖D‖Z(ωk(σ))

6 ‖uk − u∞‖X(ωk(σ)) + ‖u∞‖X(ωk(σ)) + ‖D‖Z(ωk(σ)).

The first term goes to zero becauseuk → u∞. For the second and third terms, we notice
thatµ(ωk(σ)) → 0 ask → ∞ by the locally quasi-uniformity (3.5c) and Lemma 4.2.
Hence‖ · ‖X(ωk(σ)) → 0 and‖ · ‖Z(ωk(σ)) → 0 asµ(ωk(σ)) → 0 by (3.2b). Therefore, we
can choosek > j sufficiently large such thatη(uk, T

+
j ) 6 ε. Finally, we proved that

lim
k→∞

〈F (uk), v〉 = 0, ∀v ∈ Y .

Therefore, (4.1) holds. This completes the proof. �

The convergence ofuk → u ask → ∞ in Theorem 4.1 does not imply the convergence
of the estimator. It is indeed possible for the error indicators to be not efficient in the sense
that they might contain strong overestimation. In other words, an efficient error indicator
should be bounded by the error‖u− uk‖X in certain way.

Theorem 4.3. Let there existD ∈ Z and a continuous functionφ : R+ → R+ with
φ(0) = 0, such that for anyT ∈ G andτ ∈ T

η(uk, τ) . ‖u− uk‖X(τ) + φ(µ(τ))
(
‖uk‖X(τ) + ‖D‖Z(τ)

)
. (4.4)

Then under the hypotheses of Theorem 4.1, we have

lim
k→∞

η(uk, Tk) = 0.

Proof. Fork > j by definition ofη and (4.4) we have

η(uk, Tk) . η(uk, Tk \ T
+
j ) + η(uk, T

+
j )

. ‖u− uk‖X(Ω
M0

j
) + η(uk, T

+
j )

+
∥∥∥
{
φ(µ(τ))

(
‖uk‖X(τ) + ‖D‖Z(τ)

)}
τ∈Tk\T

+

j

∥∥∥
ℓp
.
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By Theorem 4.1, we have‖u − uk‖X(Ω0
j )

6 ‖u − uk‖X → 0, ask → ∞. The second

term goes to zero since for anyτ ∈ Tk \ T
+
j , µ(τ) → 0 asj → ∞. We follow the same

arguments as in Theorem 4.1 to show that the last term converges to zero. This completes
the proof. �

Note that convergence of both the error (Theorem 4.1) and theestimator (Theorem 4.3)
are important. The convergence result in Theorem 4.1,lim

k→∞
‖u− uk‖X = 0, means that

the approximate solutions get arbitrarily close to the exact solution. However, this would
be of little practical use without the second convergence result, namely lim

k→∞
η = 0,

which is the computable counterpart of the first result and thus allows one to recognize
the improvement of the approximate solutions. In particular, lim

k→∞
η = 0 ensures that if

one includes a stopping test with a given positive tolerance, then the algorithm stops after
a finite number of iterations.

5. EXAMPLES

In this section, we present some nonlinear examples, and apply the weak-* conver-
gence framework developed in the previous sections to show convergence of the adaptive
algorithm (3.4) for these problems. We consider a fairly broad set of nonlinear problems
(see [13, 68, 57] for example), and show how the weak-* framework can be applied
in each case. Specifically, we consider a specific semilinearproblem with subcritical
nonlinearity, the stationary incompressible Navier-Stokes equations, and a quasi-linear
stationary heat equation with convection and nonlinear diffusion. Many other nonlinear
equations are also covered by this general framework.

We restrict polygonal (or polyhedral) domainsΩ ⊂ R
d, whered = 2, 3 is the space

dimension; however, all of the results extend to more general domains with standard
boundary approximation algorithms and analysis techniques. In the examples presented
here, the function spacesX andY are the Sobolev spacesW s,p(Ω) with s > 0 andp > 1,
equipped with the norm‖·‖s,p,Ω and semi-norm|·|s,p,Ω. The spaceW s,p

0 (Ω) is the closure
of D(Ω) in W s,p(Ω), andW−s,q(Ω) is the dual space ofW s,p

0 (Ω) with 1
p
+ 1

q
= 1. When

p = 2, we shall denoteHs(Ω) andHs
0(Ω) instead ofW s,2(Ω) andW s,2

0 (Ω) respectively,
with the norm‖ · ‖s,Ω and semi-norm| · |s,Ω instead of‖ · ‖s,2,Ω and| · |s,2,Ω. The spaceZ
in the convergence analysis is taken to beLp(Ω) for suitable choice ofp. More detailed
presentations of the Sobolev spaces can be found, for example in the monographs [42, 1]
in the case of domains inRd, or [53, 29, 32] in the case of manifold domains. These
Sobolev spaces satisfy the subadditive assumption (3.2).

Let the initial partitionT0 of Ω be conforming and shape regular. We restrict ourself to
a shape-regular bisection algorithm for the refinement. There is a vast literature on bisec-
tion algorithms; cf. [3, 54, 19, 63] and the references citedtherein. It is well known that
the bisection algorithm as well as the shape-regularity ofT0 guarantee assumption (3.5)
holds for any partitions generated by the algorithm. Without loss of generality, we as-
sume that‖h0‖∞,Ω 6 1 is fine enough such that (3.6d) holds.

Starting from the initial triangulationT0, the adaptive algorithm (3.4) generates a se-
quences of shape-regular triangulations{Tk}k of Ω, as well as a sequence of approximate
solutions{uk}. For the marking strategy, the condition (3.8) is satisfied for example if we
useDörfler’s strategy(cf. [26]) (3.9), or theMaximum strategy(cf. [4]). Apart from the
assumptions on mesh refinement and the marking strategy discussed above, for each in-
dividual example below, we need to construct the specific finite element spacesXk ⊂ X
andYk ⊂ Y which satisfy the conditions (3.6). We also need to define thespecific error



20 M. HOLST, G. TSOGTGEREL, AND Y. ZHU

indicatorη, which satisfies (3.7). More precisely, according to Theorem4.1 and 4.3 we
only need to:

(1) Verify the continuous inf-sup condition (2.6a) and the uniform discrete inf-sup
condition (2.6b) of the bilinear formb(·, ·) defined by (2.5);

(2) Define appropriate error estimatorη which satisfies (3.7);
(3) Verify that η satisfies (4.4) to prove the convergence of error indicator Theo-

rem 4.3. We note that the standard local lower bounds for the error indicator will
guarantee (4.4).

In the remainder of this section, we will follow the general framework presented in
Section 2.2 (cf. [68, 69]) to derivea posteriorierror estimates for each example. We
then verify the basic assumptions on the error estimators and the nonlinear equations.
As a consequence, we then conclude convergence of the adaptive algorithm for each
example.

5.1. Semilinear Examples: Single Equations and Systems.In this subsection, we
give two semi-linear examples. The general formulation of asemi-linear equation is
as follows:

F (u) := Lu+N(u) = 0, (5.1)
whereL : X → Y ∗ is a bounded linear operator, andN(·) : X → Z ⊂ Y ∗ is aC1

mapping fromX onto a subspaceZ of Y ∗. We assume that
(S1) L satisfies the continuous as well as the discrete inf-sup conditions:

inf
x∈X,‖x‖X=1

sup
y∈Y,‖y‖Y =1

〈Lx, y〉 = inf
y∈Y,‖y‖Y =1

sup
x∈X,‖x‖X=1

〈Lx, y〉 = α0 > 0. (5.2)

inf
x∈Xk,‖x‖X=1

sup
y∈Yk,‖y‖Y =1

〈Lx, y〉 = inf
y∈Yk,‖y‖Y =1

sup
x∈Xk,‖x‖X=1

〈Lx, y〉 = α1 > 0. (5.3)

(S2) The embeddingZ ⊂ Y ∗ is compact as in (3.3).
First of all, we establish well-posedness of the equation (5.1) under the above assump-
tions onL andN.

Theorem 5.1. Let F satisfy (S1) and (S2), andX0 satisfy(2.13). If N ′(u) is Lipschitz
continuous in a neighborhood ofu, then the Petrov-Galerkin problem(2.4) possesses a
unique solutionuk in a neighborhood ofu. Moreover, we have the error estimates

‖u− uk‖X . inf
χk∈Xk

‖u− χk‖X .

Proof. It is straightforward to check thatF ′(u) is Lipschitz continuous. The following
inf-sup condition was proved in [57, Theorem 5.1]:

inf
x∈Xk,‖x‖X=1

sup
y∈Yk,‖y‖Y =1

〈F ′(u)x, y〉 = inf
y∈Yk ,‖y‖Y =1

sup
x∈Xk,‖x‖X=1

〈F ′(u)x, y〉 = β1 > 0.

Then the conclusion follows by Theorem 2.6. �

Remark 5.2. The (global) existence and uniqueness of the solution can sometimes be
proved by standard arguments in the calculus of variations.Thea priori error estimate
in Theorem 5.1 can also be proved in a different way, ifa priori L∞ estimates on the
solutionu and the discrete solutionsuk hold. We refer to Section 7 for the details.

Example 5.3.Consider the following semi-linear equation

F (u) := −∆u + um − f = 0, (5.4)

with homogeneous Dirichlet boundary conditionu|∂Ω = 0. We assume thatm > 2 is a
constantf ∈ Lp(Ω) for somep > 1 satisfiesp > d− d

m
.
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For this nonlinear equation, we define the linear and nonlinear components ofF as
Lu = −∆u andN(u) = um − f. We letX = W 1,p

0 (Ω) with ‖ · ‖X = | · |1,p,Ω and
Y = W 1,q

0 (Ω) with the norm‖·‖Y = | · |1,q,Ω, whereq satisfies1
p
+ 1

q
= 1. By the Sobolev

Embedding Theorem and the choice ofm, we haveW 1,p(Ω) →֒ Lmp(Ω). Therefore,
for anyu ∈ W 1,p

0 (Ω), we haveN(u) ∈ Lp(Ω), which is compact embedded inY ∗ =
W−1,p(Ω). A special case whenm = 3 andp = 2 in R

2 can be found in Rappaz [57].
Given a conforming triangulationTk, letXk ⊂ X andYk ⊂ Y be the piecewise linear

continuous finite element space defined onTk. Then the finite element approximation of
the equation (5.4) reads,

find uk ∈ Xk, such that
∫

Ω

∇uk · ∇vk + um
k vk − fvkdx = 0, ∀vk ∈ Yk. (5.5)

Based on Theorem 5.1 and Theorem 2.6, we have the following proposition.

Proposition 5.4. If the Laplacian operator∆ : W 1,p
0 (Ω) → W−1,p(Ω) is an isomor-

phism, then for‖h0(x)‖∞,Ω sufficiently small, the Petrov-Galerkin problem(5.5)have a
unique solutionuk ∈ Xk in the neighbor ofu, which satisfies thea priorierror estimate

‖u− uk‖1,p,Ω . min
χk∈Xk

‖u− χk‖1,p,Ω.

Proof. It is straightforward to checkF ′(u) is Lipschitz continuous. By assumption on
∆, L = −∆ satisfies the continuous inf-sup condition (5.2). That is, we have

inf
w∈X,‖w‖X=1

sup
v∈Y,‖v‖Y =1

(∇w,∇v) = inf
v∈Y,‖v‖Y =1

sup
w∈X,‖w‖X=1

(∇w,∇v) > α0 > 0.

We need to show thatL satisfies the discrete inf-sup condition (5.3). LetPk : W
1,q
0 (Ω) →

Yk be the Galerkin projection, i.e., for anyv ∈ W 1,q
0 (Ω)

(∇wk,∇(v − Pkv)) = 0, ∀wk ∈ Xk.

It is well known that‖Pkv‖Y . ‖v‖Y , ∀v ∈ Y , see [56] for example. For anywk ∈
Xk with ‖wk‖X = 1, by the continuous inf-sup condition, there exists a function v ∈
W 1,q

0 (Ω) with ‖v‖Y = 1 such that
α0

2
6 (∇wk,∇v) = (∇wk,∇Pkv).

Hence

sup
vk∈Yk,‖vk‖Y =1

(∇wk,∇vk) >

(
∇wk,

∇Pkv

‖Pkv‖Y

)
>

α0

2‖Pkv‖Y
> α1 > 0,

for some constantα1. In the last step, we used the stability ofPk. This proves the discrete
inf-sup condition:

inf
vk∈Yk,‖v‖Y =1

sup
wk∈Xk ,‖wk‖X=1

(∇wk,∇vk) > α1 > 0.

The conclusion then follows by Theorem 5.1. �

Let σ = τ ∩ τ ′ be the interface between two elementsτ andτ ′ ∈ Tk, andnσ be a fixed
unit normal ofσ. For anyw ∈ Xk, we denote the jump residual onσ as[∇w · nσ]. Now
we define the local error indicator

η(w, τ)p := hp
τ‖w

m − f‖p0,p,τ +
∑

σ⊂∂τ

hσ ‖[∇w · nσ]‖
p
0,p,σ , ∀w ∈ Xk, (5.6)
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and defineη(w,S) :=
(∑

τ∈S η
p(w, τ)

) 1

p for any subsetS ⊂ Tk. We also introduce the
oscillation:

osck(τ) := hτ‖f − π0f‖0,p,τ ,

whereπ0 is the element-wiseLp projection; and denoteosck(S) :=
(∑

τ∈S osc
p
k(τ)

) 1

p

for any subsetS ⊂ Tk. Follow the general framework developed in [69], we have the
following a posteriorierror estimates.

Theorem 5.5. Let u ∈ W 1,p
0 (Ω) be a solution to(5.4), anduk ∈ Xk be the solution of

Petrov-Galerkin equation(5.5). Then for any subsetS ⊂ Tk andv ∈ Y, we have

〈F (uk), v〉 . η(uk,S)‖v‖Y (ΩS) + η(uk, Tk \ S)‖v‖Y (ΩTk\S).

Consequently, there exists a constantC0 depending only onm and the shape regularity
of Tk such that

‖u− uk‖1,p,Ω 6 C0η(uk, Tk). (5.7)

Furthermore, there exist constantsC1 andC2 depending only onm and the shape regu-
larity of Tk such that

η(uk, τ) 6 C1‖u− uk‖1,p,ωτ
+ C2osck(ωτ). (5.8)

Finally, based on these observations, the adaptive algorithm for the nonlinear equa-
tion (5.4) is convergent.

Corollary 5.6. The adaptive algorithm for the nonlinear equation(5.4) converges, that
is,uk → u ask → ∞. Moreover, we have

lim
k→∞

η(uk, Tk) = 0.

Proof. By Theorem 5.5,η(uk, Tk) satisfies (3.7a). To show (3.7c), by the local lower
bound and triangle inequality, we obtain:

η(uk, τ) 6 C1‖u− uk‖1,p,ωτ
+ C2osck(ωτ)

6 C1‖uk‖1,p,ωτ
+ C1‖u‖1,p,ωτ

+ C2‖h(f − π0f)‖0,p,ωτ

. ‖uk‖1,p,ωτ
+ ‖D‖0,p,ωτ

,

whereD depends only onf andu. Here we use the fact thatu ∈ W 1,p
0 (Ω), i.e.,

‖u‖1,p,ω(τ) 6 C

for some constantC > 0. Also notice that the local lower bound (5.8) implies (4.4), then
the conclusion follows by Theorem 4.1 and Theorem 4.3. �

As a second example of a semi-linear equation involving a system of equations, we
consider the stationary incompressible Navier-Stokes problem:

Example 5.7.Consider




−ν∆u+ (u · ∇)u+∇p = f in Ω ⊂ R
d

divu = 0 in Ω,
u = 0 on∂Ω

(5.9)

whereν is a constant viscosity of the fluid andf ∈ L2(Ω)d is the given force field.
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For this example, we letX = Y = H1
0 (Ω)

d × L2
0(Ω) with the graph norm

‖[v, q]‖X =
(
‖v‖21,Ω + ‖q‖20,Ω

) 1

2 .

Let

〈L[u, p], [v, q]〉 =

∫

Ω

ν∇u : ∇v − pdivv − qdivudx

〈N([u, p]), [v, q]〉 =

∫

Ω

(u · ∇)u · v − f · vdx.

Whend = 2, sinceu ∈ H1
0 (Ω)

d
, by the Sobolev Embedding Theorem, we haveu ∈

Lp(Ω) for all 1 < p < ∞. Hence,(u · ∇)u is in Lq(Ω)2 for all 1 6 q < 2. Similarly,
whend = 3, we notice thatu ∈ Lp(Ω)3 for all 1 < p 6 6. Therefore,(u · ∇)u is in
Lq(Ω)3 for all 1 6 q 6 3

2
. If we setZ = Lq(Ω)d for 6

5
< q < 3

2
, the property (S2) ofN

is true withd = 2 or 3.
On the other hand, the operatorL is given by the Stokes problem. It is well-known

that the continuous inf-sup condition is satisfied byL. Given the triangulationTk, we
denote the finite element spaceXk := Vk × Qk ⊂ X, and assume that there holds the
following discrete inf-sup condition for Stokes operatorL onVk ×Qk :

‖qk‖0,Ω . sup
vk∈Vk

(divvk, qk)

‖vk‖1,Ω
. (5.10)

We refer to [67, 28, 12] for construction of finite element spaces that satisfy (5.10). By
this construction, the linear operatorL satisfies the assumption (S1).

The Petrov-Galerkin approximation to the equation (5.9) is: Find [uk, pk] ∈ Xk such
that

〈F ([uk, pk]), [vk, qk]〉 = 0, ∀[vk, qk] ∈ Xk, (5.11)

where〈F ([uk, pk]), [vk, qk]〉 := 〈L[uk, pk], [vk, qk]〉 + 〈N([uk, pk]), [vk, qk]〉. Based on
Theorem 5.1 and the abstract framework in Section 2, we have the following proposition.

Proposition 5.8. The Petrov-Galerkin problem(5.11) for the stationary Navier-Stokes
equation has a unique solution[uk, pk] in a neighborhood of[u, p].

Error indicators for this equation have been developed by several papers, see [13, 68,
10]. For anyτ ∈ Tk, we defineη([uk, pk], τ) as

η([uk, pk], τ)
2 := h2

τ‖ − ν∆uk + (uk∇)uk +∇pk − f‖20,τ

+ ‖divuk‖
2
0,τ

+
∑

σ⊂∂τ

hσ ‖[(ν∇uk − pk) · n]‖
2
0,σ ,

and define the oscillation by

osck(τ) := hτ‖f − π0f‖0,τ .

As usual, for any subsetS ⊂ Tk we denote

η([uk, pk],S) :=

(
∑

τ∈S

η2([uk, pk], τ)

) 1

2

andosck(S) =

(
∑

τ∈S

osck(τ)
2

) 1

2

.

We then have the followinga posteriorierror estimates.
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Theorem 5.9. Let [u, p] ∈ X be a locally unique solution to(5.9), and [uk, pk] ∈ Xk

be the solution to the Petrov-Galerkin problem(5.11). Then for any subsetS ⊂ Tk and
v ∈ X, we have the nonlinear residual estimate

〈F ([uk, pk]), [v, q]〉 . η([uk, pk],S)‖[v, q]‖X(ΩS)

+η([uk, pk], Tk \ S)‖[v, q]‖X(ΩTk\S).

Moreover, we have the followinga posteriorierror estimates:

(
‖u− uk‖

2
1,Ω + ‖p− pk‖

2
0,Ω

) 1

2 . η([uk, pk], Tk),

η([uk, pk], τ) .
(
‖u− uk‖

2
1,ωτ

+ ‖p− pk‖
2
0,ωτ

) 1

2 + osck(ωτ ).

Therefore, the adaptive algorithm for the nonlinear equation (5.7) is convergent.

Corollary 5.10. Let [u, p] ∈ X be a locally unique solution to(5.9), and[uk, pk] ∈ Xk

be the solution to the Petrov-Galerkin problem(5.11)at each adaptive stepk. Then we
have[uk, pk] → [u, p] ask → ∞. Moreover, we have

lim
k→∞

η([uk, pk], Tk) = 0.

Proof. The estimate (3.7a) of the error estimatorη([uk, pk], Tk) follows by Theorem 5.9.
Similar to Corollary 5.6, we can easily show (3.7c) by the local lower bound and triangle
inequality. The conclusion then follows by Theorem 4.1 and Theorem 4.3. �

5.2. A Quasi-Linear Example.

Example 5.11.We now consider a quasi-linear example, the stationary heatequation
with convection and nonlinear diffusion:

F (u) = −div(κ(u)∇u) + b · ∇u− f = 0 in Ω, (5.12)

with homogeneous boundary conditionu|∂Ω = 0. We assume for alls ∈ R, κ(s) ∈
C2(R) satisfiesκ(s) > α > 0 and |κ(l)(s)| 6 γl, for l = 0, 1, 2, for some constants
α, γ0, γ1, andγ2. We assume the vector fieldb ∈ W 1,∞(Ω)d such thatdivb = 0, and
f ∈ L∞(Ω).

LetX = W 1,p
0 (Ω) andY = W 1,q

0 (Ω), with 1
p
+ 1

q
= 1. As before, we letXk ⊂ X and

Yk ⊂ Y be the piecewise linear continuous finite element space defined onTk. The finite
element approximation of the equation (5.11) reads,

find uk ∈ Xk, such that
∫

Ω

κ(uk)∇uk · ∇vk + b∇ukvk − fvkdx = 0, ∀vk ∈ Yk.

(5.13)
We have the following properties.

Proposition 5.12. Letu ∈ W 1,p
0 (Ω) be a locally unique solution to the equation(5.12).

Then the mappingF : X → Y ∗ is of classC1 for 2 < p < ∞, and F ′(u) is an
isomorphism formX to Y ∗. Moreover, if the Laplacian operator∆ : X → Y ∗ is an
isomorphism, then for‖h0(x)‖∞,Ω sufficiently small, the Petrov-Galerkin problem(5.13)
have a unique solutionuk ∈ Xk.

Proof. We refer to [13] for the proof of the first part of this proposition. The second part
of the conclusion then follows by Theorem (2.6). �
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For thea posteriorierror estimator, we introduce

η(uk, τ)
p := hp

τ‖ − div(κ(uk)∇uk) + b · ∇uk − f‖p0,p,τ

+
∑

σ⊂∂τ hσ ‖[κ(uk)∇uk · n]‖
p
0,p,σ ,

and define the oscillation by

oscpk(τ) := hp
τ ‖(I − π0) (−div(κ(uk)∇uk) + b · ∇uk − f)‖p0,p,τ

+
∑

σ⊂∂τ

hσ ‖[(I − π1)κ(uk)∇uk · n]‖
p
0,p,σ ,

whereπ0 andπ1 are the element-wiseLp projections onto theP0 andP1 spaces respec-
tively. Also, we denote

η(uk,S) :=

(
∑

τ∈S

ηp(uk, τ)

) 1

p

andosck(S) :=

(
∑

τ∈S

oscpk(τ)

) 1

p

for any subsetS ⊂ Tk. Again, following the general framework in [68, 69], we obtain a
posteriorierror estimates.

Theorem 5.13.Letu ∈ W 1,p
0 (Ω) be a locally unique solution to(5.12). Then we have

〈F (uk), v〉 . η(uk,S)‖v‖Y (ΩS) + η(uk, Tk \ S)‖v‖Y (ΩTk\S),

for any subsetS ⊂ Tk andv ∈ Y. Furthermore, we have the followinga posteriorierror
estimates:

‖u− uk‖1,p,Ω . η(uk, Tk),

η(uk, τ) . ‖u− uk‖1,p,ω(τ) + osck(ωτ ).

Finally, based on the results above, the adaptive algorithmfor the quasi-linear station-
ary heat equation (5.12) with nonlinear diffusion is convergent.

Corollary 5.14. Under the hypothesis of Theorem 5.12, ifp > 2d then the adaptive
algorithm for the nonlinear equation(5.12)converges, that is,

lim
k→∞

uk = u, and lim
k→∞

η(uk, Tk) = 0.

Proof. Again, the error estimatorη(uk, Tk) satisfies (3.7a) due to Theorem 5.13. Now
we prove that Assumption (3.7c) holds. We start with the local lower bound in Theo-
rem 5.13:

η(uk, τ) . ‖u− uk‖1,p,ω(τ) + osck(ωτ )

. ‖uk‖1,p,ω(τ) + ‖u‖1,p,ω(τ) + osck(ωτ ).

Sinceb ∈ W 1,∞(Ω), we have

‖(I − π0)f‖0,p,τ 6 ‖f‖0,p,τ ,

‖(I − π0)b · ∇uk‖0,p,τ . ‖∇uk‖0,p,τ .
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On the other hand, we have

‖(I − π0) (−div(κ(uk)∇uk))‖0,p,τ

6 ‖(I − π0)κ
′(uk)‖0,p,τ |∇uk|

2

6 Chτ ‖κ
′′∇uk‖0,p,τ |∇uk|

2

6 Cγ2hτ‖∇uk‖0,p,τ |∇uk|
2

6 Cγ2‖∇uk‖0,p,τ‖∇uk‖
2
0,p,τ

. ‖∇uk‖0,p,τ .

In the third step, we used the boundedness ofκ′′(s) and the fact that∇uk is constant in
τ ; in the fourth step, we used the assumptionp ≥ 2d; and in the last step, we used thea
priori estimate ofuk, namely,

‖uk‖1,p,Ω 6 ‖u− uk‖1,p,Ω + ‖u‖1,p,Ω 6 C

for some constantC (cf. Theorem 2.6). Similarly, by noticingκ is uniformly bounded
and thea priori error estimate ofuk, one can easily obtain

∑

σ⊂∂τ

hσ ‖[(I − π1)κ(uk)∇uk · n]‖
p
0,p,σ . ‖∇uk‖0,p,ωτ

.

Therefore, we obtain the stability estimate

η(uk, , τ) . ‖uk‖1,p,ωτ
+ ‖D‖0,p,ωτ

,

whereD depending only onu andf. The conclusion then follows by Theorem 4.1 and
Theorem 4.3. �

6. AN ABSTRACT CONTRACTION FRAMEWORK

In this section, we develop a second distinct abstract convergence framework to al-
low for establishing contraction under additional minimalassumptions. The framework
generalizes the AFEM contraction arguments used in [45, 16,50, 35, 31] to general ap-
proximation techniques for abstract nonlinear problems. The three key ingredients to the
contraction argument are as in the existing linear frameworks: quasi-orthogonality, error
indicator domination of the error, and a type of error indicator reduction.

6.1. Quasi-Orthogonality. One of the main tools for establishing contraction in adap-
tive algorithms is perturbed- orquasi-orthogonality. LetX1 ⊂ X2 ⊂ X andY1 ⊂ Y2 ⊂
Y be triples of Banach spaces, and consider (for the moment, arbitrary and unrelated)
u1 ∈ X1, u2 ∈ X2, andu ∈ X. If X also had Hilbert-space structure, so that the native
norm‖ · ‖X onX was induced by an inner product‖ · ‖X = (·, ·)

1/2
X , and if orthogonality

were to hold(u− u2, u2 − u1)X = 0, then one would have the Pythagorean Theorem:

‖u− u1‖
2
X = ‖u− u2‖

2
X + ‖u2 − u1‖

2
X . (6.1)

Quasi-orthogonality is a more general concept whereby one gives up orthogonality (6.1),
and instead works with inequalities involving a (semi-)norm ||| · ||| that could be the native
norm‖ · ‖X , or more generally could be an energy norm or semi-norm particularly suited
to the problem at hand. From the triangle inequality in the Banach spaceX together with
the discrete Holder inequality, one always has the following inequality:

λ‖u− u1‖
2
X 6 ‖u− u2‖

2
X + ‖u2 − u1‖

2
X , (6.2)
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with λ = 1/2. Quasi-orthogonality then refers to establishing the moredifficult inequal-
ity in the other direction to supplement (6.2):

Λ‖u− u1‖
2
X > ‖u− u2‖

2
X + ‖u2 − u1‖

2
X , (6.3)

for someΛ > 1, which is convenient to write in the form

‖u− u2‖
2
X 6 Λ‖u− u1‖

2
X − ‖u2 − u1‖

2
X . (6.4)

We wish now to develop conditions for establishing (6.4). Wewill see shortly that it will
be critical for us to be able to establish (6.4) with constantΛ close to one; this will only be
possible ifu− u2 andu2 − u1 are nearly “orthogonal” in some generalized sense, which
implies that we must work with a norm related to the Petrov-Galerkin (PG) “projection”
process, and may require that we work with a norm other than the native norm‖ · ‖X .

To this end, consider a continuous bilinear formb(·, ·) onX × Y :

b : X × Y → R, b(u, v) 6 M‖u‖X‖v‖Y , ∀u ∈ X, v ∈ Y. (6.5)

Assumeb satisfiesinf-supconditions onX andY : There existsβ0 > 0 such that

inf
u∈X,‖u‖X=1

sup
v∈Y,‖v‖Y =1

b(u, v) = inf
v∈Y,‖v‖Y =1

sup
u∈X,‖u‖X=1

b(u, v) = β0 > 0. (6.6)

In the subspacesXk andYk, k = 1, 2, we assumeb satisfies a discreteinf-supcondition:
There exists a constantβ1 > 0 such that

inf
u∈Xk,‖v‖X=1

sup
v∈Yk ,‖v‖Y =1

b(u, v) = inf
v∈Yk ,‖v‖Y =1

sup
u∈Xk,‖u‖X=1

b(u, v) > β1 > 0. (6.7)

Given nowf ∈ Y ∗, we assume thatu ∈ X is the solution to the operator equation
involving b andf , and thatu1 ∈ X1 andu2 ∈ X2 are corresponding PG approximations:

Findu ∈ X such thatb(u, v) = f(v), ∀ v ∈ Y. (6.8)

Findu1 ∈ X1 such thatb(u1, v1) = f(v1), ∀v1 ∈ Y1 ⊂ Y2 ⊂ Y. (6.9)

Findu2 ∈ X2 such thatb(u2, v2) = f(v2), ∀v2 ∈ Y2 ⊂ Y. (6.10)

With this setup, we can establish the quasi-orthogonality inequality in the norm‖ · ‖X
for PG approximations defined by any continuous bilinear form satisfyinginf-supcondi-
tions.

Theorem 6.1. Assume the bilinear formb : X × Y → R satisfies the continuity(6.5)
and inf-supconditions(6.6) and (6.7). Assume thatu, u1, andu2 are defined by(6.8),
(6.9), and(6.10), respectively. Then quasi-orthogonality(6.4)holds with

Λ =

(
1 +

2M

β1

)2

> 1. (6.11)

Proof. With no inner-product we have only the following type of generalized “orthogo-
nality” to exploit:

b(u− u2, v2) = 0, ∀v2 ∈ Y2 ⊂ Y, (6.12)

b(u− u1, v1) = 0, ∀v1 ∈ Y1 ⊂ Y2 ⊂ Y, (6.13)

which are obtained by subtracting (6.9) and (6.10) from (6.8). This leads us to:

b(u− u1, v2) = −b(u1 − u2, v2) = b(u2 − u1, v2), ∀v2 ∈ Y2. (6.14)

Combining (6.14) with theinf-supcondition (6.7) and continuity (6.5) gives the estimate

β1‖u2−u1‖X 6 sup
06=v2∈Y2

b(u2 − u1, v2)

‖v2‖Y
= sup

06=v2∈Y2

b(u− u1, v2)

‖v2‖Y
6 M‖u−u1‖X . (6.15)
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Starting with the triangle inequality

‖u− u2‖X 6 ‖u− u1‖X + ‖u2 − u1‖X , (6.16)

we add twice (6.15) to (6.16) to obtain

‖u− u2‖X + ‖u2 − u1‖X 6 Λ̂‖u− u1‖X , (6.17)

with Λ̂ = 1 + 2M/β1 > 1. If we square both sides we obtain

‖u− u2‖
2
X + 2‖u2 − u1‖X‖u− u2‖X + ‖u2 − u1‖

2
X 6 Λ̂2‖u− u1‖

2
X . (6.18)

The second term on the left is non-negative; we drop it to give(6.4) withΛ = Λ̂2. �

It is clear from the proof of Theorem 6.1 that to establish (6.4) with constantΛ > 1
close one, one must establish a version of (6.5) that, when restricted to particular argu-
ments from subspaces, will hold with constantM > 0 close to zero. This then resembles
some type of strengthened Cauchy inequality. Note that ifX = Y , then the bilinear form
b(·, ·) defines an energy (semi-)norm through:

b : X ×X → R, |||w|||2 = b(w,w), ∀w ∈ X. (6.19)

It will be more fruitful to consider quasi-orthogonality with respect to this semi-norm:

|||u− u2|||
2 6 Λ|||u− u1|||

2 − |||u2 − u1|||
2. (6.20)

To establish (6.20), it will be useful if strengthened Cauchy inequalities hold:

b(u− u1, v1) 6 γ|||u− u1||||||v1|||, b(v1, u− u1) 6 γ|||u− u1||||||v1|||, (6.21)

∀v1 ∈ X1, γ ∈ [0, 1).

In this case, one immediately has the following withoutinf-supconditions:

Theorem 6.2.LetX1 ⊂ X2 ⊂ X be a triple of Banach spaces, and letu ∈ X, u1 ∈ X1,
andu2 ∈ X2 be such that the bilinear formb : X × X → R satisfies the strengthened
Cauchy inequality(6.21) for someγ ∈ [0, 1). Then quasi-orthogonality(6.20)holds in
the energy semi-norm||| · |||2 = b(·, ·) with Λ = 1/(1− γ) > 1.

Proof. We begin with the identity

|||u− u1|||
2 = |||u− u2|||

2 + |||u2 − u1|||
2

+b(u− u2, u2 − u1) + b(u2 − u1, u− u2). (6.22)

Using (6.21) in (6.22) and Cauchy-Schwarz inequality gives

|||u− u1|||
2 > |||u− u2|||

2 + |||u2 − u1|||
2 − γ|||u− u2|||

2 − γ|||u2 − u1|||
2

= (1− γ)
(
|||u− u2|||

2 + |||u2 − u1|||
2
)
, (6.23)

which gives (6.20) after multiplication byΛ = 1/(1− γ) > 1. �

While Theorem 6.2 gives quasi-orthogonality in the energy norm ||| · ||| without inf-
supconditions, it is important to point out that establishing the Cauchy inequality in the
energy norm usually goes through the native norm‖ · ‖X , and then relating the Cauchy
inequalities in the two norms requires additional structure such asinf-supconditions. To
make this more clear, let us assume thatX = Y andb(·, ·) : X → X is coercive for
m = β0 = β1 > 0 :

m‖w‖2X 6 |||w|||2 = b(w,w), ∀w ∈ X. (6.24)

To allow for a weaker condition than coercivity (6.24), it isuseful have a (Gelfand) triple
of Banach spacesX ⊂ Z ⊂ X∗, with continuous embedding ofX into the intermediate
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spaceZ. A Gårding inequality withm > 0 andCG > 0 for the formb(·, ·) is then a
possibility:

m‖w‖2X 6 |||w|||2 + CG‖w‖
2
Z, ∀w ∈ X. (6.25a)

If CG = 0, then inequality (6.25a) reduces to (6.24). To exploit (6.25a), we need a lifting
inequality betweenX andZ whenu2 ∈ X2 andu1 ∈ X1 are approximations ofu ∈ X:

‖u− u2‖Z 6 CLσ‖u− u2‖X , ‖u2 − u1‖Z 6 CLσ0‖u2 − u1‖X , (6.25b)

where it is assumed thatσ0 = cσ for fixedc > 0, and thatσ can be made arbitrarily small
for sufficiently large subspacesX1 ⊂ X2 ⊂ X, where typicallyu1 ∈ X1 andu2 ∈ X2 are
PG approximations tou ∈ X. Inequalities (6.25b) can be established using the “Nitsche
trick” with certain regularity assumptions; cf. [45, 35]. The usefulness of (6.25) is made
clear by the following Lemma 6.3, due essentially to Schatz [60].

Lemma 6.3. Assume the bilinear formb : X × X → R satisfies(6.25a)–(6.25b).
Then(6.24) holds withw = u − u2 and w = u2 − u1 for σ sufficiently small, with
constantm = m− CGC

2
Lσ

2 > 0.

Proof. We observe that

m‖u−u2‖
2
X 6 |||u− u2|||

2+CG‖u−u2‖
2
Z 6 |||u− u2|||

2+CGC
2
Lσ

2‖u−u2‖
2
X , (6.26)

which implies the result forσ > 0 sufficiently small. We note that0 < m 6 m, with
m = m when coercivity holds (CG = 0). The same argument foru2 − u1 gives the same
result with slightly different constants appearing in the argument. �

6.2. Global Quasi-Orthogonality for Semilinear Problems. We now consider a non-
linear problem for which we can establish a strengthened Cauchy inequality, and then
subsequently quasi-orthogonality, globally inX. We use a Lifting-type argument requir-
ing the PG approximation space be sufficiently good (large).Such an approach is used
in [45] for nonsymmetric linear problems, and in [35, 31] forsemilinear problems.

LetX1 ⊂ X2 ⊂ X be a triple of Banach spaces, and considerF : X → X∗ such that

F (u) = Lu +N(u), L ∈ L(X,X∗), N : X → X∗. (6.27)

The operatorL induces a bilinear formb : X × X → R and subsequently an energy
(semi-) norm||| · ||| : X → R, through the relations

b(u, v) = 〈Lu, v〉, ∀u, v ∈ X, |||u||| = b(u, u)1/2, ∀u ∈ X. (6.28)

We have the equations foru ∈ X and its PG approximationsu1 ∈ X1 andu2 ∈ X2:

b(u, v) + 〈N(u), v〉 = 0, ∀v ∈ X, (6.29)

b(u1, v1) + 〈N(u1), v1〉 = 0, ∀v1 ∈ X1 ⊂ X2 ⊂ X, (6.30)

b(u2, v2) + 〈N(u2), v2〉 = 0, ∀v2 ∈ X2 ⊂ X. (6.31)

We will need the following Lipschitz property (globally inX) for termN(·):

〈N(u)−N(u2), v2〉 6 K‖u− u2‖Z‖v2‖X , ∀v2 ∈ X2, (6.32)

whereu is the exact solution andu2 is the PG approximation inX2, and whereZ is
part of the tripleX ⊂ Z ⊂ X∗ as in Section 6.1. By splittingF into a linear partL
satisfying continuity and Gårding assumptions, and a remainderN satisfying only the
Lipschitz assumption, we will be able to establish both Cauchy inequalities and subse-
quently quasi-orthogonality, globally inX, for a large class of nonlinear problems.



30 M. HOLST, G. TSOGTGEREL, AND Y. ZHU

Theorem 6.4. Let u, u1, andu2 satisfy(6.29)–(6.31), and let the Lipschitz(6.32)and
Lifting (6.25b)conditions hold. Let the energy norm||| · ||| induced byb(·, ·) as in (6.28)
satisfy the G̊arding inequality(6.25a). Then forσ sufficiently small,b(·, ·) satisfies the
strengthened Cauchy inequality(6.21)with γ = KCLσ/(m − CGC

2
Lσ

2) ∈ (0, 1), and
the quasi-orthogonality inequality(6.20)holds with

Λ =
1

1− γ
=

1

1−KCLσ/(m− CGC2
Lσ

2)
> 1. (6.33)

For sufficiently smallσ, γ can be made arbitrarily small andΛ can be made arbitrarily
close to one.

Proof. Subtracting (6.29) and (6.31) withv = v2 = u2 − u1, we have

|b(u− u2, u2 − u1)| = | − 〈b(u)− b(u2), u2 − u1〉|

6 K‖u− u2‖Z‖u2 − u1‖X

6 γX‖u− u2‖X‖u2 − u1‖X ,

after using (6.32) and (6.25b), whereγX = KCLσ ∈ (0, 1) for σ sufficiently small.
Sinceb(·, ·) satisfies the Gårding inequality (6.25a), then by Lemma 6.3, we have

|b(u− u2, u2 − u1)| 6 γ|||u− u2||||||u2 − u1|||,

whereγ = γX/m = KCLσ/(m − CGC
2
Lσ

2) ∈ (0, 1) for σ sufficiently small. By
Theorem 6.2, we have (6.20) holds withΛ as in (6.33), which can be made arbitrarily
close to one forσ > 0 sufficiently small. The conclusion then follows by Theorem 6.2.

�

6.3. Local Quasi-Orthogonality for General Nonlinear Problems. Consider now gen-
eral operatorsF : X → X∗, whereX1 ⊂ X1 ⊂ X is a triple of Banach spaces. We have
equations foru ∈ X and its PG approximations inu1 ∈ X1 andu2 ∈ X2:

〈F (u), v〉 = 0, ∀v ∈ X, (6.34)

〈F (u1), v1〉 = 0, ∀v1 ∈ X1 ⊂ X2 ⊂ X, (6.35)

〈F (u2), v2〉 = 0, ∀v2 ∈ X2 ⊂ X. (6.36)

Not having access to any additional structure inF to exploit as in the semilinear case,
we will need to work locally in anǫ0-ball aroundu ∈ X for someǫ0 > 0: We assume

‖u− u1‖X 6 ǫ0, ‖u− u0‖X 6 ǫ0. (6.37)

We assumeF ′ is Lipschitz in the ball: There exists a Lipschitz constantL > 0 such that

‖F ′(u)− F ′(w)‖L(X,X∗) 6 L‖u− w‖X, ∀w ∈ X s.t. ‖u− w‖X 6 ǫ0. (6.38)

Define now the bilinear form

b : X ×X → R, b(w, v) = 〈F ′(u)w, v〉. (6.39)

We then have the Cauchy inequality locally in theǫ0-ball, leading to quasi-orthogonality.

Theorem 6.5. Let u, u1, andu0 satisfy(6.34)–(6.36), and let the Locality(6.37) and
Lipschitz(6.38)conditions hold, withb(·, ·) defined as in(6.39).

(1) If b(·, ·) satisfies coercivity(6.24), thenb(·, ·) satisfies the Cauchy inequality(6.21)
with γ = ǫ0L/(2m) ∈ (0, 1), and quasi-orthogonality(6.20)holds forǫ0 > 0
sufficiently small with

Λ =
1

1− ǫ0L/(2m)
> 1. (6.40)
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(2) If b(·, ·) satisfies G̊arding (6.25a)and the Lifting(6.25b)inequalities, thenb(·, ·)
satisfies the Cauchy inequality(6.21)with γ = ǫ0L/(2[m − CGC

2
Lσ

2]) ∈ (0, 1),
and quasi-orthogonality(6.20)holds forǫ0 > 0 andσ > 0 sufficiently small with

Λ =
1

1− ǫ0L/(2[m− CGC
2
Lσ

2])
> 1. (6.41)

In either case, the constantγ can be made arbitrarily small, and the constantΛ can
be made arbitrarily close to one, for sufficiently smallǫ0 andσ.

Proof. Subtracting (6.34) and (6.36) withv = v2 = u2 − u1 ∈ X2 we have

〈F (u)− F (u2), u2 − u1〉 = 0. (6.42)

We also have the mean-value formula:

F (u+ w) = F (u) + F ′(u)w +

∫ 1

0

[F ′(u+ sw)− F ′(u)]w ds. (6.43)

Using (6.43) withw = u2 − u together with (6.42) gives:

|b(u− u2, u2 − u1)| = | − b(u2 − u, u2 − u1)|

= | − 〈F ′(u)(u2 − u), u2 − u1〉|

= | − 〈F (u+ [u2 − u])− F (u), u2 − u1〉

+〈

∫ 1

0

[F ′(u+ s[u2 − u])− F ′(u)] (u2 − u) ds, u2 − u1〉|

6

(∫ 1

0

‖F ′([1− s]u+ su2)− F ′(u)‖L(X,X∗) ds

)

·‖u− u2‖X‖u2 − u1‖X .

Using now (6.38) and (6.37) we can establish the Cauchy inequality (6.21) as follows:

|b(u− u2, u2 − u1)| 6

(
L‖u− u2‖X

∫ 1

0

s ds

)
‖u− u2‖X‖u2 − u1‖X

6 γX‖u− u2‖X‖u2 − u1‖X ,

whereγX = ǫ0L/2 ∈ (0, 1) for ǫ0 sufficiently small.
If b(·, ·) satisfies the coercivity inequality (6.24) form > 0, then we have established

the Cauchy inequality (6.21), withγ = γX/m = ǫ0L/(2m) ∈ (0, 1) for ǫ0 sufficiently
small. By Theorem 6.2, we have (6.20) holds withΛ as in (6.40), which can be made
arbitrarily close to one forǫ0 > 0 sufficiently small.

Instead of coercivity, ifb(·, ·) satisfies the Gårding (6.25a) and lifting (6.25b) in-
equalities, then by Lemma 6.3 we have established the Cauchyinequality (6.21), with
γ = γX/(m−CGC

2
Lσ

2) = ǫ0L/[2(m− CGC
2
Lσ

2)] ∈ (0, 1) for ǫ0 sufficiently small. By
Theorem 6.2, we have (6.20) holds withΛ as in (6.41), which can be made arbitrarily
close to one forǫ0 > 0 andσ > 0 sufficiently small. �

6.4. Contraction. We now establish a contraction result for approximation techniques
for nonlinear equations on Banach spaces, which is an abstraction of the contraction
arguments in [45, 16, 50, 35, 31]. LetX1 ⊂ X2 ⊂ X be a triple of Banach spaces, let
u ∈ X, and letu1 ∈ X1 andu2 ∈ X2 be approximations tou. We are interested in the
quality of the approximations; as such, the following threedistance measures between
the three solutions are of fundamental importance:

e2 = ‖u− u2‖X , e1 = ‖u− u1‖X , E1 = ‖u2 − u1‖X , (6.44)
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where‖ · ‖X is a norm onX; this could be either the native Banach norm, or more
generally a norm associated with a problem-specific bilinear form. We are interested in
approximation algorithms which involve abstract “error indicator” functionals that will
be taken later to be practical implementablea posteriorierror indicators commonly used
in AFEM algorithms:

η1 : X1 7→ R, η2 : X2 7→ R. (6.45)

When written without arguments, these functionals are taken to be evaluated atu1 and
u2 respectively, and represent approximations to the error:

η1 = η1(u1) ≈ e1, η2 = η2(u2) ≈ e2. (6.46)

In order to build a contraction argument involving the errors, we will need three funda-
mental assumptions relating the five quantities above:

Assumption 6.6(Quasi-Orthogonality). There existsΛ > 1 such that

e22 6 Λe21 − E2
1 . (6.47)

Assumption 6.7(Upper-Bound). There existsC1 > 0 such that

e2k 6 C1η
2
k, k = 1, 2. (6.48)

Assumption 6.8(Indicator Reduction). There existsC2 > 0 andω ∈ (0, 1) such that

η22 6 C2E
2
1 + (1− ω)η21. (6.49)

Using these three assumptions, we have the following abstract contraction result.

Theorem 6.9(Abstract Contraction). LetX1 ⊂ X2 ⊂ X be a triple of Banach spaces,
let u ∈ X, let u1 ∈ X1 and u2 ∈ X2 be approximations tou with error defined as
in (6.44), and letη1 andη2 be error indicators as in(6.45). Let the Assumptions 6.6, 6.7,
and 6.8 hold. Letβ ∈ (0, 1) be arbitrary, and assume the constantΛ in Assumption 6.6
satisfies the bound:

1 6 Λ < 1 +
βω

C1C2

. (6.50)

Then there existsγ > 0 andα ∈ (0, 1) such that:

e22 + γη22 6 α2
(
e21 + γη21

)
, (6.51)

whereγ can be taken to be anything in the non-empty interval

(Λ− 1)C1

βω
< γ < min

{
1

C2

,
ΛC1

βω

}
, (6.52)

and whereα is subsequently given byα2 = max{α2
1, α

2
2} ∈ (0, 1), with

0 < α2
1 = Λ−

βωγ

C1
< 1, 0 < α2

2 = 1− [1− β]ω < 1. (6.53)

Proof. Beginning with Assumption 6.6, we have for anyγ > 0,

e22 + γη22 6 Λe21 − E2
1 + γη22. (6.54)

Using now Assumption 6.8, we have

e22 + γη22 6 Λe21 − E2
1 + γ

[
C2E

2
1 + (1− ω)η21

]
. (6.55)

Assume now that0 < γ 6 1/C2. In this case, the negative term involvingE2
1 dominates

the positive term, which implies:

e22 + γη22 6 Λe21 + γ(1− ω)η21. (6.56)
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We now split the negative contribution involvingη21 into two parts, using anyβ ∈ (0, 1):

e22 + γη22 6 Λe21 − βωγη21 + γ(1− [1− β]ω)η21. (6.57)

We now finally invoke Assumption 6.7 on the first term involving β:

e22 + γη22 6

(
Λ−

βωγ

C1

)
e21 + γ(1− [1− β]ω)η21 = α2

1e
2
1 + α2

2γη
2
1, (6.58)

whereα2
1 andα2

2 are as in (6.53). Noteω ∈ (0, 1) from Assumption 6.8, and also for any
β ∈ (0, 1) it holds1 − β ∈ (0, 1) and[1 − β]ω ∈ (0, 1). Therefore, for anyβ ∈ (0, 1)
we have thatα2

2 satisfies the second inequality in (6.53). It remains to determineγ > 0
so that0 < α2

1 < 1, with α2
1 as given in (6.53), leading to

(Λ− 1)C1

βω
< γ <

ΛC1

βω
. (6.59)

We have already imposedγ > 0 andγ 6 1/C2. RecallingΛ > 1, to ensureα2
1 ∈ (0, 1)

we must haveγ in the the interval (6.52). IfΛ = 1, this interval is clearly non-empty
for anyC1 > 0, C2 > 0, β ∈ (0, 1), andω ∈ (0, 1). If Λ > 1, since the term involving
Λ in the upper-bound always dominates the lower bound, to ensure the interval forγ is
non-empty we must restrictΛ so that(Λ − 1)C1/(βω) < 1/C2. This holds ifΛ lies
in the interval (6.50). We now simply note that this intervalfor Λ is non-empty for
anyC1 > 0, C2 > 0, β ∈ (0, 1), andω ∈ (0, 1). To finish the proof, we now take
α2 = max{α2

1, α
2
2} ∈ (0, 1). �

We now establish the main contraction and convergence result we are after.

Theorem 6.10(Abstract Convergence). Let {Xk}
∞
k=1, Xk ⊂ Xk+1 ⊂ X, ∀k > 0,

be a nested sequence of Banach spaces. Letu ∈ X, and let{uk}
∞
k=0 be a sequence

of approximations tou from Xk. Let the Assumptions 6.6, 6.7, and 6.8 hold with the
same constantsΛ, C1, C2, andω, for any successive pair of approximationsuk and
uk+1 and their corresponding error indicatorsηk andηk+1. Letα, β, γ, andΛ be as in
Theorem 6.9. Then the sequence{uk}

∞
k=1 contracts towardu ∈ X according to:

e2k+1 + γη2k+1 6 α2
(
e2k + γη2k

)
, (6.60)

and therefore converges tou ∈ X at the following rate:

e2k + γη2k 6 Cα2k, (6.61)

for some constantC = C(u1, η1,Λ, C1, C2, α, β, γ, ω).

Proof. Both results follow immediately from Theorem 6.9. �

7. CONVERGENCEBASED ON CONTRACTION AND SOME EXAMPLES

Here we use the abstract contraction result (Theorem 6.9) established in Section 6 to
prove a contraction result (Theorem 7.6 below) for the adaptive algorithm described in
Section 3. Theorem 6.9 was based on three core assumptions: Quasi-orthogonality, Indi-
cator domination of the error, and Indicator Reduction. We showed how to establish the
first of these, namely the Quasi-Orthogonality Assumption 6.6, for PG approximations
for two general classes of nonlinear problems in Section 6.1. The second assumption,
namely the Indicator Domination Error Assumption 6.7, is a standard result for residual-
type indicators; our adaptive algorithm produces indicators with this property, cf. (3.7b).
We focus on establishing the third assumption, namely the Indicator Reduction Assump-
tion 6.8, in Section 7.1 below, and then prove the main contraction result in Theorem 7.6
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for the adaptive algorithm (3.4), based on Theorem 6.9. We then apply this contraction
result to several nonlinear PDE examples in Sections 7.2–7.4.

7.1. Contraction of AFEM. What remains in order to use the abstract contraction re-
sult in Theorem 6.9 for AFEM is the third assumption, namely the Indicator Reduction
Assumption 6.8. Following [16, 50], we will first reduce establishing Assumption 6.8
to a simplerlocal Lipschitzassumption on the indicator, namely Assumption 7.1 below.
Establishing Assumption 6.8 will then reduce to an assumption on the marking strategy
in the AFEM algorithm; we satisfy this assumption by using the standard Dörfler strat-
egy (3.9). Admissible discrete functionsin Assumption 7.1 refer to discrete functions
which are knowna priori to satisfy specific properties of discrete PG approximations,
such as discretea priori bounds. We will later show how to establish Assumption 7.1 for
several nonlinear problems in Section 5 using continuous and discretea priori bounds.

To simplify the presentation below, we will denote

ek = |||u− uk|||, Ek = |||uk − uk+1|||,

ηk = η(uk, Tk), ηk(Mk) = η(uk,Mk), η0(D) = η0(D, T0),

whereD represents the set of problem coefficients and nonlinearity. We also denote
Vk := VD(Tk) for simplicity.

Assumption 7.1(Local Lipschitz). LetT be a conforming partition. For allτ ∈ T and
for any pair of admissible discrete functionsv, w ∈ X(T ), it holds that

|η(v, τ)− η(w, τ)| 6 Λ̄1η(D, τ)‖v − w‖1,2,ωτ
, (7.1)

whereΛ̄1 > 0 depends only on the shape-regularity ofT0, and whereη(D, τ) depends
only on appropriate norm behavior of the equation coefficients over the local one-ring of
elements surroundingτ , and on the Lipschitz properties onτ of the nonlinearity acting
on admissible functions inX(T ). The parameterη(D, τ) is assumed to be monotone
non-increasing with mesh refinement.

Based on Assumption 7.1, we have the following indicator reduction result (see also [35,
31]), which extends the linear case appearing in [16, 50] to the nonlinear case. The proof
is essentially identical to that of [16, Corollary 4.4], except that it allows for nonlinearity
in Assumption 7.1; we include it for completeness. The main difficulty in the nonlinear
case will be establishing Assumption 7.1 and simultaneously satisfying the assumption
on the parameterλ appearing in Lemma 7.2.

Lemma 7.2 (Nonlinear Indicator Reduction). Let T be a partition, and let the param-
eters θ ∈ (0, 1] and ℓ > 1 be given. LetM = MARK({η(v, τ)}τ∈T , T , θ), and
let T∗ = REFINE(T ,M, ℓ). If Λ1 = (d + 1)Λ̄2

1/ℓ with Λ̄1 from Assumption 7.1 and
λ = 1 − 2−(ℓ/d) > 0, then for all admissiblev ∈ X(T ), v∗ ∈ X(T∗), and anyδ > 0, it
holds that

η2(v∗, T∗) 6 (1 + δ)[η2(v, T )− λη2(v,M)] + (1 + δ−1)Λ1η
2(D, T0)|||v∗ − v|||2.

Proof. The proof follows that in [16, Corollary 4.4], with minor adjustment to allow the
Lipschitz parameter in Assumption 7.1 to depend on point-wise behavior of admissible
functions in anL∞ interval; we outline the argument here for completeness. Using
Assumption 7.1 withv andv∗ taken to be inX(T∗), gives

η(v∗, τ∗) 6 η(v, τ∗) + Λ̄1η(D, τ∗)‖v∗ − v‖1,2,ωτ∗
∀τ∗ ∈ T∗.

After squaring both sides and applying Young’s inequality with arbitraryδ > 0 we have

η2(v∗, τ∗) 6 (1 + δ)η2(v, τ∗) + (1 + δ−1)Λ̄2
1η

2(D, τ∗)‖v∗ − v‖21,2,ωτ∗
∀τ∗ ∈ T∗.
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We now sum over the elementsτ∗ ∈ T∗, using the fact that for shape regular partitions
there is a small finite number of elements in the overlaps of the patchesωτ∗ that are
multiply represented in the sum. This gives

η2(v∗, T∗) 6 (1 + δ)η2(v, T∗) + (1 + δ−1)Λ2
1η

2(D, T∗)|||v∗ − v|||2,

where we have used equivalence between the energy norm and the norm onH1 (based
on either coercivity or a Gårding inequality together withlifting; cf. Lemma 6.3), and
then absorbed both the norm equivalence constant and the finite over-representation of
elements in the sum into the new constantΛ1.

Now take admissiblev ∈ X(T ); a short argument from the proof of Corollary 4.4
in [16] gives

η2(v, T∗) 6 η2(v, T \M) + 2−(ℓ/d)η2(v,M) = η2(v, T )− λη2(v,M). (7.2)

Finally, monotonicityη(D, T∗) 6 η(D, T0), combined with (7.2) yields the result. �

Remark 7.3. The difficulty in the nonlinear case will be establishing Assumption 7.1 and
simultaneously satisfying the assumption on the parameterλ appearing in Lemma 7.2. In
the case of problems for which we can control the nonlinearity usinga prioriL∞ control
of solutions and discrete approximations, we will be able toestablish Assumption 7.1;
several such examples of increasing difficulty are analyzedin Sections 7.2–7.4. The
assumption onλ appearing in Lemma 7.2 is essentially the assumption that the residual
indicator contains only terms that decay as withhα for someα > 0.

We will now make use of the Dörfler marking strategy (3.9). This simple marking
strategy will ensure that the abstract indicator reductionAssumption 6.8 holds.

Lemma 7.4. Let the conditions for Lemma 7.2 hold. Let the Dorfler markingprop-
erty (3.9)hold for someθ ∈ (0, 1], and restrictδ > 0 in Lemma 7.2 so that

0 < δ <
λθ2

1− λθ2
. (7.3)

Then Indicator Reduction Assumption 6.8 holds withC2 = (1 + δ−1)Λ1η
2(D, T0) and

ω = 1− (1 + δ)(1− λθ2) ∈ (0, 1). (7.4)

Proof. By Lemma 7.2 we have for anyδ > 0:

η2(v∗, T∗) 6 (1 + δ)[η2(v, T )− λη2(v,M)] + (1 + δ−1)Λ1η
2(D, T0)|||v∗ − v|||2.

The Dorfler marking property (3.9) gives

η2(v∗, T∗) 6 (1 + δ)(1− λθ2)η2(v, T ) + (1 + δ−1)Λ1η
2(D, T0)|||v∗ − v|||2,

which we will write as
η2k+1 6 C2E

2
k + (1− ω)η2k,

with
ηk+1 = η(v∗, T∗), ηk = η(v, T ), Ek = |||v∗ − v|||, (7.5)

C2 = (1 + δ−1)Λ1η
2(D, T0), (1− ω) = (1 + δ)(1− λθ2). (7.6)

To ensure thatω = 1− (1 + δ)(1− λθ2) ∈ (0, 1), we restrictδ > 0 so that

0 < (1 + δ)(1− λθ2) < 1, (7.7)

or so that

− 1 < δ <
1

1− λθ2
− 1 =

1− [1− λθ2]

1− λθ2
=

λθ2

1− λθ2
. (7.8)

Since we must also takeδ > 0, we have then the range forδ is as in (7.3) to ensure
Assumption 6.8 withω = 1− (1 + δ)(1− λθ2) ∈ (0, 1). �
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Remark 7.5. By first establishing Theorem 6.9 based only on three simple assumptions
relating the error and error indicator, the main contraction argument in Theorem 6.9
is general, applies to nonlinear problems, and does not involve details of the adaptive
algorithm that produces the approximations or the error indicators. The local Lipschitz
and marking assumptions we use above to establish the indicator reduction assumption
bring in the details of the particular adaptive algorithm and the problem only at the
last moment, and helps clarify the impact of the various parameters on the contraction
argument and rate.

The supporting results we need are now in place; we can now establish the second of
the two main convergence results of the paper, this one concerning contraction.

Theorem 7.6 (Contraction). Let Assumption 6.6 (Quasi-Orthogonality) and Assump-
tion 6.7 (Upper-Bound) hold, and assume that the conditionsof Lemma 7.4 hold. Let
β ∈ (0, 1) be arbitrary, and assume the constantΛ in Assumption 6.6 satisfies:

1 6 Λ < 1 +
βω

C1C2
, (7.9)

where the constantC1 is as in Assumption 6.7, andC2 andω are as in Lemma 7.4. Then
there existsγ > 0 andα ∈ (0, 1) such that:

|||u− uk+1|||
2 + γη2k+1 6 α2

(
|||u− uk|||

2 + γη2k
)
, (7.10)

whereγ can be taken to be anything in the non-empty interval

(Λ− 1)C1

βω
< γ < min

{
1

C2

,
ΛC1

βω

}
, (7.11)

and whereα is subsequently given by

0 < α2 = max{α2
1, α

2
2} < 1, (7.12)

with

0 < α2
1 = Λ−

βωγ

C1
< 1, 0 < α2

2 = 1− [1− β]ω < 1. (7.13)

Proof. By Lemma 7.4, Assumption 7.1 and Property (3.9) together imply that Assump-
tion 6.8 holds. The result then follows by Theorem 6.9. �

We now apply the Contraction Theorem 7.6 to establish contraction of the adaptive
algorithm (3.4) for specific nonlinear PDE examples. Note that the more general weak*-
convergence framework is also applicable to each of these examples, as we discussed
in Section 5; what we gain here is fixed-rate contraction of the error at each iteration
of AFEM, and subsequently the possibility of establishing optimality of AFEM. In each
of the following examples, we use the standard residual error indicator, denoted byη.
For the marking strategy in the AFEM algorithm, we use the standard Dörfler marking
strategy (3.9).

7.2. A Semi-Linear Example. Our first example is a special case of equation (5.4).

Example 7.7.LetΩ ⊂ R
2 be a convex polygonal domain, andf ∈ L2(Ω). Consider the

weak form formulation of the semi-linear equation(5.4)

Find u ∈ H1
0 (Ω), s.t. (∇u,∇v) + (u3, v) = (f, v), ∀v ∈ H1

0 (Ω). (7.14)
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Here, the solution and test spaces are the Hilbert spaceX = Y := H1
0 (Ω). Let Xk =

Yk ⊂ H1
0 (Ω) be the continuous piecewise linear finite element spaces defined onTk,

which we assume to be an exact partition ofΩ. For convenience, we denotea(u, v) :=
(∇u,∇v) andN(u) = u3. It is not difficult to see that

(N(u)−N(v), u− v) > 0, ∀u, v ∈ H1
0 (Ω), (7.15)

‖N(u)−N(v)‖L(H1(Ω),H−1(Ω)) . ‖u− v‖0,Ω, ∀u, v ∈ L∞(Ω). (7.16)

The Galerkin approximation of the equation (7.7) then reads

Find uk ∈ Xk, such thata(uk, vk) + (N(uk), vk) = (f, vk), ∀vk ∈ Xk. (7.17)

Existence and uniqueness of solutions to (7.14) and (7.17) follow by standard variational
or fixed-point arguments, cf. [64, 38]. To establish botha priori anda posteriorierror es-
timates, we will needL∞ control of the continuous solutionu and as well as the discrete
solutionsuk.

Lemma 7.8 (ContinuousA Priori Estimates). Let u ∈ H1
0 (Ω) be the exact solution

to (7.14). Thenu ∈ L∞(Ω).

Proof. We split the solutionu = ul + un, whereul is the solution to the linear equation

(∇ul, v) = (f, v), ∀v ∈ H1
0 (Ω).

SinceΩ is convex, elliptic regularity theory impliesul ∈ H2(Ω) ∩ H1
0 (Ω), henceul ∈

L∞(Ω). It remains to show thatun ∈ L∞. Using arguments similar to [37, 20], define

α = arg max
c

{
(c+ sup

x∈Ω
ul)3 6 0

}
, β = arg min

c

{
(c+ inf

x∈Ω
ul)3 > 0

}
. (7.18)

Let φ = (un − β)+ := max{un − β, 0} andφ = (un − α)− := min{un − α, 0}. Then
obviouslyφ, φ ∈ H1

0 (Ω). Hence, forφ = φ or φ = φ we have

(∇un,∇φ) = −((un + ul)3, φ) 6 0.

This implies0 6 ‖∇φ‖ 6 0, soφ = 0. Thusα 6 un 6 β almost everywhere inΩ. �

In order to establisha priori L∞ bounds foruk, we require the mesh satisfy the regu-
larity condition

ai,j =

∫

Ω

∇φi∇φj 6 0, j 6= i. (7.19)

See for example [20] for a discussion of this condition. We then have the followinga
priori L∞ estimate for the discrete solutionuk.

Lemma 7.9(DiscreteA Priori Estimates). Letuk ∈ Xk ⊂ H1
0 (Ω) be the exact solution

to (7.17). Assume the triangulationTk of Ω satisfies(7.19). Thenuk ∈ L∞(Ω).

Proof. See [37, 20]. �

Lemma 7.8 and Lemma 7.9 providea priori L∞ bounds foru anduk. That is, ifu and
uk are exact solutions to (7.14) and (7.17), then they must satisfy

u−(x) 6 u(x), uk(x) 6 u+(x), for almost everyx ∈ Ω,

whereu−, u+ ∈ L∞ are fixeda priori bounds. In other words, we know that any so-
lutionsu anduk to (7.14) and (7.17) can be found in[u−, u+] ∩ H1

0 (Ω), so that we do
not have to look in the larger spaceH1

0 (Ω) for u anduk. We now have the tools in
place for establishing the following quasi-optimala priori error estimate for Galerkin
approximations.
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Proposition 7.10(Quasi-OptimalA Priori Error Estimates). Letu anduk be exact solu-
tions to(7.14)and (7.17), respectively. If bothu, uk ∈ L∞(Ω), then we have

|u− uk|1,Ω . min
χk∈Xk

|u− χk|1,Ω.

Proof. Note that the erroru− uk satisfies that

b(u − uk, vk) + (N(u)−N(uk), vk) = 0, ∀vk ∈ Xk.

Therefore, we have

|u− uk|
2
1,Ω = a(u− uk, u− uk)

= a(u− uk, u− vk) + a(u− uk, vk − uk)

6 |u− uk|1,Ω|u− vk|1,Ω − (N(u)−N(uk), vk − uk)

= |u− uk|1,Ω|u− vk|1,Ω − (u3 − u3
k, u− uk) + (u3 − u3

k, u− vk)

. |u− uk|1,Ω|u− vk|1,Ω.

Here, we noted that(N(u)−N(uk), u− uk) > 0 by (7.15) and

(N(u)−N(uk), u− vk) . sup
x∈Ω

(θu(x) + (1− θ)uk(x))
2‖u− uk‖‖u− vk‖

. |u− uk|1,Ω|u− vk|1,Ω,

by a priori L∞ bounds foru anduk and the Poincaré inequality. Sinceχk ∈ Xk is
arbitrary, we have|u− uk|1,Ω . minχk∈Xk

|u− χk|1,Ω. �

Remark 7.11. We note a major difference between Proposition 7.10 and Proposition 5.4
is that Proposition 7.10 does not require the initial mesh tobe sufficiently small; however
we need thea prioriL∞ bound foruk, which was built in Lemma 7.9.

Using the results in Section 6.2, we can now easily establishquasi-orthogonality.

Lemma 7.12(Quasi-Orthogonality). Let u be the solution to equation(7.14), anduk+1

anduk be the solutions to(7.17)on Tk+1 andTk respectively. LetXk ⊂ Xk+1, and the
triangulationsTk satisfy the condition(7.19). Assume that there exist aσk+1 > 0 with
σk+1 → 0 ask → ∞ such that

‖u− uk+1‖0,Ω 6 σk+1‖∇u−∇uk+1‖0,Ω, (7.20)

Then there exists a constantC∗ > 0, such that for sufficiently smallh, we have

|u− uk+1|
2
1,Ω 6 Λk+1|u− uk|

2
1,Ω − |uk+1 − uk|

2
1,Ω,

whereΛk+1 = (1− C∗σk+1K)−1 > 0 withK = 3 supχ∈[u−,u+] ‖χ
2‖∞,Ω.

Proof. From the definition,a(·, ·) is a symmetric coercive bilinear form. The energy
norm |||v||| := a(v, v) = |v|21,Ω is equivalent to theH1-norm inH1

0 (Ω). Now we verify
the Lipschitz continuity (6.32) forN(u) = u3. It follows by thea priori error estimates
Lemma 7.8 and Lemma 7.9 ofu anduk+1 :

|(N(u)−N(uk+1), vk+1)| 6 sup
χ∈[u−,u+]

‖3χ2‖∞‖u− uk+1‖0,Ω‖vk+1‖0,Ω

6 K‖u− uk+1‖0,Ω‖vk+1‖1,Ω,

whereK = supχ∈[u−,u+] ‖3χ
2‖∞ < ∞. The conclusion follows by Theorem 6.4. �
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Now that the Quasi-Orthogonality Assumption 6.6 is in place, recall that the residual-
baseda posteriorierror indicator for equation (7.14) is given by (5.6):

ηk(uk, τ)
2 := h2

τ‖u
3
k − f‖20,τ +

∑

σ⊂∂τ

hσ ‖[∇uk · nσ]‖
2
0,σ ,

with ηk(v,S) :=
(∑

τ∈S η
2
k(v, τ)

) 1

2 for any subsetS ⊂ Tk. The second ingredient of the
contraction argument, namely the Upper Bound Assumption 6.7, is provided by Theo-
rem 5.5. To apply the contraction Theorem 7.6, we only need toverify the Local Lips-
chitz Assumption 7.1, which implies the Indicator Reduction Lemma 7.2. To this end,
we introduce the PDE-related indicator:

η2(D, τ) := h2
τ sup
χ∈[u−,u+]

‖3χ2‖2∞,τ .

For any subsetS ⊂ T , let η(D,S) := maxτ∈S{η(D, τ)}. By the definition, it is obvious
thatη(D, T ) is monotone decreasing, i.e.,

η(D, T∗) ≤ η(D, T ) (7.21)

for any refinementT∗ of T .

Lemma 7.13(Local Lipschitz). LetT be a conforming partition. For allτ ∈ T and for
any pair of discrete functionsv, w ∈ [u−, u+] ∩X(T ), it holds that

|η(v, τ)− η(w, τ)| 6 Λ̄1η(D, τ)|v − w|1,ωτ
, (7.22)

whereΛ̄1 > 0 depends only on the shape-regularity ofT0, and the maximal values that
u3 can obtain on theL∞-interval [u−, u+].

Proof. By the definition ofη, we have

η(v, τ) . η(w, τ) + hτ‖v
3 − w3‖0,τ +

1

2

∑

σ⊂∂τ

h
1

2
σ‖nσ · [∇(v − w)]‖0,σ

Notice that

‖v3 − w3‖0,τ ≤

(
sup

χ∈[u−,u+]

‖3χ2‖∞,τ

)
‖v − w‖0,τ .

On the other hand, we also have

‖nσ · [∇(v − w)]‖0,σ ≤ h
− 1

2
τ ‖∇v −∇w‖0,ωτ

.

Therefore ,we get the desired estimate forη. �

Combining all of the above we obtain a contraction result forthe AFEM algorithm:

Theorem 7.14(Contraction and Convergence). Let {Tk, Vk, uk}k>0 be the sequence of
finite element meshes, spaces, and solutions, respectively, produced by AFEM(θ,l) with
marking parameterθ ∈ (0, 1] and bisection levelℓ > 1. Leth0 be sufficiently fine so that
Lemma 7.12 holds for{Tk, Vk, uk}k>0. Then, there exist constantsγ > 0 andα ∈ (0, 1),
depending only onθ, ℓ, and the shape-regularity of the initial triangulationT0, such that

|u− uk+1|
2
1,Ω + γη2k+1 6 α2

(
|u− uk|

2
1,Ω + γη2k

)
.

Consequently, we have the following convergence of AFEM algorithm:

|u− uk|
2
1,Ω + γη2k 6 C0α

2k,

for some constantC0 = C0(u0, h0, θ, l, T0).

Proof. The results follow from Theorems 7.6. �
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7.3. The Poisson-Boltzmann Equation.The second example we consider is the non-
linear Poisson-Boltzmann equation (PBE), which is widely used for modeling the elec-
trostatic interactions among charges particles; it is important in many areas of science
and engineering, including biochemistry and biophysics. The nonlinear PBE is

−∇ · (ǫ∇ũ) + κ2 sinh ũ = f, in Ω,
u = 0, on∂Ω,

(7.23)

wheref =
∑N

i=1 qiδ(xi), with xi ∈ Ωm ⊂ Ω. Here,ǫ = ǫ(x) > 0 is a strictly positive
spatially-dependent dielectric coefficient, with the modified Debye-Huckel constant tak-
ing the valueκ = 0 in the solute (molecule) regionΩm and then strictly positive in the
solvent regionΩs := Ω \ Ωm. We will denote the interface between the molecular and
solvent regions asΓ = ∂Ωm.

One of the main analysis and approximation theory difficulties with the PBE arises
from the singular functionf , which does not belong toH−1(Ω); this implies (7.23) does
not have a solution inH1(Ω), or at least does not have a normalH1 weak formulation
with test functions coming formH1. To address this and other features of the PBE, Chen,
Xu and Holst [20] used a two-scale decomposition (see also [27, 73]) to split the solution
into a self-energy corresponding to the electrostatic potentialus, and a screening potential
due to high dielectric and mobile ions in the solution region. The singular componentus

of the electrostatic potential satisfies

−∇ · (ǫm∇us) =

N∑

i=1

qiδ(xi), (7.24)

which can be assembled from the Green’s functionsus :=
∑N

i=1 qi/(ǫm|x − xi|). Sub-
tracting (7.24) from (7.23) gives the equation foru:

−∇ · (ǫ∇u) + κ2 sinh(u+ us) = ∇ · ((ǫ− ǫm)∇us). (7.25)

In [20], a new solution theory, approximation theory, and convergent AFEM algorithm
for the nonlinear PBE was established, based on this decomposition. However, it was
discovered later numerically that this decomposition requires that the regular component
must be solved at an extremely high accuracy. This defect is built into the decomposition
itself due to the large scale separation between the two components of the splitting. A
related decomposition scheme without this stability problem was studied numerically
for finite difference schemes in [21], and then analyzed carefully in [31]. This 3-term
decomposition uses the same first component in the molecularus as defined in (7.24);
the second componentuh is the harmonic extension of the trace ofus onΓ (the interface
betweenΩm andΩs) into the molecular region, withuh satisfying

−∆uh = 0 in Ωm,
uh = −us onΓ.

(7.26)

One setsus + uh = 0 in Ωs, with the harmonic extensionuh continuous across the
interface by construction. The remaining regular component satisfies the Regularized
PBE (RPBE):

−∇ · (ǫ∇u) + κ2 sinh(u) = 0 in Ω

[u]Γ = 0 and
[
ǫ ∂u
∂nΓ

]
Γ

= gΓ onΓ

u|∂Ω = g on∂Ω.

, (7.27)

where

gΓ = gΓ := εm
∂(us + uh)

∂nΓ
|Γ.
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Apart from the techniques required to handle the singular features described above, the
remaining complexities (the discontinuous dielectric andDebye-Huckel constants and
super-critical nonlinearity) can be handled directly by the framework described in this
paper; in particular, both forms of the regularized problem(7.25) and (7.27), analyzed
in [20] and in [31] respectively, fit into the class of semilinear problems described in
Section 7.2. The results remaining to be established for useof the AFEM contraction
framework essentially all follow from Lipschitz control ofthe nonlinearity (6.32); this
control is gained through establishing continuous and discretea priori L∞ estimates for
the weak solutionu to (7.25) and (7.27), and for the Galerkin approximationuk of these
solutions. Sucha priori L∞ estimates are established in analyzed in [20] and [31], fol-
lowing cutoff-function arguments similar to those used in Lemma 7.8 above. Both the
quasi-orthogonality result in Theorem 6.4 and the nonlinear local Lipschitz Assump-
tion 7.1 follow from the thesepriori L∞ bounds; for details see [31]. Contraction (hence
convergence) of AFEM then follows by the contraction Theorem 7.6; see [31] for the
complete argument. For a short derivation of the equation, and a more detailed discus-
sion of the solution theory, the approximation theory, and adaptive methods, see [20, 31].

7.4. The Hamiltonian Constraint Equation. The third example we consider is the
scalar Hamiltonian constraint equation, which together with the vector momentum con-
straint, appears as the coupled Einstein constraint equations which arise in general rel-
ativity. The derivation of the constraint equations is based on aconformal decomposi-
tion technique, introduced by Lichnerowicz and York [41, 70, 71]. In certain physical
situations (constant mean extrinsic curvature of the 3-manifold spatial domain), the con-
straints decouple so that the (linear) momentum constraintcan be solved first for a vector
potentialw, leaving the Hamiltonian constraint to be solved separately for a scalar con-
formal factoru. LetΩ ⊂ R

d be bounded and polyhedral, withd > 2. We consider then
AFEM algorithms the scalar Hamiltonian constraint equation: Findu such that






−∇ · (A∇u) +N(u) = 0 in Ω,
n · (A∇u) +G(u) = 0 on ∂NΩ,

u = 0 on ∂DΩ.
(7.28)

The boundary conditions of primary interest in both mathematical and numerical rela-
tivity include the cases∂DΩ = ∅ or ∂NΩ = ∅, which covers various combinations of
boundary conditions considered in the literature [72, 44, 23] for the constraint equations.
The tensorA is a Riemannian metric, so it appears here as a uniformly positive definite
symmetric matrix function onΩ:

c1|ξ|
2 6 Aij(x)ξiξj 6 c2|ξ|

2, a.e. in Ω, (7.29)

with component functionsAij ∈ L∞. The principle part of equation (7.28) is the
Laplace-Beltrami operator with certain Riemannian metrichab. The (nonlinear) bound-
ary functionG is assumed to beC2(∂NΩ). The nonlinear functionN(·) in the Hamilton-
ian constraint equation reads:

N(φ) = aRφ+ aτφ
5 − aρφ

−3 − awφ
−7,

whereaτ , aρ, aw ∈ H−1
D (Ω) are nonnegative functions, andaR := 1

8
R ∈ H−1

D (Ω), with
the scalar curvatureR of the metrichab. Here

u−, u+ ∈ H1
D(Ω) ∩ L∞(Ω) with 0 < u− 6 u+ < ∞.

The construction of the subsolutionu− and the supersolutionu+ for the constraint equa-
tions was discussed in detail in [33].
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Note thatN(u) is well-defined only on essentially bounded subsets ofL2 :

N : [u−, u+] ⊂ L2(Ω) → H−1
D (Ω). (7.30)

Such a restriction will give rise to a Lipschitz property ofN on this set:

‖N(u)−N(v)‖L(H1
D
(Ω),H−1

D
(Ω)) 6 K‖u− v‖L2(Ω), ∀u, v ∈ [u−, u+]∩L2(Ω), (7.31)

which is a key tool for controlling the nonlinearity in the solution theory, when combined
with a priori L∞ bounds to establish the interval[u−, u+], as we saw in Section 7.2.

A weak formulation of equation (7.28) is then: Findu ∈ [u−, u+] ∩H1
D(Ω) such that

a(u, v) + 〈f(u), v〉 = 0, ∀v ∈ H1
D(Ω), (7.32)

where

a(u, v) =

∫

Ω

A∇u · ∇vdx,

〈f(u), v〉 =

∫

Ω

N(u)vdx+

∫

∂NΩ

G(u)vds.

Thanks to the control of the nonlinearity provided by thea priori L∞ bounds we es-
tablished on any solutionu to the Hamiltonian constraint, it was showed in [33] that
equation (7.32) is a well-posed problem. In particular, there exists a solutionu ∈
[u−, u+] ∩H1

D(Ω).
The remaining ideas in design the AFEM algorithm and its convergence analysis are

the same as before. Namely, we develop thea priori L∞ bounds ofu and the finite
element approximationuk. Based on thesea priori bounds, we then establish quasi-
orthogonality and the local Lipschitz property. Finally, contraction and convergence of
the AFEM algorithm follows by the contraction Theorem 7.6. For a detailed discussion
of the equation, the solution theory, approximation theory, and convergence analysis of
AFEM, see [35, 33].

8. CONCLUSION

In this article we developed convergence theory for a general class of adaptive approx-
imation algorithms for abstract nonlinear operator equations on Banach spaces, and then
used the theory to obtain convergence results for practicaladaptive finite element meth-
ods (AFEM) applied to a several classes of nonlinear elliptic equations. In the first part
of the paper, we developed a weak-* convergence framework for nonlinear operators,
whose Gateaux derivatives are locally Lipschitz and satisfy a local inf-sup condition.
The framework can be viewed as extending the recent convergence results for linear
problems of Morin, Siebert and Veeser to a general nonlinearsetting. We formulated
an abstract adaptive approximation algorithm for nonlinear operator equations in Banach
spaces with local structure. The weak-* convergence framework was then applied to this
class of abstract locally adaptive algorithms, giving a general convergence result. The
convergence result was then applied to a standard AFEM algorithm in the case of sev-
eral semilinear and quasi-linear scalar elliptic equations and elliptic systems, including
a semilinear problem with polynomial nonlinearity, the steady Navier-Stokes equations,
and a more general quasilinear problem. This yielded several new AFEM convergence
results for these nonlinear problems.

In the second part of the paper, we developed a second abstract convergence frame-
work based on strong contraction, extending the recent contraction results for linear
problems of Cascon, Kreuzer, Nochetto, and Siebert and of Mekchay and Nochetto to
abstract nonlinear problems. We then established conditions under which it is possible to
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apply the contraction framework to the abstract adaptive algorithm defined earlier, giv-
ing a contraction result for AFEM-type algorithms applied to nonlinear problems. The
contraction result was then applied to a standard AFEM algorithm in the case of sev-
eral semilinear scalar elliptic equations, including a semilinear problem with polynomial
nonlinearity, the Poisson-Boltzmann equation, and the Hamiltonian constraint in general
relativity, yielding AFEM contraction results in each case.
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