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LOCAL CONVERGENCE OF ADAPTIVE METHODS
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

MICHAEL HOLST, GANTUMUR TSOGTGEREL, AND YUNRONG ZHU

ABSTRACT. Inthis article we develop convergence theory for a gerodaabk of adaptive
approximation algorithms for abstract nonlinear operatprations on Banach spaces,
and then use the theory to obtain convergence results fotipabadaptive finite element
methods (AFEM) applied to several classes of nonlinegptallequations. In the first
part of the paper, we develop a weak-* convergence framefeorhkonlinear operators,
whose Gateaux derivatives are locally Lipschitz and satisfocal inf-sup condition.
The framework can be viewed as extending the recent conveegesults for linear
problems of Morin, Siebert and Veeser to a general nonligetting. We formulate an
abstract adaptive approximation algorithm for nonlingaerator equations in Banach
spaces with local structure. The weak-* convergence fraonlevg then applied to this
class of abstract locally adaptive algorithms, giving aegahconvergence result. The
convergence result is then applied to a standard AFEM dhgorin the case of sev-
eral semilinear and quasi-linear scalar elliptic equatiand elliptic systems, including:
a semilinear problem with subcritical nonlinearity, theasty Navier-Stokes equations,
and a quasilinear problem with nonlinear diffusion. Thislgs several new AFEM
convergence results for these nonlinear problems. In tbensepart of the paper we
develop a second abstract convergence framework basetbog sontraction, extend-
ing the recent contraction results for linear problems cdd@a, Kreuzer, Nochetto, and
Siebert and of Mekchay and Nochetto to abstract nonlinedyipms. We then establish
conditions under which it is possible to apply the cont@cframework to the abstract
adaptive algorithm defined earlier, giving a contractisuiefor AFEM-type algorithms
applied to nonlinear problems. The contraction resulténtiapplied to a standard AFEM
algorithm in the case of several semilinear scalar elliptjoations, including: a semi-
linear problem with subcritical nonlinearity, the Pois€Boltzmann equation, and the
Hamiltonian constraint in general relativity, yielding BEM contraction results in each
case.
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1. INTRODUCTION

Due to the pioneering work of Babuska and Rheinboldt [5],paigla finite element
methods (AFEM) based anposteriorierror estimators become standard tools in solving
PDEs arising in scientific and engineering. A standard agaptgorithm has the general
iterative structure:

Solve — Estimate — Mark — Refine (1.1

whereSolve computes the discrete solutiap in a subspac&;, C X; Estimate com-
putes certain error estimators basedugnwhich are reliable and efficient in the sense
that they are good approximation of the true enror u, in the energy normMark ap-
plies certain marking strategies based on the estimatodsj@ally, Refine divides each
marked element and completes the mesh to to obtain a newigrarand subsequently
an enriched subspacg, , ;. The fundamental problem with the adaptive procedure (1.1)
is guaranteeing convergence of the solution sequence jpasteriorierror analysis, we
refer to the books [2, 69, 59] and the references cited therei

The first convergence result far (1.1) was obtained by Badasid Vogelius/[6] for
linear elliptic problems in one space dimension. The nulitiensional case was open
until Dorfler [26] proved convergence df (1.1) for Poiss@uation, under the assump-
tion that the initial mesh was fine enough to resolve the infteeof data oscillation. This
result was improved by Morin, Nochetto, and Sieblert [46}yinich the convergence was
proved without conditions on the initial mesh, but requirthe so-callednterior node
property, together with an additional marking step driven by datallasion. Since these
seminal papers, a number of substantial steps have beenttakeneralize these con-
vergence results for linear elliptic problems in variousediions. Of particular interest
to us here are the following. In [49, 47,161] the asymptotiov@gence results were
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obtained for a general class adaptive methods for a largs ofdlinear problems. The
theory does not require marking due to oscillation, or therior node property, and al-
lows more general marking strategies than what had beenind2drfler's arguments,
with differenta posteriori errorestimators. In another direction, it was showed by Binev,
Dahmen and DeVoreé [11] for the first time that AFEM for Poissguiation in the plane
has optimal computational complexity by using a criticahisening step. This result
was improved by Stevensan [62] by showing the optimal cowriglén general spatial
dimension without coarsening step. These error reductidrogtimal complexity results
were improved recently in several aspects.in [17]. In thdyaimof [17], the artificial
assumptions of interior node and extra marking due to datdlaigon were removed,
and the convergence result is applicable to general lingpti@ equations. The main
ingredients of this new convergence analysis are the glgig@r bound on the error give
by thea posterioriestimator, orthogonality (or possibly only quasi-orthogtlity) of the
underlying bilinear form arising from the linear problemmdaa type of error indicator
reduction produced by each step of AFEM. We refer to [50] foe@ent survey of con-
vergence analysis of AFEM for linear elliptic PDEs which egvan overview of all of
these results through late 2009.

There are a number of recent and not-so-recent articlesecoinga posteriorierror
analysis for nonlinear partial differential equations;[&f 68, 55) 9| 58, 40, 57, 30, b9,
18]. However, to date there have been only a handful of AFEM/emence results for
nonlinear problems. Some of the results are: AFEM convexgdéor a scalar problem
involving thep-Laplacian was shown in [66, 25]; AFEM convergence for aslafscon-
vex nonlinear problems arising in elasticity in [15,) 14]dalAFEM convergence for the
nonlinear Poisson-Boltzmann equation[inl[20]. These tesypically involve problem-
specific handling of the nonlinearity. A recent article in armgeneral direction is the
paper of Ortner and Praetorius [52] where the convergeralysia of an adaptive algo-
rithm for a large class of nonlinear equations is discussaset on energy minimization,
including the cases lacking an Euler-Lagrange equationallosv differentiability prop-
erties of the energy. However, their argument is tailorextgjzally for non-conforming
finite element methods, with some remaining obstacles ctimforming case.

In this article we develop convergence theory for a gendaalscof adaptive approxi-
mation algorithms for abstract nonlinear operator equatimn Banach spaces, and then
use the theory to obtain convergence results for practoaptve finite element meth-
ods (AFEM) applied to several classes of nonlinear elliptjoations. In the first part of
the paper, we develop a weak-* convergence framework folimear operators, whose
Gateaux derivatives are locally Lipschitz and satisfy alad-sup condition. The frame-
work can be viewed as extending the recent convergencdsdsulinear problems of
Morin, Siebert and Veeser [49,47,/61] to a general nonlise#ting. We formulate an
abstract adaptive approximation algorithm for nonlineperator equations in Banach
spaces with local structure. The weak-* convergence fraonevws then applied to this
class of abstract locally adaptive algorithms, giving aggahconvergence result. The
convergence result is then applied to a standard AFEM dlgorin the case of sev-
eral semilinear and quasi-linear scalar elliptic equatiand elliptic systems, including
a semilinear problem with polynomial nonlinearity, theastg Navier-Stokes equations,
and a more general quasilinear problem. This yields sevenal AFEM convergence
results for these nonlinear problems.

A disadvantage of the weak-* convergence framework is thdies not give informa-
tion on adaptive finite element convergemate; strict error contraction results are key
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to complexity analysis of specific instances of the AFEM &lhpons. To allow for com-
plexity results of this type, in the second part of the paperdevelop a second abstract
convergence framework based on strong contraction, extgtite recent contraction re-
sults for linear problems of Cascon, Kreuzer, Nochetto,3ietlert[17] and of Mekchay
and Nochetto/ [45] to abstract nonlinear problems. We thésbéish conditions under
which it is possible to apply the contraction framework te #iostract adaptive algorithm
defined earlier, giving a contraction result for AFEM-typgaithms applied to nonlin-
ear problems. The contraction result is then applied to rdsta AFEM algorithm in
the case of several semilinear scalar elliptic equatior@duding a semilinear problem
with polynomial nonlinearity, the Poisson-Boltzmann etipra[31] and the Hamiltonian
constraint([35] in general relativity, yielding AFEM coatition results in each case.
The remainder of this paper is organized as follows. In 8a&i, we develop an ab-
stract framework for ensuring that a sequence of Petroet®ial (PG) approximations to
the nonlinear problem converges to the solution of a noalieguation, by ensuring the
weak-* convergence to zero of the sequence of correspomdintinear residuals. This
involves first establishing priori estimates and a general convergence result in Sec-
tion[2.1, together with recalling some (mostly standagjosteriorierror estimates in
Sectiorl 2.P. In Sectidd 3, we present a class of abstractiadapgorithms which (under
reasonable assumptions) fit into both the weak-* convergérenework developed in
Sectior 2 and the contraction framework developed in Se&id he class of algorithms
is general enough to include both classical adaptive fildment methods (AFEM) for
two- and three-dimensional elliptic systems, as well as MFHgorithms for geometric
elliptic PDE on Riemannian manifolds (cf. [35,/30]). In Seatld, we give the main
convergence results for the class of adaptive algorithresrd®d in Sectiohnl3. In partic-
ular, we prove that the adaptive algorithm generates a segud approximate solutions
which converge strongly to the solution, by showing thatdbeesponding sequence of
nonlinear residuals weak-* converges to zero. We presasfaesice of examples in Sec-
tion[3 to illustrate the weak-* convergence framework. lct®m[6, we outline a second
distinct abstract framework for ensuring that a sequeneg@pfoximations to the nonlin-
ear problem produced by an adaptive algorithm convergdsetadlution of a nonlinear
equation, by ensuring strict contraction of theasi-error (the sum of the error norm
and the error indicator). This framework is based on esthing strengthened Cauchy
and quasi-orthogonality-type inequalities for succesBiG approximations produced by
adaptive algorithms in Sectiohs B.246.3, together withreega abstract contraction re-
sult derived in Sectioh 6l4. The contraction result is artrabton of the contraction
arguments used in [45, 16,135, 31], suitable for use with @gpration techniques for
nonlinear problems. As in these existing frameworks, itasdal on establishing: (1)
guasi-orthogonality; (2) error indicator bound on the er(8) a type of indicator reduc-
tion. We prove that under these assumptions, the adaptjgetm generates a sequence
of approximate solutions for which the quasi-error styictbntracts. Finally, we present
several examples of increasing difficulty in Secfidn 7 tostrate this framework.

2. AN ABSTRACT WEAK* CONVERGENCEFRAMEWORK

In this section, we focus on developing a general converg@amework for abstract
nonlinear equations. To explain the problem class, thetadegpproximation algorithm,
and the set of convergence results we wish to establish lahd Y be real Banach
spaces (complete normed vector spaces over theRipldith norms|| - || x and|| - ||y,
respectively. Denote the topological dual spaces of baditidear functionals orX and
Y as X* andY* respectively. In this paper, we are interested in the cqaraze of a
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general class of adaptive algorithms for solving the nadirequation:
Find u € X, such that'(u) = 0,
or in aweak form
Find u € X, such that F'(u),v) =0,Vv € Y, (2.1)

based on placing some minimal conditions on the first (Gateaurrechet) derivative
of F. We note that[(2]1) often itself arises naturally throughe@ex differentiation of
a scalar-valued energy : X — R, as theEuler Conditionfor stationarity of.J(u),
although we will consider the general case here wherebyg tnay not be an underlying
energy functional. In any case, recall (¢f.[65] 38, 51]) the Gateaux variation of at
u € Xin the directionw € X is given as:

F'(u)w = iF(u +ew)| (2.2)
de =0
and recall that when they exist as bounded linear operatioesateaux and Frechet
derivatives at: in the directionw agree withF’(u) above, uniquely generated by (2.2).
Note that in general, the solution to equatibn{2.1) may motibique. In this paper,we
are interested in thiecally unique solutionwhich is unique in a neighborhood:

Definition 2.1. We sayu € X is alocally uniquesolution to(2.1) in a neighborhood
U C X ofu, if u is the only solution of2.3)in U.

Our aim now is to show thaEor any convergent sequen¢e; } in X, if the residuals
F(uy,) of the nonlinear equatio@.1) weak-* converge to zero, then the sequence con-
verges to the solution o2.1). Based on this abstract convergence result, the remainder
of this section will be devoted to establishing existereceriori error estimates, ana
posteriorierror estimates, for Petrov-Galerkin approximations taatign [2.1).

The following simple theorem will form the basis for our cengence analysis.

Theorem 2.2. For a continuous (nonlinear) map : X — Y™, suppose that, € X is
a locally unique solution t@2.1) in a neighborhood/ C X of u. Let {ux} C U be a
sequence converging to somee< U, such that

]}Lrgo<F(uk),v) =0, Yv eY. (2.3)
Then we have, = .
Proof. We have
(F(us),v) = (F(us) — Fug), v) + (F(ug), v)
< |[F () = Fug)lly=l[vlly + [ (F(ur), v} |-
The conclusion follows by the continuity @, (2.3) and uniqueness ofin U. O

Y*

One of our central goals in the paper is now to develop a malatiay to generate the
sequencduy} satisfying the conditions in Theordm R.2. To this end, weoithice two
sequences of nested (finite-dimensional) subspaces

XoCcXjC...c XandY,CY,C...CY,

where dim(X;) = dim(Y}) for eachk € N. In addition, we introduce the spaces
(Xooy Yoo

IFlx IFly
Xo=Jx: and  Y.=(J% .
k k
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We focus on a class of approximation methods whereby theesegLof approximations
{ur, € X} C X to the exact solutiom € X to (2.1) are generated by solving the
Petrov-Galerkin (PG) problems

Finduy, € X, such that F'(uy), vx) = 0, Yo € Y. (2.4)

We next consider conditions afi to establish well-posedness 6f (2.4), and dedve
priori error estimates for the approximations~ w.

2.1. A Priori Error Estimates. Let G be aC! mapping fromX — Y*, understood as
an approximation of". Assume( satisfies the following conditions:

(H1) There exists a constaft> 0 such that?’ satisfies
1G' (1) = G'(@) | gy < Lllu = zlx, Vo € X with [[u— 2] x <.

(H2) G'(u) is an isomorphism fronX — Y*, and there exists a constaht > 0 such

that
o<
L(Y*,X)
(H3) |G(u)|ly- < C, whereC' = min{;%-, =L}

Assumptions (H2) and (H3) are stability and consistencyddans, respectively. If7
satisfies (H1)-(H3), then we have the following lemma, samib [55, Theorem 2].

Lemma 2.3. Let G satisfy the assumptions (H1)-(H3), then there exist a @msg > 0
and a unique:s € X such thatz(ug) =0, and ||ju — ug||x < do. Moreover, we have
the followinga priorierror estimate:

lu —ugllx < 2| G'(u G ()]

)_1HL(Y*,X Y-
Proof. We show existence and uniqueness by fixed-point argumefinedig st
T(r)=2—G'(u)'G(x), Vo e X.

This new operatof” is well-defined becaus@’(u) is an isomorphism by Assumption
(H2). Then for anyr,, 2 € X we have

IT(21) = T(x)llx = [[(21 = 22) + G(w) T (Glw2) = Gla))]|

(21 — 2) — Glu)"~! / 1 G (1 + (2 — 1)) (21 — o)t

0
Let §p > 0 such that, = min{J, ﬁ}. We try to show thatl’ is a contraction mapping
in the ball B(u, dy) C X. By Assumption (H1), we have

HG/(U) — G/((.Tl + t(l’g - 1’1))”5()(73/*) < L(SO, Vxl, To € B(u, (50)

X

G'(u)_lfo (G'(u) — G'(xy + t(ze — 1)) (21 — 22)dt

X

Therefore, by the choice ¢f and (H2) we have

_ 1
IT(z1) = T(x2)|lx < Ldo||G'(u) IHL;(Y*,X) |21 — 22f|x < §||$1 — Ta||x.
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In addition, by using the above inequality and AssumptioB)(Hor anyz € B(u, &)
we have

IT(2) —ullx < [[T(x) = T(u)lx + [|T(w) = ullx

< %Hx —ullx + HG/(U)_IG u HX

N

%50 + MC < 6.

Therefore, T is a contraction mapping from®(u, §y) to B(u, dy). Thus, there exists a
uniqueug € B(u, do) such thatus = T'(ug), thatis,G(ug) = 0. Moreover,

lu = ugllx = llu = T(ua)llx < 26" (W) 7y 5 IG@)Iy-,
which completes the proof. O

Lemmal2.8 provides us with an abstract framework for exe#emniqueness, and
thea priori error estimate (giving continuous dependence) for theagpmrated scheme
G(z) = 0. Based on this lemma, we now try to construct such a nonlinparatorG
for the Petrov-Galerkin formulation_(2.4). This turns ootite nontrivial, since Petrov-
Galerkin formulations are built only on the subspa¢&s, Y;), whereas the operator
G : X — Y* is defined on the paifX,Y'). Therefore, for each paitXy, Y;), we need
to construct an operatdr, : X — Y* such that the weak solution df.(z) = 0 is
equivalent to the solution of (2.4).

To this end, let us first introduce a bilinear fofm X x Y — Ratu € X:

b(z,y) = (F'(u)z,y), Ve € X, VyeY, (2.5)
which is the linearization of" at«. Denote by||b|| the norm ofb:
6] == sup{b(z,y) 1 v € X, y € Y st |lz[x = lylly = 1} = [[F' (W) ]| ccx.v=)-
We assume “inf-sup” conditions hold féyi.e., there exists a constas > 0 such that

inf sup  b(x,y)=  inf sup  b(z,y) = By > 0. (2.6a)

eX,[lzl x =1 yev,||y|ly =1 veYllylly =1 zeX ||| x =1

This condition is equivalent to assuming that(«) is an isomorphism fronX to Y*
with

1" () e = B

In the finite-dimensional spacés(;, Y;), we assume that satisfies a discrete inf-sup
condition of the form

b(x,y) = inf sup  b(z,y) =1 >0. (2.6b)

m S Y
2€Xp |zl x =1 yevy,|lylly =1 YeYllylly =1 ze X, ||z x=1

Based on these inf-sup conditions, we have that) also satisfies the following inf-sup
condition for the pair of spacésy,, V).

Lemma 2.4. Let the bilinear formb(-, -) satisfies the inf-sup conditid@.6B)on (X}, V%)
fork =1,2,.... Then it satisfies the inf-sup condition QN ., Y ) :

inf sup  b(z,y) = inf sup b(x,y) = p1 > 0. (2.6c)

2€Xoo [l x =1 yeVio, |lylly =1 Y€Yo0, [Ylly =1 pe X oo ||z )| x =1

Proof. See[49, Lemma 4.2]. O
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Foreachk = 0,1, --- , oo, inf-sup condition[(2.6b) of (2.6¢) implies existence of two
projectors
ILY: X = X, and I} : Y — Y4,

defined by
blx =1Lz, ) =0 Vi €Y, Vo€ X, (2.7)
bog,y—IILy) =0 Vo, € X, VyeY. (2.8)
These operators are stable in the following sense:
b b
¥ < B and o < 21 2.9)

In fact, take projectofl;¥ as an example, by the discrete inf-sup condition (2.6b), we
have

Ay z]lx < sup b =, yy)
Y €Y%, lyrlly =1
= sup  b(w, k)

Y€V llyxlly =1
< [Iollff2lx-

Moreover, the discrete inf-sup conditidn (2.6b) guaramteat
(Iy)* = 1T and (1T )* = ITj..
Now we are ready to define the nonlinear oper&tor X — Y*fork =0,1,...,00:
(Fi(r),y) = (F(2), I y) +b(z,y = Ty), Vee X, yeY.  (2.10)
By a direct calculation, we observe that
(Fo(x)w,y) = (F'(x)w, M y) + (F'(w)w,y — T y). (2.11)

In particular, we have’ (u) = F'(u). This operatorF}, gives rise to another nonlinear
problem:

Find w € X, suchthat (F.(w),y) =0, VYyeY. (2.12)
The equation(2.12) is posed on the whole spd¢es”). However, it is not difficult to
verify that the solution td{214) and the zero [of (2.10) areiegjent:

Lemma 2.5([55, Lemma 1]) u, € X, is a solution of(2.4) if and only ifu, € X is a

solution of (2.12)

Proof. We include the proof here for completeness.ujlf € X, C X is a solution

to (2.4), then
<F(uk),vk> = 0, Vvk € Yk

Therefore,
For the second term if.(2.110), notice thate X, and by the definition ofl} , we have
blur,y =Ty y) =0, WyeY.

Thus,u;, € X is a solution to[(2.12).
Conversely, letv € X satisfy(Fi(w),y) =0, Vy €Y, thatis

(F(w), I} y) + b(w,y — I y) =0, Vy €Y.
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By choosingy = v — I1¥ v, we obtainb(w,v — IIYv) = 0, Vo € Y. By the definition
of [T andII;¥, we then have
b(w — T w,v) = b(w,v — I v) =0, YveY.
Since the inf-sup condition holds férwe havew = IT;¥ w € X;. On the other hand, by
choosingy = v, € Y, we then have
(F(w), Uk> = O, Yu, € Yk,

which implies thatv € X, is a solution to[(Z4). O

Lemmal2.b shows thaf (Z]12) is actually a reformulation[ofl2which posed in
(X, Yy), into the whole spacgsX, Y). It enables us to obtain the well-posedness and a

priori error estimate of (2]4) by applying Lemmal2.3Hp More precisely, we have the
following main result.

Theorem 2.6. Suppose equatig2.1)and the discretizatiof@.4) satisfy the inf-sup con-
ditions (2.6a) (2.6B)respectively. Moreover, suppose thdtis Lipschitz continuous at
u, that is,
36 and L such that for allw € X, ||u —wl|/x < §
[F"(u) = F'(w)] cx,y+) < Lllu —wl|x.
If in addition the subspacg, satisfies the approximation condition
. _ N fdB B5
£ llu— <ot (1 fof —, 2 2.13
ant el < g (14 D) S {22 B g

then there exist a constadit > 0 such that equatio@.4) has a locally unique solution
up € Xy in B(u, 61) for anyk > 0 such thatX, C X,. Moreover, we have tha priori
error estimates:

o

Proof. By LemmalZ.5, a solution to equation_(2.4) is equivalent tmkuton to the
equation[(2.12). By choosing = F}. in Lemmd&2.B, we only need to verify Assumptions
(H1)-(H3).
Note that[(2.11) implie$} (u) = F'(u). Therefore, we have
17/ () o) = Bo
from the inf-sup condition (2.6a). The assumption (H2)dwls. Again, by[(2.11) we
deduce that foramy,z € X andy € Y,

((Fy(u) = Fi(@)w,y) = (F'(u) — F'(2))w, I y).

2/|0]] 0] .
- < 2 kgl — . .
|u — url|x < 1+ 5, ) min |lu — x&llx (2.14)

Therefore,
|| F(u) — Fl;(x)Hﬁ(X,Y*) < [[F(u) - F/<'T)||L(X,Y*) ‘HkYHL(yyk)
0]
< 5, | F'(u) — F,(x)HE(X,Y*)
0]
< —Lljlu—z|x,
5y Lllu—alx

where in the second inequality we used stability](2.9)Ibf Hence,F;, satisfies (H1).
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For Assumption (H3), we have
[ F5(u)ly

= sup  (Fr(u),v)

veY, ||lvlly=1

= sup  b(u,v — I} v)
veyY, |lvlly =1

= sup  b(u — ;¥ u, )
veY, |lvlly=1

< (Il — T ullx
By triangle inequality and stability (2.9) af;, we have

b .
= T < Jlu = el + 1T = x)le < (14 20 st = .
ﬁ1 XkEXk

Therefore, we obtain

bl .
* < — .
[ Fk(u) ][y < [|0] (1 + 5 nf v —xxllx
Notice thatX, C X, and by assumptiofi (2.113) we have

o]l . . [0B0 B3
E . < - — < = Y
| F%(w) [y~ < [[0]] (1 + 3, ng(o | — xol|x < min RIS

Hence, Assumption (H3) is satisfied. Therefore by LerhmiatBeSthere exists a constant
9, > 0 such that equation (2.4) has a locally unique solutipi X, in B(u, d;) for any
k > 0. Furthermore, we have the following a priori error estimate:

2[b] ( ||bu)
< —— (14 f|lu— .
v BO Bl Xlrel Hu Xk”X

This completes the proof. 0J

= el < 2| B~ ey 1B (0]

Remark 2.7. Theoreni 26 is similar t{65, Theorem 4] However, instead of assuming
the approximation property

Ii f — =0
otk e ol =

as used in their proof, we only assume that the initial subep, satisfieg2.13) This
is important because in the adaptive setting, we cannot @draburse, do not want to)
guarantee that, — 0 uniformly. The assumptigf2.13)is essentially the approximation
property of the subspack,, since that

inf. fJu—xollx < [lw = I"ullx.

In most of the applications we consider, the finite elemeatsp, has certain approx-
imation property, i.e.]lu — Iful|x = O(h§) for somea > 0, where; is inclusion
or quasi-interpolation. Therefore, the conditi¢2.13)can be satisfied by choosing the
meshsizé, of the initial triangulation to be sufficiently small.

Based on Theorein 2.6, there exists a locally unique solutiore B(u, ;1) C Xo
with the test spac&.. In the remainder of this section, we will show that the PG so-
lution sequencdu; € X} converges to the solutiom,, € X, of (2.4) in (X, Ys).
Therefore, we indeed constructed a convergent sequenee u,, ask — oo by the
Petrov-Galerkin approximation.

With this ., let us introduce another bilinear forbg,(-,-) : X X Yoo — R as

boo (T, y) = (F'(Uso)T,y), Vo € Xoo ;9 € Yo, (2.15)
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which is formed by linearizind” atu., € X,,. Comparing with[(Z5), we have

sup boo(xa y) = sup (b(!lf, y) + boo ([E, y) - b(!lf, y))
Y€Yo0, llylly =1 YE€Y oo, ||ylly =1

> fo— sup  ((F'(ue) = F'(u))z,y)

YE€Yoo, [lylly =1

> o= [1F' () = Fl(us)llexye), Vo€ Xoo, [l2flx =1.

Therefore, if I’ satisfies the Lipschitz continuity condition for some> 0 as stated
in Theorenl 2.6, then we can choose a consiant 0 sufficiently small such that the
following inf-sup condition holds i3 (u, d;) :

inf su boo(z,y) = inf sup  beo(7,y) = fo > 0.
YEY oo, llylly =1 pe X oo 2]l =1 2€Xoo, |2 x=1 yevi, |lylly=1
(2.16a)
Similarly, we can show the discrete inf-sup condition hotd® (u, 0, ) :
inf sup  beo(m,y) = inf sup  beo(z,y) = By > 0.
YeYhllylly =1 zexy ||| x =1 2€Xp [l x =1 yevy |lylly =1
(2.16b)

These inf-sup conditions imply that there exists stablq'emt'consf[f and ﬁ}j similar
to (2.7)-[2.8). Same as before, we can define a sequence lafiemmequations:

Findz € X, suchthatFy(z),y) =0,y € Ya, (2.17)

where
Ei(x),y) = (F(2), 11} y) + boo(z,y — I} y).

Following the same lines of the proof of Lemmal2.5, one camwsthe solution to the
nonlinear equatiori (2.17) is the solution to the PG prob2@)(for eacht = 0,1, .. ..

In the proof of Theorern 216 , if we repla¢&,Y) by (X, Y ), u by uy and the
inf-sup conditions[(2.6a)-(2.6b) by (2.16a)-(2.1.6b) rtknee have the following theorem.

Theorem 2.8.Let the assumptions in Theorém|2.6 be fulfilled. Then thésésexneigh-
borhoodB(u, 4;) of u such that the equatiof2.4) has a locally unique solution,, € X
for eachk > 0. We also have the following priori error estimate:

ltoo — ugl|x < C inf |Juew — xkllx, VE=0,1,---.
XkEX
Consequently, the PG sequereg } converges ta,, that is,klim Up = Uso IN X,
—00

Proof. By the same argument as in Theorem| 2.6, equation (2.4) hasallylainique
solutionu,, € X, for eachk > 0. Furthermore, we have the quasi-optimal estimate:

|t — ukllx < C inf |usw — xkllx, VE=0,1,---.
XkEXk
By density ofl ;- , X} in X, we then hav%lim |luk — usol|x = 0. O
—00

Remark 2.9. Theorenm 28 confirms that the approximate sequgngeé has a limit
Uso € Xo. HoOwever, thisu,, does not necessarily coincide with the exact solution
Note thatu., = u if and only if the residuaF'(u.,) = 0. Obviously, this is the case when
X, = X. However, in general adaptive settings, one Bas # X. Nevertheless, by
Theoreni 212, it suffices to verify the weak-* convergerites,) — 0.
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2.2. A Posteriori Error Estimates. Given any approximatiomn, of u, the nonlinear
residual F'(u;) can be used to estimate the erflar — u|| x, through the use of in-
earization theorenfd3,(68]. An example due to Verfurth is the following.

Theorem 2.10.[68] Let v € X be a regular solution of(2.1) so that the Gateaux
derivative F’(u) is a linear homeomorphism df ontoY™*. Assume that” is Lipschitz
continuous atu, that is,

30 and L such that for allw € X, |ju —w|x < ¢
1 (u) = F'(w)]leox v < Llju = wllx.
Let R = min{d, L[| F'(u) || ey, x), 2L || F' ()| £(x, v+ }- Then for allu, € X such
that ||u — ug|| < R,
Coll F(ur) ly= < flu = urllx < Cof[ F(u)|
WhereCl = %HF/(U)HZ(lX,Y*) andCQ = 2||F/(’u)_1||£(y*7X).
Proof. See [68]. O O

The linearization is controlled by the choice ©fiufficiently small, wheré) is the
radius of an open ball ifX aboutu. The strength of the nonlinearity is represented
by the factors in[(2.18) involving the linearizatidfi(u) and its inverse. To build an
asymptotic estimate of the error, one focuses on two-sigéchates for the nonlinear
residual|| F'(uy,)||y~ appearing on each side 6f (2118).

. (2.18)

3. A GENERAL ADAPTIVE ALGORITHM

The analysis in Sectidd 2 reveals that under reasonablengsisuns on the nonlinear
operatorF'(-), the Petrov-Galerkin probleni (2.4) is well-posed. Morepwgven the
nested subspacdsy;} and{Y}}, the solution sequencgu, € X} converges to the
exact solution: € X if the corresponding residual sequendé(u,)} C Y* weak-*
converges to zero, that is

lim (F(ug),v) =0, YveY. (3.1)

k—o0

In this section, we show how to construct subspdcés Y;) in an adaptive setting so
as to ensuré (3.1). In particular, based on a few assumpiotise algorithm, we show
that the solution sequence generated by the algorithm pesdal residual sequence that
satisfies[(3]1).

3.1. The Setting: Banach Spaces with Local Structure.Since the algorithm to be
analyzed is of a finite element type, we need to have as thespaandY function
spaces defined over a doméalrin R¢, or over a manifold. The manifold setting is more
general because a domain is trivially a manifold; howewveoyder to avoid the necessary
differential geometric language to also cover the case ofrgetric PDE on manifolds,
we consider here the even more general setting of measucesspahich allows for a
simple and transparent discussion of the core idead. (liBEj6we consider specifically
this geometric PDE setting.)

Let (2, %, 1) be a measure space, whétes a set (a subset @& or ad-manifold),
Y is ac-algebra, and: : X — [0, 0] is a measure. Recall thatraalgebray: C 29
over () is a partition (a collection of subsets or elements)ofvhich containg?, and
is closed under the complement{nand countable union operations. Themaasure
w3 — [0, 00] is a function withu () = 0 and additive under disjoint countable unions.
We say thaf is apartition (a set of subsets) 61 with elementgsimply connect subsets)
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{t}rer it U, ef T = Qandr N, = @ foranyr,, 7, € T suchthatr; # 7. We introduce
the meshsize functioh associated tg" as

hr(z) = p(r)i, YrzereT.

Note thath+ is well defined up to al-dimensional Lebesgue measure zero skeleton.
Thus, we can understarig- € L*>(2) as a piecewise constant function. Given any
subsetS C T, we denotes = |, .5 7. Let X(7) and be the finite element subspaces
defined on each elementc 7. We denoteX (Q2s) := (J,.s X (7). For simplicity, let
X(T) := X(£27). We use similar notation for andZ below.

We assume now that the Banach spak¢$) andY (7)) associated with the partition
T have certain local structures provided by the associateasune spacé&?, >, i1). In
particular, we assume that the induced notng|x and|| - ||y are subadditive in the
underlying domain:

~ |w|x, Ywe X(T);

[l er]

(3.2a)

~ ||y, YveY(T).

l{1olvo} e,

In addition, we assume that the norms are absolutely comisuwvith respect to the
measure.(-) in the sense that, for any € X andv € Y, there holds

||w||X(w) — 0 and||v||y(w) — 0, asu(w) — 0. (3.2b)

Furthermore, we assume that the abstract or generalizeée él@ment spaces have the
following local approximation property: Let C Y be a dense subspace Bf we
assume that for any partitioh, there exists an interpolation operafer: Y — Y (7))
such thatforalb € Y,

[v = Irvlly () S W lleorllVlly iy, VT €T, (3.2¢)

wheres > 0 is a constant.

The two most relevant examples of such Banach spaces wilyghe of local struc-
ture are subspaces C L*(£2), wheref) is either a bounded open subseif, or where
Q2 is a Riemannian¥*?-manifold (a differentiable manifold with metric i#’*), and
where7 is a partition of(2 into elements. Such subspaces then include Sobolev spaces
of scalar and vector functions over domains and partitionR" (cf. [42,1]), as well
as Sobolev spaces oF ®P-sections of vector bundles overand partition elements
(see[[53| 29, 32] for a discussion of these spaces). [Sée 33853 and Sectioh 714 for
examples in the case of manifold domains. We note that to §8@&) holds in specific
cases, it is not enough to assume thatr) is sufficiently small, but also that certain
geometric (e.g. geodesic angle) conditions hold for theneldgs{r}. In this article,
we assume that the subspace contruction schemes prodtitems{ r} satisfying the
appropriate geometric conditions so tHat (B.2c) holdsaliinwe remark that an inter-
mediate spac# such thatX C Z, with continuous (even compact) embedding

X(T)— Z(T), (3.3)

will sometimes play a critical role. It is assumed tl¥ahas the same local structure as
X andY over a measure spacg, X, 11), in that both [(3.2a) and (3.2b) hold far. The
role of Z will usually be played by.?(2) for suitably chosen exponent
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3.2. The Algorithm: SOLVE-ESTIMATE-MARK-REFINE. We now formulate an
adaptive algorithm based on enriching the local structgiaguerror indicators, parti-
tion marking, and partition refinement. Léf, := X (7;) andY, := Y (7;) be the
abstract finite element spaces defined on the partifjoGiven an initial partitiorf/, of
the domain, the adaptive algorithm for solving equatiofl{ an iteration involving the
following main steps:

(2) {n(uk,7)}rer, := ESTIMATE (ug, Tx) ;
(3) My := MARK ({n(ug, 7) }rers Th) ;
(4) Tk+1 := REFINE (T, My, (), increment k.

We will handle each of the four steps as follows:

e SOLVE: We use standard inexact Newton + multilevel solvers foratiqn (2.4)
to produceu;, € X, on each partitiory;, (cf. [7,[30,24]). To simplify the analysis
here, we assume that the discrete solutipis the exact solution td (2.4).

e ESTIMATE: Given a partition7, and the corresponding output € X of the
SOLVE modules, this module computes and outputsahmsteriorierror esti-
mator{n(u, 7) } -7, Where for each elemente 7, the indicatom(u, 7) > 0.

e MARK: Based on the posteriorierror indicators{n(u, 7)} <7, this module
gives a strategy to choose a subset of elemgititsof 7, for refinement.

e REFINE: Given the set of marked elememd,, and the partitiori/,, this pro-
cedure produces a new partitip,; by refining (subdividing) all elements in
M, ¢ > 1times. Some other elementsTh \ M, may also be refined based
on some requirement of the partition, such as geometritioakhips between
neighboring elements (sometimes calgEbmetric conformityin order to sup-
port construction of the spacé§( 7). This procedure is known a®mpletion

Now we state some basic assumptions on these modules, whidiewised in the
convergence analysis in Sectidn 4.

(3.4)

3.2.1. REFINE. We suppose that refinement relies on unique quasi-regelsuesit sub-
divisions. More precisely, there exist constants; € (0, 1) independent of the parti-
tion 7, such that any element € 7 can be subdivided inta(7) > 2 subelements
T{,- -5 Ty SUCh that

T=7U---U ?;(7)7 pu(r) = Z w(7l), (3.52)

and
cip(r) < p(r)) < cop(r), i=1,...,n(7). (3.5b)

We define now the clags admissible partition®f €2 as the subclass of all partitions
of (2 that satisfy the two properties:

e The partition is subordinate to (a refinement &f)
e The partition is locally quasi-uniform in the sense that

supmax #N7(7) <1, sup max M<T/) <1, (3.5¢0)
Teg TET Teg T eNT(r) pi(T')

whereNr(7) := {7' € T|7 N7 # 0} denotes the set of neighboring elements
of 7inT.
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In addition, we suppose that the output partition
T’ := REFINE(T, M, ?)

satisfies the requirement
VreMcCT,t¢T, (3.5d)

that is, each marked element of the input partition is subldi at least once in the
output partition. Additional elements i \ M may be refined in order to fulfill some
other requirements for partitions coming from classfor example, properties such as
geometric conformity may need to also hold in specific caseooftructions ofX (7))
over7 in order to ensure thaf (3.12c) holds.

3.2.2. SOLVE. We assume that the abstract finite element spAqgs) andY (7) build
over7 have the following two natural properties. L'Et 7’ € G. The spaceX (7) and
Y (T) are callecconformingif

X(T)c XandY(T) CY, anddim X(7) = dim Y (7)), (3.6a)
and are calledestedf
if 7" is a refinement of thenX (7)) c X(7') andY (T) C Y(T). (3.6b)

We note that the underlying parititioh does not need to lgeeometrically conforming
order for the spaces built ovérto be conforming in the sense 6f (3.6a). We also assume
that the discrete inf-sup conditidn (216b) holds:

inf sup b(z,y) = inf sup b(z.y) > B, (3.6¢
XMl =L yey (7) llylly=1 0) veY (M)l =1 wex (7),lall x=1 (@.v) > b, (360)

with some constant; > 0. In most conforming finite element spaces in Sobolev spaces,
this is an immediate consequence of the usual interpolatimr estimates, cf. [22]. In
Theoreni 2.6 for the well-posedness of the discrete equatierrequire the spac¥,

satisfies[(Z.13):
6]l 3B B3

-1
inf — LB [ 14+ == in<{ — 3.6d
ant o=l < o (14 B0) win {20 B e

where||b|| = || F'(u)]|z(x,y+), Bo, 51 are the inf-sup constants {n(216a) and (2.6b) respec-
tively, L is the Lipschitz constant faF”(u) andé is the Lipschitz radius. Moreover, we
suppose that the output

ur := SOLVE (X(7),Y (7))
is thePetrov-Galerkin approximatioof « with respect td X (7),Y (7)) :
ur € X(T): (F(uy),v) =0, YoeY(T).
Thanks to[(3.6a)[(3.6c) and the assumption on the initiditjan (3.6d), by Theorern 216
the Petrov-Galerkin approximatian- exists, is unique, and is a- || x -quasi-optimal
choice fromX (7).
3.2.3. ESTIMATE. Now we make some assumptions on the output
{n(ur,7)}rer := ESTIMATE (ur, T)

for any admissible partitiofi € G. First, we assume that the following estimate holds
for the Petrov-Galerkin approximatian- : for any subsef C 7 andv € Y,

(F(ur),v) S nlur, S)|vllys) +nlur, TAS)vllyv@rs: (3.72)
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wheren(ur,S) = |[{n(ur,7)},csll,, andQs = U,es 0 for S € T. We note that the
estimatel(3.7a) implies the global upper-bound

v —urlx < nlur, T). (3.7b)

Second, we assume the error indicajour, 7) satisfies local stability. More precisely,
there exists a functio® € Z(£2) such that

n(ur, 7) S urllxwr @) + 1Pl z@r ), VreT, (3.7¢)

wherewr(7) C 2 is the patch (union) of elements i¥(7), and where the spacé is
the appropriate auxillary space as[in{3.3) in Sedfioh 3.1.

Remark 3.1. We remark that the stability assumpti@.7¢)is weaker than the local
lower bound bound. As we can see from the examples in Sé¢tamre=an obtain the
stability estimatd3.7d)from the usual local lower bound estimates.

3.2.4. MARK. We suppose that the output
M := MARK ({77(“77 T)}TETa T)

of marked elements has the property
n(ur,m) < {(maxn(ur,0)),  TET\M, (3.8)

where¢ : R, — R, is a continuous function satisfying0) = 0. Most marking strate-
gies used in practice satisfy (B.8). For instance, the mamirstrategy or equidistribution
strategy, cf.[[48]. In particular, the following Dorfler mkéng strategy also satisfies the
assumption[(3]18): Given € (0, 1], a marked subset of elements is constructed to
satisfy

This marking strategy, which was proposed by Dorfler [26his original AFEM con-
vergence paper, is proven to be crucial in the proof of cotitra, cf. [46,)16]. We refer
to Sectiori ¥ for more detail.

4. CONVERGENCEANALYSIS

Based on the assumptions on the adaptive algorithm, andeoahistract framework
discussed in Sections$ 2, we are now ready to state and prewabgtract convergence
result based on a weak-* residual convergence.

Theorem 4.1(Abstract Convergence).etu be a locally unique exact solution @2.1).
Assume that the nonlinear operatéf(u) satisfies the inf-sup conditio2.6a)and is
Lipschitz continuous in a neighborhoodwfLet {u;} be the sequence of approximate
solutions generated by iteratid.4).

If the finite element spacéX,,, ;) satisfy(3.2), and the moduleREFINE, SOLVE,
ESTIMATE, and MARK satisfy, respectively3.5), (3.6), (3.7), and (3.8), then there
existsu., € X such that]}Lrgo u = Uus. Moreover, the sequende: } satisfies

lim (F(ug),v) =0, YveY. (4.1)

k—o0

Consequently, we have, = u, that isklim ||ug — ul|x = 0.
—00
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We split the partitiorf;, into two sets7," and7,°, where
Tr={reTh:7€T, Yizk}

contains all the elements that will not be refined afteh step, and’,’ = 7, \ 7," is the
set of elements that will be refined at least once dftdr step. Here the superscript™
means the measure of the elementg,inis positive. We denote

Q7—0: UT and Qf =Q 7-+:—LJ7'

TETO TET+

For simplicity, we denot€&)’® = ﬂ Q.

We note that the sequen({ék} C L>(Q2) of the meshsize function is bounded and
monotone decreasing for aze< 2. Moreover, we have

Lemma 4.2([48, Corollary 4.5]) The sequencegy,} and {9} satisfy
Jim | A e g) = 0.
Now we are ready to prove Theoréml4.1.

Proof of Theoreri 411Theoreni 2.8 shows the existence of the Petrov Galerkinisakit
ur € X andus, € X such that

lim v, = Ueo.
k—o0

If we can show[(4l1), that is, the residuals weak-* convem®,tthen Theorerh 2.2
implies thatu., = u. Therefore, we need to prove (4.1). Notice thais dense irt’, we
only need to show that

lim (F(ug),v) =0, YveY. 4.2)

k—o00

By definition, the set§," are nested, that is for any< &,
T CcTrCcTe and 92297;\7;*'
Applying the upper bound(3.Fa) with = 7; andS = 7;*, for anyv € Y we have

(F(u),v) = (F(ux), v = 0) S nuk, Te \ Tyl = 0llya0) + 0w, T v = 0lly o),
(4.3)
wherev is arbitrary inY}. Given anys > 0, we need to show that for sufficiently large
k andj, and for a suitable € Y}, each term in the right hand side of the above estimate
can be bounded by a multiple of
By the local approximation assumptién (3.2c), there exists= I;v € Y; C Y}, such
that

||’U — @Hy(»r) ,S ||h§||oo;r||v||?(r)

So according to Lemnia 4.2 for sufficiently largewe have|v — vy o) < 5. On the
other hand, it is easy to see tha2) \ Q°) — 0 asj — oc. Therefore, by[(3.2b) for
sufficiently largej one has|v — z‘;Hy(Q?\QO) < 5. Hence byl(3.2a), we obtain

[0 = lly o) S lv = llyieo) + llv = 2lly o0y < e
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Notice thaty(ug, 7x \ 7;") is uniformly bounded because
(e, Te \ T;7) < |[{n(we; ™)} er |,

S [[{luel i Yo
S llurllx + 11Dz
< Nk = tsellx + el + 1Dz,

where in the second inequality, we used the inequality Jj3afd in the third inequality,
we used[(3.5c) and (312a). Now sintien ||y, — us||x = 0, for sufficiently largej <

we have

[T Py s

Nk, T \ T;7) < 2[|ucollx + || D2
Therefore, the first term in the right hand side[of(4.3) $iats
(e, Te \ Tl = 0lly o) S QRllusollx + D] 2)e.
We fix thisj and consider the second term in the right hand side of (4 8)letk > ;.
By marking strategy((318), for att ¢ 7;* C 7,", we have

1(ug, 7) < £(£Iée7tggn(uk,0)),

k

and moreover fos € 7,° we have
N(ur, o) S lurllx@ie) + 1Pl 2o
< flur = ool x@i(0)) T [[tool| X (@rte)) + 1PNl 2(wr (o)) -

The first term goes to zero because— u... For the second and third terms, we notice
that u(wi(o)) — 0 ask — oo by the locally quasi-uniformity((3.5¢) and Lemrhal4.2.
Hence|| - || x(wi(o)) — 0 and|| - || z(w,(0)) = 0 @sp(wi (o)) — 0 by (3.2B). Therefore, we
can choosé > j sufficiently large such that(u, 7}*) < e. Finally, we proved that

klim (F(ug),v) =0, YoeyY.
Therefore,[(4.]1) holds. This completes the proof. O

The convergence af, — v ask — oo in Theoreni 4.1l does not imply the convergence
of the estimator. Itisindeed possible for the error indicaito be not efficient in the sense
that they might contain strong overestimation. In otherdgpean efficient error indicator
should be bounded by the erri — u,|| x in certain way.

Theorem 4.3. Let there existD € Z and a continuous function : R, — R, with
#(0) = 0, such thatforanyl € Gandr € T

N, 7) S lu—wellx + (1) (lurllxm + 1Dllze) - (4.4)
Then under the hypotheses of Theorem 4.1, we have
i, e i) = 0
Proof. Fork > j by definition ofy and [4.4) we have
n(ur, Te) S nur, Te \ T;1) + nur, T;7)
S = wllx, ) + n(ur, 77

+|[{etum) (luallxe + 1D112) Yy, -
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By Theoreni 4.1, we havigu — uellx(o) < llu— willx — 0, ask — oo. The second

term goes to zero since for amye 7, \ 7,7, pu(7) — 0 asj — co. We follow the same
arguments as in Theorém 4.1 to show that the last term coeséogero. This completes
the proof. 0J

Note that convergence of both the error (Thedrerh 4.1) aneldtimator (Theorein 4.3)
are important. The convergence result in Theklfinil, |lu — u|lx = 0, means that
—00

the approximate solutions get arbitrarily close to the egatution. However, this would
be of little practical use without the second convergenmlltenamely]}im n =0,
—00

which is the computable counterpart of the first result and thilows one to recognize
the improvement of the approximate solutions. In particlgm n = 0 ensures that if
—00

one includes a stopping test with a given positive toleratinem the algorithm stops after
a finite number of iterations.

5. EXAMPLES

In this section, we present some nonlinear examples, anlg &pgpweak-* conver-
gence framework developed in the previous sections to sbhowectgence of the adaptive
algorithm [3.4) for these problems. We consider a fairlyaokrset of nonlinear problems
(see [13] 68, 57] for example), and show how the weak-* fraorkwean be applied
in each case. Specifically, we consider a specific semilipezislem with subcritical
nonlinearity, the stationary incompressible Navier-8®lkquations, and a quasi-linear
stationary heat equation with convection and nonlinedusiibn. Many other nonlinear
equations are also covered by this general framework.

We restrict polygonal (or polyhedral) domaifisc R¢, whered = 2,3 is the space
dimension; however, all of the results extend to more gérdomains with standard
boundary approximation algorithms and analysis techrsglrethe examples presented
here, the function spacésandY” are the Sobolev spac#s*?(2) with s > 0 andp > 1,
equipped with the norm- || s ,.o and semi-norni-| , o. The spacéV;”’(Q2) is the closure
of D(Q) in W*»(Q), andW~*4(Q) is the dual space dV;""(Q2) with ~ + - = 1. When
p = 2, we shall denoté?*(Q) and H3(Q) instead ofi’*2(Q2) andW;"*(Q2) respectively,
with the norm|| - ||s. o and semi-norm- |, , instead ofj| - ||s 2. and| - |s2.o. The spaceZ
in the convergence analysis is taken to/l3é(2) for suitable choice op. More detailed
presentations of the Sobolev spaces can be found, for eramitie monographs [42] 1]
in the case of domains iR¢, or [53,[29,32] in the case of manifold domains. These
Sobolev spaces satisfy the subadditive assumgtioh (3.2).

Let the initial partition7, of €2 be conforming and shape regular. We restrict ourself to
a shape-regular bisection algorithm for the refinementrdtsea vast literature on bisec-
tion algorithms; cf.[[3, 54, 19, 63] and the references citettein. It is well known that
the bisection algorithm as well as the shape-regularitjyajuarantee assumptidn (B.5)
holds for any partitions generated by the algorithm. WitHoss of generality, we as-
sume that| k|0 < 1is fine enough such that (316d) holds.

Starting from the initial triangulatioffy, the adaptive algorithni (3.4) generates a se-
quences of shape-regular triangulatigfis} of €2, as well as a sequence of approximate
solutions{u, }. For the marking strategy, the conditién (3.8) is satisfiecdi@ample if we
useDorfler’s strategy(cf. [26]) (3.9), or theMaximum strategycf. [4]). Apart from the
assumptions on mesh refinement and the marking strategysdisd above, for each in-
dividual example below, we need to construct the specifitefiiement spaces, C X
andY;, C Y which satisfy the condition$§ (3.6). We also need to definesfiezific error
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indicatorn, which satisfies(3]7). More precisely, according to Thedfethand 4.B we
only need to:

(1) Verify the continuous inf-sup conditioh_(2]6a) and thefarm discrete inf-sup
condition [2.6b) of the bilinear forrix-, -) defined by[(Z.b);

(2) Define appropriate error estimatpwhich satisfies (317);

(3) Verify that ) satisfies[(4}4) to prove the convergence of error indicatueoF
rem[4.3. We note that the standard local lower bounds forrifoe edicator will

guaranted (414).

In the remainder of this section, we will follow the genenarhework presented in
Section 2.P (cf. [[68, 69]) to deriva posteriorierror estimates for each example. We
then verify the basic assumptions on the error estimatadstia nonlinear equations.
As a consequence, we then conclude convergence of the \slajgorithm for each
example.

5.1. Semilinear Examples: Single Equations and Systemdn this subsection, we
give two semi-linear examples. The general formulation semi-linear equation is
as follows:

F(u) := Lu+ N(u) =0, (5.1)
whereL : X — Y* is a bounded linear operator, and-) : X — Z C Y*isa(C!
mapping fromX onto a subspacg of Y*. We assume that

(S1) L satisfies the continuous as well as the discrete inf-supitons!:

inf sup (Lz,y) = inf sup (Lz,y) = ag > 0. (5.2)
2eX [lall x=1 yevlylly =1 yeYlylly=1 sex,jal| x =1
inf sup (Lx,y) =  inf sup (Lz,y) =a3 >0. (5.3)
2E€Xp [l x =1 yevy, |lylly =1 vEY R llylly =1 e Xy, |l x =1

(S2) The embedding C Y* is compact as irfi(313).
First of all, we establish well-posedness of the equafiofi) (Bnder the above assump-
tions onL and V.

Theorem 5.1. Let F satisfy (S1) and (S2), an¥, satisfy(2.13) If N'(u) is Lipschitz
continuous in a neighborhood af then the Petrov-Galerkin proble@.4) possesses a
unique solutiony,, in a neighborhood of.. Moreover, we have the error estimates

uU—1u < inf ||lu— )
| Klx S nf |l — xxllx

Proof. It is straightforward to check that’(u) is Lipschitz continuous. The following
inf-sup condition was proved in [57, Theorem 5.1]:

inf sup  (F'(u)z,y) = inf sup  (F'(u)z,y) =B > 0.
reXplZlx=1 yevy, lylly =1 e llvlly =1 ze Xy ||zl x =1
Then the conclusion follows by Theorém12.6. O

Remark 5.2. The (global) existence and uniqueness of the solution caresmes be
proved by standard arguments in the calculus of variatioftsea priori error estimate
in Theoren. 511 can also be proved in a different way friori L> estimates on the
solutionu and the discrete solutions, hold. We refer to Sectidd 7 for the details.

Example 5.3. Consider the following semi-linear equation
F(u) :==Au+u™ - f =0, (5.4)

with homogeneous Dirichlet boundary conditiofy, = 0. We assume that > 2 is a
constantf € L?(12) for somep > 1 satisfiep > d — L.
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For this nonlinear equation, we define the linear and noatimemponents of’ as
Lu = —AuandN(u) = u™ — f. We letX = WyP(Q) with || - |[x = | - |1p.0 and
Y = W,%(Q) with the norm|| - ||y = |- |1..0, Whereg satisfies; +; = 1. By the Sobolev
Embedding Theorem and the choicerof we haveWW'?(Q) — L™ (Q). Therefore,
for anyu € W,7(Q), we haveN(u) € LP(Q2), which is compact embedded ¥ =
W=LP(Q). A special case whem = 3 andp = 2 in R? can be found in Rappaz [567].

Given a conforming triangulatio®,, let X, C X andY) C Y be the piecewise linear
continuous finite element space defined/@nThen the finite element approximation of
the equation(5]4) reads,

find U € Xk, such that/ Vuy, - Vo, + u?vk — fl)kdl' =0, Yo, € Y. (55)
Q

Based on Theorem 5.1 and Theorleni 2.6, we have the followigpsition.

Proposition 5.4. If the Laplacian operatorA : W, () — W~17(Q) is an isomor-
phism, then fof| ()| . sufficiently small, the Petrov-Galerkin problgf5) have a
unique solution;, € X, in the neighbor of:, which satisfies tha priorierror estimate

Ju =l S min = alip0

Proof. It is straightforward to checl”(u) is Lipschitz continuous. By assumption on
A, L = —A satisfies the continuous inf-sup condition (5.2). That ishave

inf sup (Vw,Vv)=  inf sup  (Vw,Vv) = oy > 0.
weX, [wllx=1yeY,|v||y =1 veYi|lvlly =1 e X, ||lw|x =1

We need to show thdt satisfies the discrete inf-sup condition {5.3). Bet: W,"%(Q2) —
Y} be the Galerkin projection, i.e., for amyc Wol’q(Q)
(Vwk, V(U — P]ﬂ))) = 0, Yw, € Xj.

It is well known that|| P,v|y < [jv]ly, Vv € Y, seel[56] for example. For any;, €
X with ||wg||x = 1, by the continuous inf-sup condition, there exists a functioc
Wy ?(Q) with ||v]|y = 1 such that

% < (Vwg, Vo) = (Vwy, VP).

Hence

sup (Vwg, Vo) > <Vwk, | > a; >0,

Vg €Y, ||k [y =1

V P.v ) o @
|Prolly )~ 2| Peolly

for some constant; . In the last step, we used the stability/@f. This proves the discrete
inf-sup condition:

inf sup (Vwg, Vug) = ag > 0.

vk €Yk |vlly =1 e Xy |lw || x =1
The conclusion then follows by Theorém15.1. O
Leto = 7N 7 be the interface between two elemen@ndr’ € 7;,, andn, be a fixed

unit normal ofo. For anyw € X, we denote the jump residual eras[Vw - n,]. Now
we define the local error indicator

77(“’7 T)p = hf‘me - f||1077p;r + Z hO’ ||[VU} ' nO’]Hg,p,a’ vw € Xk? (56)

ocCOoT
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and define)(w,S) := (3, s np(w,r))% for any subseS C 7. We also introduce the
oscillation:

oscg(7) == he || f — mofllop.rs

wherem is the element-wisé? projection; and denotesci(S) := (3. s Oscz(T))%
for any subsetS C 7. Follow the general framework developed in[69], we have the
following a posteriorierror estimates.

Theorem 5.5. Letu e W, () be a solution tq5.4), andu; € X}, be the solution of
Petrov-Galerkin equatio.3). Then for any subse&t C 7; andv € Y, we have

(F(ur); v) S nlux, S)||vllvias) +nlu, Te \ S)|[vllv oz

Consequently, there exists a constapgtdepending only om: and the shape regularity
of 7;. such that

|lu — ug|l1p0 < Con(ug, Tr)- (5.7)

Furthermore, there exist constant§ and C; depending only om and the shape regu-
larity of 7, such that

n(ug, 7) < Cylju — ugll pw, + Cr0sck(wy). (5.8)

Finally, based on these observations, the adaptive agorior the nonlinear equa-
tion (5.4) is convergent.

Corollary 5.6. The adaptive algorithm for the nonlinear equati@4) converges, that
is, ur, — u ask — oo. Moreover, we have

kh_)m n(uk, Tr) = 0.
Proof. By Theoremi 5.65)(uy, 7;) satisfies[(3.7a). To show (3]7c), by the local lower

bound and triangle inequality, we obtain:

n(ug, 7) < Chllu — ugll1pw, + Caoscy(w;)
< ClHukHl,p,wr + ClHqu,p,wr + C2||h(f - 7TOf)HO,p,wT
<

[urll1pwr + 1 Dllopw-
whereD depends only orf andu. Here we use the fact thate W, 7(Q), i.e.,
[ullpwmr < C

for some constan® > 0. Also notice that the local lower bound (5.8) implies (4.4gn
the conclusion follows by Theorem #.1 and Theofem 4.3. O

As a second example of a semi-linear equation involving &egsy®f equations, we
consider the stationary incompressible Navier-Stokeblpro:

Example 5.7. Consider

—vAu+ (u-V)u+Vp = f inQcCR?
divu = 0 in€Q, (5.9)
u = 0 onoQ

wherev is a constant viscosity of the fluid afice L?(Q2)¢ is the given force field.
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For this example, we leX =Y = H}(2)? x L3(2) with the graph norm

1
v, alllx = (Vg + llallga)® -
Let

(L[u,pl,[v,q]) = / vVu : Vv — pdivv — ¢gdivudz
Q

(N([w,p)), [v.q]) = /Q<u V)u-v— v

Whend = 2, sinceu € H&(Q)d, by the Sobolev Embedding Theorem, we have
LP(Q) forall 1 < p < co. Hence,(u- V)uis in LI(Q)* for all 1 < ¢ < 2. Similarly,
whend = 3, we notice thatn € L*(Q)3 for all 1 < p < 6. Therefore,(u - V)u is in
Li(Q)* forall 1 < ¢ < 2. Ifwe setZ = L9(Q)? for ¢ < ¢ < 2, the property (S2) oV
is true withd = 2 or 3.

On the other hand, the operatbris given by the Stokes problem. It is well-known
that the continuous inf-sup condition is satisfied hy Given the triangulatiory;, we
denote the finite element spadg := V. x Qr C X, and assume that there holds the
following discrete inf-sup condition for Stokes operafoonV;, x @, :

diVVk qk
lgkllo0 < sup (divvi, ge)
v EVE ||V/<:||1,Q

(5.10)

We refer to [67] 28, 12] for construction of finite element sgmthat satisfyi (5.10). By
this construction, the linear operatbrsatisfies the assumption (S1).

The Petrov-Galerkin approximation to the equation!(5.9Figsd [uy, px] € X} such
that

(F([ug, pr]), [Vi, a]) = 0, V[vi, @] € Xy, (5.11)

where(F ([u, pxl), [V, ax]) = (L{ug, prl, [Vi, ak]) + (N ([u, pil), [vi, ¢]). Based on
Theoreni 511 and the abstract framework in Sedtlon 2, we hevitiowing proposition.

Proposition 5.8. The Petrov-Galerkin problerfb.11) for the stationary Navier-Stokes
equation has a unique solutigny, p;| in a neighborhood ofu, p).

Error indicators for this equation have been developed bgra¢papers, see [13, 168,
10]. For anyr € Ty, we definen([uy, px], 7) as

(e, pel, 7)* = h7ll = vAug + (wV)ue + Vpr, — £[[g

+ ldivag 3,

+ S b [V = i) a2,

ocCOT

and define the oscillation by

oscg(7) = h || f — mof]lo.r
As usual, for any subseét C 7, we denote

n([ug, pr],S) = (an([uk,pk],7)> andosc,(S) = (Zosek(7)2> :

TES

We then have the following posteriorierror estimates.
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Theorem 5.9. Let [u,p] € X be a locally unique solution t6.9), and [uy, px] € X
be the solution to the Petrov-Galerkin problgl1l) Then for any subse® c 7; and
v € X, we have the nonlinear residual estimate

(F(lug, pe]), voal) < (g, piel, SV, dlllx @)
+n(fak, pil, Te \ SV, dlllxr 0

Moreover, we have the followirgyposteriorerror estimates:

1
(lu = wellfo + P = pellse)® < nllue. pi], 7o),
1
(e, pi), 7) S (o —wellf ., + 12— pill5., ) ® + oscr(w:).
Therefore, the adaptive algorithm for the nonlinear equadb.7) is convergent.

Corollary 5.10. Let[u, p] € X be a locally unique solution t5.9), and[uy, px] € Xk
be the solution to the Petrov-Galerkin problélll)at each adaptive step. Then we
have[uy, pi] — [u, p| ask — oco. Moreover, we have

Jirgon([uk,pk],ﬁ) = 0.

Proof. The estimate (3.7a) of the error estimaiQu, i, 7¢) follows by Theoreni 5J9.
Similar to Corollany 5.5, we can easily shdw (3.7c) by thealdower bound and triangle
inequality. The conclusion then follows by Theorem 4.1 aheédreni4.3. O

5.2. A Quasi-Linear Example.

Example 5.11.We now consider a quasi-linear example, the stationary keattion
with convection and nonlinear diffusion:

F(u) = —div(k(u)Vu) +b-Vu— f =0 in{, (5.12)

with homogeneous boundary conditiofy, = 0. We assume for ak € R, x(s) €
C?(R) satisfiess(s) > a > 0 and |« (s)| < v, forl = 0, 1,2, for some constants
a, Yo, 71, andy,. We assume the vector fighde 171°°(Q)? such thatdivb = 0, and
feLrL=Q).

Let X = W, ?(€2) andY = Wy(), with L + 1 = 1. As before, we let\;, C X and
Y, C Y be the piecewise linear continuous finite element spaceateéin7,. The finite
element approximation of the equatién (3.11) reads,

find U € Xk, such that/ m(uk)Vuk -V, + bVugv, — f’de.T = O, Yo € Y.

Q
(5.13)
We have the following properties.

Proposition 5.12. Letu, € W,*(Q2) be a locally unique solution to the equati@I12)
Then the mapping” : X — Y*is of classC*! for 2 < p < oo, and F'(u) is an
isomorphism formX to Y*. Moreover, if the Laplacian operatof : X — Y™ is an
isomorphism, then fafh(z) ||« o Sufficiently small, the Petrov-Galerkin probleg13)
have a unique solution, € X,.

Proof. We refer to[[13] for the proof of the first part of this propasit. The second part
of the conclusion then follows by Theorem (2.6). O
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For thea posteriorierror estimator, we introduce

n(uk, )7 i= B2 — div(k(ur)Vug) +b - Vg, — fI[6,.-
+ ZJC@T hU || [K(uk)vuk : n] ||10)7p70 y

and define the oscillation by

osch (1) == h2||[(I — mo) (—div(k(ug)Vug) + b - Vuy, — f)”g,p,r
+ Y ho [ = m)s(we) Vg -] I5
ocCOT

wheren, andr; are the element-wisg? projections onto thé&, andP; spaces respec-
tively. Also, we denote

n(ug, S) = (Z np(uk,r)> : andoscy(S) = (Z OSCZ(T)) :

TES TES

for any subsef C 7. Again, following the general framework in [68, 169], we olotai
posteriorierror estimates.

Theorem 5.13.Letu € W,*(Q) be alocally unique solution t5.12) Then we have
(F(ur),v) S nluk, S)|vllvies) + n(uk, Te \ S)|[vlly s, )

for any subsef C 7, andv € Y. Furthermore, we have the followirggposteriorierror
estimates:

lu —urllipe S n(uk, Te),
Nk, 7) S lu = vkl pweE) + osc(w:).

Finally, based on the results above, the adaptive algofitinitne quasi-linear station-
ary heat equation (5.12) with nonlinear diffusion is cogeant.

Corollary 5.14. Under the hypothesis of Theorém 5.12p if> 2d then the adaptive
algorithm for the nonlinear equatiofs.12)converges, that is,

lim u =u, and lim n(ug, Tx) = 0.
k—o0

k—o0

Proof. Again, the error estimatof(uy, 7;) satisfies[(3.7a) due to Theorém 5.13. Now
we prove that Assumptiomn (3J7c) holds. We start with the llémaer bound in Theo-
rem[5.138:

nur,7) S 1w — urllipwer) + oscr(wy)
<

|1 pwir) + |wll1pwe) + osce(ws).

Sinceb € W1*>(Q), we have

I =m0)fllopr < [l fllopr
I =m0)b - Vurlopr S IVurlops

~Y
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On the other hand, we have

(1 = 7o) (=div(s(u) Vi) .0
12— ) ()l [V
h/||K”‘7UkH0pT|‘7Uk|

Yohr [ Vuglo p.r | Vg |?
CralVurllop, IVurl3 .-

C
C

/A AN/AN/AN

S Vurllop.r-

In the third step, we used the boundedness’df) and the fact tha v, is constant in
; in the fourth step, we used the assumptior 2d; and in the last step, we used the
priori estimate ofu;, namely,

[ukllip0 < llu = urllipo + lullipe <C

for some constanf’ (cf. Theoreni 2.6). Similarly, by noticing is uniformly bounded
and thea priori error estimate ofi;,, one can easily obtain

D o U = m)s(ue) Var - 0lllf . S 1 Vurllope-

ocCOoT

Therefore, we obtain the stability estimate

Nk, 7) S Nlurllipe: + 11Plopw.

where D depending only on. and f. The conclusion then follows by Theorém4.1 and
Theorem 4.8. O

6. AN ABSTRACT CONTRACTION FRAMEWORK

In this section, we develop a second distinct abstract cgewnee framework to al-
low for establishing contraction under additional minirmasumptions. The framework
generalizes the AFEM contraction arguments used in[[4550635, 31] to general ap-
proximation techniques for abstract nonlinear problente three key ingredients to the
contraction argument are as in the existing linear framksiaguasi-orthogonality, error
indicator domination of the error, and a type of error inthicaeduction.

6.1. Quasi-Orthogonality. One of the main tools for establishing contraction in adap-
tive algorithms is perturbed- @uastorthogonality. LetX; ¢ X, € X andY; C Y; C

Y be triples of Banach spaces, and consider (for the momdityaay and unrelated)

u; € Xq,us € Xo, andu € X. If X also had Hilbert-space structure, so that the native
norm|| - || x on X was induced by an inner produtt||x = (-, )}/, and if orthogonality
were to hold(u — us, us — uy) x = 0, then one would have the Pythagorean Theorem:

lu =l = llu — w2l % + uz — wllx- (6.1)

Quasi-orthogonality is a more general concept whereby tas gp orthogonalityl (611),
and instead works with inequalities involving a (semi-)ndy- || that could be the native
norm|| - ||x, or more generally could be an energy norm or semi-normaaatily suited
to the problem at hand. From the triangle inequality in thed@4 spac& together with
the discrete Holder inequality, one always has the follgmrequality:

Alu = [l < flu = uallX + [luz — %, (6.2)
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with A\ = 1/2. Quasi-orthogonality then refers to establishing the naiffecult inequal-
ity in the other direction to supplement (6.2):

Al —wi|[% = llu — u2ll% + [lus — wf%, (6.3)
for someA > 1, which is convenient to write in the form

lu = uall% < Aflu— % = [luz — w3 (6.4)

We wish now to develop conditions for establishing (6.4). Wikésee shortly that it will
be critical for us to be able to establish (6.4) with constaalbse to one; this will only be
possible ifu — uy anduy, — uy are nearly “orthogonal” in some generalized sense, which
implies that we must work with a norm related to the Petrove@an (PG) “projection”
process, and may require that we work with a norm other thaméative nornj| - || .

To this end, consider a continuous bilinear fdrfn -) on X x Y

b: X xY — R, b(u,v) < M||ul||x||v|ly, Vue X,vey. (6.5)
Assumeb satisfieanf-supconditions onX andY: There exists}, > 0 such that
inf sup  b(u,v) = inf sup  b(u,v) = Fy > 0. (6.6)

weX, [lullx=1 yey,|jv|y =1 veY|olly =1 ye X |lu|| x =1
In the subspace¥, andY;, k = 1,2, we assume satisfies a discretef-supcondition:
There exists a constapt > 0 such that

inf sup  b(u,v) = inf sup  b(u,v) = p >0. (6.7)

weXp vl x =1 vy, |lv)ly =1 veYk[vlly =1 ue Xy, [|ul x =1

Given now f € Y*, we assume thai € X is the solution to the operator equation
involving b and f, and that:.; € X; anduy, € X, are corresponding PG approximations:

Findu € X such thab(u,v) = f(v), VveY. (6.8)
Find u; € X4 such tha’b(ul, Ul) = f(’Ul), YVoueY,CcY,CY. (69)
Findu, € X, such thab(us, vo) = f(v2), Yuy € Yy C Y. (6.10)

With this setup, we can establish the quasi-orthogonatiéguality in the norm| - || x
for PG approximations defined by any continuous bilineamfeatisfyinginf-supcondi-
tions.

Theorem 6.1. Assume the bilinear forh: X x Y — R satisfies the continuitf6.5)
andinf-sup conditions(6.8) and (6.7). Assume that, u;, andu, are defined by{6.8),
(6.9), and (6.10) respectively. Then quasi-orthogonalf64) holds with

2
A= (1 + %) > 1. (6.11)
B

Proof. With no inner-product we have only the following type of gealzed “orthogo-
nality” to exploit:

b(u — ug,v9) = 0, Yue €Yy CY, (6.12)
b(u—wuy,v) = 0, Vo, €Y, CY, CY, (6.13)
which are obtained by subtractirig (6.9) ahd (6.10) fromj))(6T8is leads us to:
b(u — uy,vy) = —b(ug — ug, v3) = b(ug — uy, vs), Yuy € Y5, (6.14)
Combining [6.1#) with thénf-supcondition [6.7) and continuity (6.5) gives the estimate
b(ug — uq, vo) _ b(u — uq, vs)

Bil|ue—ur||x < sup sup < M||lu—uq||x. (6.15)

0tnmey,  |lvally 0tney,  ||v2lly
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Starting with the triangle inequality

Ju—uaflx < lu—wlx+ [lus — uilx, (6.16)
we add twice[(6.15) td (6.16) to obtain
lu — wal|x + fluz — wr ]| x < Afju—uax, (6.17)

with A = 1+ 2M /B, > 1. If we square both sides we obtain
lu = uall% + 2lluz — willxllu = usllx + [luz = w [} < A*ju—wlk.  (6.18)
The second term on the left is non-negative; we drop it to () with A = A2 O

It is clear from the proof of Theorem 6.1 that to establ[sH&vith constantA > 1
close one, one must establish a versior_of| (6.5) that, whenated to particular argu-
ments from subspaces, will hold with constant> 0 close to zero. This then resembles
some type of strengthened Cauchy inequality. Note th&t# Y, then the bilinear form
b(-, -) defines an energy (semi-)norm through:

b: X x X — R, llw|l? = b(w, w), Yw € X. (6.19)
It will be more fruitful to consider quasi-orthogonality thirespect to this semi-norm:
llu = uall? < Allu — wn* = fluz — wal]*. (6.20)

To establish[(6.20), it will be useful if strengthened Cauitequalities hold:
b(u — ur,v1) < yllu—wiflflodll,  bvr,w = ur) < llw = wil[fJoa]l, (6.21)
Vo, € Xy, ~E€ [0,1)
In this case, one immediately has the following withmfitsupconditions:
Theorem 6.2.Let X; C X, C X be atriple of Banach spaces, andleE X, u; € Xj,
andus € X, be such that the bilinear forh: X x X — R satisfies the strengthened

Cauchy inequalityf6.21) for somey € [0, 1). Then quasi-orthogonalit§6.20) holds in
the energy semi-norifi- ||? = b(-, -) with A = 1/(1 — ) > 1.

Proof. We begin with the identity
lu—will® = lu—uol® + fluz — wi|I?
+b(u — ug, ug — uy) + blug — ug, u — uy). (6.22)
Using (6.21) in[(6.22) and Cauchy-Schwarz inequality gives
lu —will® = llu—woll® + flus — will® = yllu — ua|l* = vlluz — w2
= (1=9) (Il = w2l® + fluz = wi|I?) . (6.23)
which gives[(6.2D) after multiplicationhy = 1/(1 —v) > 1. O
While Theoren{ 6.2 gives quasi-orthogonality in the energym|| - || without inf-
supconditions, it is important to point out that establishihg Cauchy inequality in the
energy norm usually goes through the native ndrnj x, and then relating the Cauchy

inequalities in the two norms requires additional struesuch asnf-supconditions. To
make this more clear, let us assume that= Y andb(-,-) : X — X is coercive for

m = ﬁo = 51 >0:
mllw|% < Jwll? = blw, w),  Ywe X. (6.24)

To allow for a weaker condition than coercivity (6124), itiseful have a (Gelfand) triple
of Banach space¥ C Z C X*, with continuous embedding df into the intermediate
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spaceZ. A Garding inequality withmm > 0 andCs > 0 for the formb(-,-) is then a
possibility:
mllw|% < Jwll* + Collwlz,  Yw e X. (6.25a)

If C; = 0, then inequality((6.25a) reduces o (6.24). To exploit%8)2we need a lifting
inequality betweerX andZ whenu, € X, andu; € X; are approximations af € X:

lu—us|lz < Croflu—usllx,  [lus — uillz < Croollus — url|x, (6.25b)

where it is assumed thag = co for fixedc > 0, and thatr can be made arbitrarily small
for sufficiently large subspacés, C X, C X, where typicallyu; € X; andu, € X, are
PG approximations ta € X. Inequalities[(6.25b) can be established using the “Nésch
trick” with certain regularity assumptions; cf. [45,/35]h& usefulness of (6.25) is made
clear by the following Lemmia_6l.3, due essentially to Schaf.|

Lemma 6.3. Assume the bilinear form : X x X — R satisfies(6.25a6.25D)
Then(©.24) holds withw = u — uy andw = uy, — u; for o sufficiently small, with
constantn = m — CC%0? > 0.

Proof. We observe that
mllu—us|% < Jlu—us|* + Callu—uslly < flu—us]® + CoCio®||u—us|%, (6.26)

which implies the result fos > 0 sufficiently small. We note thdt < m < m, with
m = m when coercivity holds(s; = 0). The same argument fa, — u; gives the same
result with slightly different constants appearing in tihguanent. O

6.2. Global Quasi-Orthogonality for Semilinear Problems. We now consider a non-
linear problem for which we can establish a strengthenectiBainequality, and then
subsequently quasi-orthogonality, globallyXin We use a Lifting-type argument requir-
ing the PG approximation space be sufficiently good (lar§ejch an approach is used
in [45] for nonsymmetric linear problems, and in [35] 31] é@milinear problems.

Let X; € X, C X be atriple of Banach spaces, and consilerX — X* such that

F(u)=Lu+ N(u), LeL(X,X*), N:X— X" (6.27)
The operatorl induces a bilinear fornd : X x X — R and subsequently an energy
(semi-) norm|| - || : X — R, through the relations
b(u,v) = (Lu,v), Yu,v € X, Nl = b(u, u)?,  Vu € X. (6.28)
We have the equations fare X and its PG approximations € X; andu; € X5:
b(u,v) + (N(u),v) = 0, YveX, (6.29)
b(ui,v1) + (N(uq),v1) = 0, Vo € X3 C XeCX, (6.30)
b(ug,v2) + (N(ug),v2) = 0, Vv, € Xy C X. (6.31)
We will need the following Lipschitz property (globally i) for term N (-):
(N(u) — N(uz),v9) < Kl||lu —us||z||v2]lx, Ve € Xo, (6.32)

wherew is the exact solution and, is the PG approximation itX,, and whereZ is
part of the tripleX ¢ Z c X* as in Sectiof 6]1. By splitting’ into a linear part
satisfying continuity and Garding assumptions, and a nedes N' satisfying only the
Lipschitz assumption, we will be able to establish both @guoequalities and subse-
quently quasi-orthogonality, globally i, for a large class of nonlinear problems.
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Theorem 6.4. Let u, u;, andu, satisfy(6.29)+6.31) and let the Lipschitf6.32) and
Lifting (6.25B)conditions hold. Let the energy norm || induced by (-, -) as in (6.28)
satisfy the @rding inequality(©.25&) Then foro sufficiently smallp(-, -) satisfies the
strengthened Cauchy inequalif§.21) with v = KCro/(m — CqC%0?) € (0,1), and
the quasi-orthogonality inequalii§.20) holds with

1 1 -

l—y 1=KCpo/(m—CgC%0?)

For sufficiently smalb, v+ can be made arbitrarily small and can be made arbitrarily
close to one.

Proof. Subtracting[(6.29) and (6.B1) with= vy = us — uy, we have

0(u — ug,up —ur)| = | = (b(u) — b(uz), ug — uy)|

(6.33)

< Kl —usllzllue — ua[x
< xllu = wel[x flus — wilx,
after using[(6.32) and (6.2bb), whetg = KCp o € (0,1) for o sufficiently small.
Sinced(-, -) satisfies the Garding inequalify (6.25a), then by Lerhmhwge3have
b(u = uz,uz —wr)| < yllu = uaflfluz — i,

wherey = yx/m = KCro/(m — CoC?0?) € (0,1) for o sufficiently small. By

Theoren 6.2, we havé (6.20) holds withas in [6.3B), which can be made arbitrarily

close to one for > 0 sufficiently small. The conclusion then follows by Theorier#.6
O

6.3. Local Quasi-Orthogonality for General Nonlinear Problems Consider now gen-
eral operatorg’ : X — X*, whereX; C X; C X is atriple of Banach spaces. We have
equations for: € X and its PG approximations i, € X; andu, € X5:

(F(u),v) = 0, YvelX, (6.34)
<F(U1), U1> = 0, YvyeX;CcX,CX, (635)
<F(U2), U2> = 0, Vue Xy,CX. (636)

Not having access to any additional structure-inio exploit as in the semilinear case,
we will need to work locally in ary-ball aroundu € X for somee, > 0: We assume

[u =[x <€,  |lu—uollx <e. (6.37)
We assumé” is Lipschitz in the ball: There exists a Lipschitz constant 0 such that
| F'(u) — F'(w)|l x,x < Llju —w|lx, Ywe Xst. |lu—w|x <&.  (6.38)
Define now the bilinear form
b: X x X =R, bw,v)=(F(uw,v). (6.39)
We then have the Cauchy inequality locally in theball, leading to quasi-orthogonality.

Theorem 6.5. Let u, uy, and ug satisfy(6.34)+6.36) and let the Locality(6.37) and
Lipschitz(6.38)conditions hold, with(-, -) defined as irf6.39)
(1) Ifb(-, ) satisfies coercivitfe.24) thenb(-, -) satisfies the Cauchy inequali§.21)
with v = ¢ L/(2m) € (0,1), and quasi-orthogonalit{6.20) holds fore, > 0
sufficiently small with

1
> 1. (6.40)

A=1T eL/(2m) ~



CONVERGENCE OF ADAPTIVE METHODS FOR NONLINEAR PDE 31

(2) If b(-, -) satisfies @rding (6.25&)and the Lifting(€.25b)inequalities, therb(-, -)
satisfies the Cauchy inequali@.21)with v = ¢, L/(2[m — CcC%0?]) € (0, 1),
and quasi-orthogonalit{6.20)holds fore, > 0 ando > 0 sufficiently small with

1
A= > 1. 6.41
1 —eL/(2[m — CqC%02)) (6-41)

In either case, the constantcan be made arbitrarily small, and the constantan
be made arbitrarily close to one, for sufficiently smglando.

Proof. Subtracting[(6.34) and (6.B6) with= vy = uy — u; € X5 we have
(F(u) — F(ug),us —up) = 0. (6.42)
We also have the mean-value formula:

Flu+w)=F(u)+ F'(u)w + /0 [F'(u+ sw) — F'(u)]w ds. (6.43)

Using [6.43) withw = u, — u together with[(6.42) gives:
|b(u — ug,us —uy)| = | — blug —u,uy — uq)|
= | = ({F"(W)(u2 — u),us — w1}
| = (F(u+ [uz — u]) = F(u),uz — uy)

+</0 [F'(u+ s[ug — u]) — F'(u)] (ug — u) ds, ug — uy)]

N

(/01 IF'([1 = s]u+ sug) — F'(u)| cex.x0) ds)

flu = sl x[lug = uallx-

Using now [6.3B) and (6.37) we can establish the Cauchy mlay©.21) as follows:

1
bt — s — )| < (Lr\u—u2r\X / sds) ot = wall ol — sl
0

< yxllu = uel xl|ug — uil|x,

whereyx = ¢yL/2 € (0, 1) for ¢, sufficiently small.

If b(-,-) satisfies the coercivity inequality (6124) foer > 0, then we have established
the Cauchy inequality (6.21), with = vx/m = e L/(2m) € (0, 1) for ¢, sufficiently
small. By Theoreni 612, we havie (6120) holds withas in [6.40), which can be made
arbitrarily close to one fot, > 0 sufficiently small.

Instead of coercivity, ifo(-,-) satisfies the Gardind (6.25a) and lifting_(6.25b) in-
equalities, then by Lemmnia 6.3 we have established the Canelqyality [6.211), with
v =vx/(m — CqC%c?) = ¢ L/[2(m — CaC%0?)] € (0, 1) for ¢, sufficiently small. By
Theoreni 6.2, we havé (6.120) holds withas in [6.41l), which can be made arbitrarily
close to one for, > 0 ando > 0 sufficiently small. OJ

6.4. Contraction. We now establish a contraction result for approximatiommegues
for nonlinear equations on Banach spaces, which is an alistiaof the contraction
arguments in[45, 16, 50, 35,131]. L&, C X, C X be a triple of Banach spaces, let
u € X, and letu; € X; anduy € X, be approximations ta. We are interested in the
guality of the approximations; as such, the following thdégtance measures between
the three solutions are of fundamental importance:

e = ||u — ug|x, er = |lu—u|x, By = ||us — u||x, (6.44)
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where|| - || x is a norm onX; this could be either the native Banach norm, or more
generally a norm associated with a problem-specific bilif@an. We are interested in
approximation algorithms which involve abstract “errodicator” functionals that will
be taken later to be practical implementablgosteriorierror indicators commonly used
in AFEM algorithms:

m: Xl — R, 2 : X2 — R. (645)
When written without arguments, these functionals arertdkebe evaluated at; and
uy respectively, and represent approximations to the error:

m =m(ur) = ey, N2 = Ma(u2) = es. (6.46)

In order to build a contraction argument involving the estawe will need three funda-
mental assumptions relating the five quantities above:

Assumption 6.6(Quasi-Orthogonality) There exists\ > 1 such that

2 < Ae? — E2. (6.47)
Assumption 6.7(Upper-Bound) There exist€’; > 0 such that
er <Cmi, k=1,2. (6.48)
Assumption 6.8(Indicator Reduction) There existg’; > 0 andw € (0, 1) such that
m < CoE} + (1 —w)ns. (6.49)

Using these three assumptions, we have the following aftstoatraction result.

Theorem 6.9(Abstract Contraction)Let X; C X, C X be a triple of Banach spaces,
letu € X, letu; € X; anduy, € X, be approximations ta: with error defined as
in (6.44) and letr); andn, be error indicators as irf6.48) Let the Assumptions 66, 6.7,
and[6.8 hold. Letd € (0, 1) be arbitrary, and assume the constanin Assumption 616
satisfies the bound:

Bw
1<A<1 . 6.50
Then there exists > 0 anda € (0, 1) such that:
e5 +ms < o (ef + 7)., (6.51)
where~ can be taken to be anything in the non-empty interval
(A —1)C, (1 AG
—— <7< —, — 6.52
G < Smind gty (6.52)
and wheren is subsequently given by = max{a?, a2} € (0, 1), with
0<a§=A—%<1, 0<a2=1-[1-fw<1. (6.53)
1
Proof. Beginning with Assumptioh 616, we have for any> 0,
ey + 15 < Aej — B} + 3. (6.54)
Using now Assumption 618, we have
€5 +m; < Aef — EY + 7 [CoEF + (1 —w)ni] . (6.55)

Assume now thalt < v < 1/Cs. In this case, the negative term involviag dominates
the positive term, which implies:

e5 +m; < Aef + (1 —w)r. (6.56)
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We now split the negative contribution involvimg into two parts, using any € (0, 1):

e5 + 15 < Aef — Bwyn; + (1 = [1 = Blw)ni. (6.57)
We now finally invoke Assumptidn 6.7 on the first term involyif:
Bw
€5+ 71 < ( - 717 el + (1 = [1 = Blw)ni = aiet + oz, (6.58)

wherea? anda3 are as in[(6.53). Note € (0, 1) from Assumptio 6J8, and also for any
g€ (0,1)itholds1 — g € (0,1) and[1 — Blw € (0, 1). Therefore, for any € (0,1)
we have thaty? satisfies the second inequality [n(6.53). It remains tordetee y > 0
so that) < a? < 1, with o2 as given in[(6.53), leading to
(A =1 ACY

5 << B
We have already imposed> 0 andy < 1/Cs. RecallingA > 1, to ensurex? € (0,1)
we must havey in the the intervall(6.32). I\ = 1, this interval is clearly non-empty
foranyC; > 0,Cy > 0, 8 € (0,1), andw € (0,1). If A > 1, since the term involving
A in the upper-bound always dominates the lower bound, torertbe interval fory is
non-empty we must restrict so that(A — 1)C,/(fw) < 1/C,. This holds ifA lies
in the interval [6.50). We now simply note that this interf@at A is non-empty for
anyC; > 0,Cy > 0, 8 € (0,1), andw € (0,1). To finish the proof, we now take
a? = max{a?, a3} € (0,1). O

We now establish the main contraction and convergencetngsudre after.

Theorem 6.10(Abstract Convergence)let {X;}°,, Xy C Xp1 C X, VE > 0,

be a nested sequence of Banach spaces.uLet X, and let{u;};°, be a sequence
of approximations ta; from X. Let the Assumptioris 6.6, 6.7, and]6.8 hold with the
same constanta, C;, C,, andw, for any successive pair of approximationg and
ug+1 and their corresponding error indicatorg, andn,,. Leta, 3, v, andA be as in
Theoreni 619. Then the sequedeg}?, contracts toward:, € X according to:

(6.59)

Cist T Vi1 < &2 (€5 +7108) (6.60)
and therefore converges toe X at the following rate:
et + i < Ca®, (6.61)

for some constar® = C(uy,n1, A, C1, Cy, o, B, 7, w).
Proof. Both results follow immediately from Theordm 5.9. O

7. CONVERGENCEBASED ONCONTRACTION AND SOME EXAMPLES

Here we use the abstract contraction result (Thedrein 6t8bleshed in Sectiohl 6 to
prove a contraction result (Theorém]7.6 below) for the adegtigorithm described in
Sectiorl 8. Theorein 6.9 was based on three core assumptioasi-Qthogonality, Indi-
cator domination of the error, and Indicator Reduction. Wevged how to establish the
first of these, namely the Quasi-Orthogonality Assumpgtidh fr PG approximations
for two general classes of nonlinear problems in Sedtioh He second assumption,
namely the Indicator Domination Error Assumptionl6.7, iseandard result for residual-
type indicators; our adaptive algorithm produces indicatath this property, cf[(3.7b).
We focus on establishing the third assumption, namely tle#tor Reduction Assump-
tion[6.8, in Sectiof_7]1 below, and then prove the main cetitia result in Theorein 7.6
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for the adaptive algorithni.(3.4), based on Theokem 6.9. \We Hpply this contraction
result to several nonlinear PDE examples in Secfions 742—7.

7.1. Contraction of AFEM. What remains in order to use the abstract contraction re-
sult in Theoreni 619 for AFEM is the third assumption, namélky Indicator Reduction
Assumptior 6.8. Followingd [16, 50], we will first reduce ddtahing Assumption 618
to a simpledocal Lipschitzassumption on the indicator, namely Assumption 7.1 below.
Establishing Assumptidn 6.8 will then reduce to an assusnpiin the marking strategy
in the AFEM algorithm; we satisfy this assumption by using sitandard Dorfler strat-
egy (3.9). Admissible discrete functions Assumptior_ 7.l refer to discrete functions
which are knowra priori to satisfy specific properties of discrete PG approximation
such as discreta priori bounds. We will later show how to establish Assumption 7r1 fo
several nonlinear problems in Sect{dn 5 using continuodsdistretea priori bounds.

To simplify the presentation below, we will denote

er = lu—wurll,  Ex = llur — wniall;

Mo = n(we, Te)y  me(My) = n(uk, Mi),  n0(D) = no(D, To),
whereD represents the set of problem coefficients and nonlineaxifg also denote
Vi := Vp(Tx) for simplicity.

Assumption 7.1(Local Lipschitz) Let7 be a conforming partition. For alr € 7 and
for any pair of admissible discrete functionsw € X (7), it holds that

|77(U7 T) - 77(“% T)‘ < A1n<D7 T)HU - w||172,w7—7 (71)
whereA; > 0 depends only on the shape-regularity/f and wheren(D, 7) depends
only on appropriate norm behavior of the equation coeffig@ver the local one-ring of
elements surrounding, and on the Lipschitz properties onof the nonlinearity acting

on admissible functions iX (7). The parameter(D, ) is assumed to be monotone
non-increasing with mesh refinement.

Based on Assumptidn 7.1, we have the following indicatouotion result (see also [35,
31]), which extends the linear case appearing in[16, 5djeaonlinear case. The proof
is essentially identical to that of [16, Corollary 4.4], ept that it allows for nonlinearity
in Assumptiori 7.11; we include it for completeness. The madficdlty in the nonlinear
case will be establishing Assumptibn]7.1 and simultangosesisfying the assumption
on the parametex appearing in Lemmia_7.2.

Lemma 7.2(Nonlinear Indicator Reduction) et 7 be a partition, and let the param-
etersd € (0,1 and?¢ > 1 be given. LetM = MARK{n(v,7)},er,T,0), and
let 7. = REFINE(T, M, ). If Ay = (d + 1)A?/¢ with A; from Assumptiof 711 and
A =1-2"®d > q, then for all admissible € X(T), v. € X(T.), and anys > 0, it
holds that

(v, 7o) < (L4 0)[* (v, T) = M (v, M)] + (1 + 67 A (D, To) v — v

Proof. The proof follows that in[[16, Corollary 4.4], with minor adjtment to allow the
Lipschitz parameter in Assumptién 7.1 to depend on poirsieviiehavior of admissible
functions in anL® interval; we outline the argument here for completenessingJs
Assumption 7.1 withy andw, taken to be inX(7.), gives

N(ve, 7)) < N0, 7) + An(D, 1) ||vs — |12, V7 € To
After squaring both sides and applying Young's inequalitshvarbitraryd > 0 we have
P(ve, ) < (L4 0P (0, 7) + (1+ 0 )AAD, m)lfo. = v}, Vr €T
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We now sum over the elements € 7., using the fact that for shape regular partitions
there is a small finite number of elements in the overlaps efgatchesu,, that are
multiply represented in the sum. This gives

0 (ve, ) < (1+0)0* (v, To) + (1407 H)AI* (D, Tl — vl

where we have used equivalence between the energy norm emdiim on//* (based
on either coercivity or a Garding inequality together wiifting; cf. Lemmal6.3), and
then absorbed both the norm equivalence constant and thes dwer-representation of
elements in the sum into the new constAnt

Now take admissible € X (7); a short argument from the proof of Corollary 4.4
in [16] gives

(v, 7o) <00, T\ M)+ 27D (0, M) = (v, T) = M (v, M), (7.2)
Finally, monotonicityn(D, 7..) < n(D, 7y), combined with[(7.R) yields the result. [

Remark 7.3. The difficulty in the nonlinear case will be establishinguagtiori 7.1 and
simultaneously satisfying the assumption on the paramaepearing in Lemma7.2. In
the case of problems for which we can control the nonlingarsinga priori > control
of solutions and discrete approximations, we will be ablestablish Assumptidn 7.1;
several such examples of increasing difficulty are analyne8ectiong 7J2-7.4. The
assumption ork appearing in Lemma_7.2 is essentially the assumption tleatasidual
indicator contains only terms that decay as withfor somex > 0.

We will now make use of the Dorfler marking strate@y (3.9).isTsimple marking
strategy will ensure that the abstract indicator reducfiesumptiori 6.8 holds.

Lemma 7.4. Let the conditions for Lemma 7.2 hold. Let the Dorfler markimgp-
erty (3.9) hold for some € (0, 1], and restricty > 0 in Lemmd7.R so that

G2
0<d< T (7.3)
Then Indicator Reduction Assumptlonl6.8 holds wWith= (1 + §—')A,n*(D, 7,) and
w=1-(14+68)(1-x0% € (0,1). (7.4)

Proof. By Lemmd_7.2 we have for any> 0:
(v, To) < (L4 0) [ (v, T) = M (0, M)] + (1 + 67 A (D, To) o — o]
The Dorfler marking property (3.9) gives
(s, 7o) < (L4 0)(1 = A0%)* (v, T) + (L + 6~ ) A (D, To) o — |,

which we will write as
771%+1 < C2El§ +(1 - w)ni,

with
Ne+1 = U(U*a 7;>7 M = U(Ua T>7 By, = H‘U* - U|H7 (75)
Cy=(1+6HA0*(D,T), (1—w) = (1+)(1 — I?). (7.6)
Toensure that =1 — (1+d)(1 — A\6?) € (0, 1), we restricty > 0 so that
0<(1+0)(1—M?) <1, (7.7)
or so that

1—[1— N7 A\§?
[TV B VRl B V2N (7.8)
Since we must also také > 0, we have then the range féris as in [(Z.8) to ensure
Assumptiod 6.8 witho = 1 — (1 +6)(1 — A\9?) € (0,1). O

—-1<éd<
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Remark 7.5. By first establishing Theorelm 6.9 based only on three singsaraptions
relating the error and error indicator, the main contractiargument in Theorein 6.9
is general, applies to nonlinear problems, and does notluesdetails of the adaptive
algorithm that produces the approximations or the errorigadors. The local Lipschitz
and marking assumptions we use above to establish the todicuction assumption
bring in the details of the particular adaptive algorithm cathe problem only at the
last moment, and helps clarify the impact of the various paters on the contraction
argument and rate.

The supporting results we need are now in place; we can n@blest the second of
the two main convergence results of the paper, this one coingecontraction.

Theorem 7.6 (Contraction) Let Assumption 616 (Quasi-Orthogonality) and Assump-
tion[6.7 (Upper-Bound) hold, and assume that the conditimfnsemmad 714 hold. Let
S € (0,1) be arbitrary, and assume the constanin Assumption 616 satisfies:
Bw
1<A<14 22, 7.9
t oG (7.9)

where the constartt; is as in Assumption 6.7, ard, andw are as in LemmBa714. Then
there existsy > 0 anda € (0, 1) such that:

o — w2 + 1 < 02 (= well® + ) | (7.10)
where~y can be taken to be anything in the non-empty interval
m_ﬁ%<7<min{é,%}, (7.11)
and wherex is subsequently given by
0 < o® =max{af, a3} < 1, (7.12)
with
0<a%:A—%Mj<1, 0<aj=1-[1-Bw<l. (7.13)

Proof. By Lemma Z.%#, Assumptidn 7.1 and Propefty(3.9) togethehjirti@t Assump-
tion[6.8 holds. The result then follows by Theorem 6.9. O

We now apply the Contraction Theorém]7.6 to establish cotitna of the adaptive
algorithm [3.4) for specific nonlinear PDE examples. Notd the more general weak*-
convergence framework is also applicable to each of theampbes, as we discussed
in Section[b; what we gain here is fixed-rate contraction eféhror at each iteration
of AFEM, and subsequently the possibility of establishipgmality of AFEM. In each
of the following examples, we use the standard residual éndicator, denoted by).
For the marking strategy in the AFEM algorithm, we use thadaad Dorfler marking

strategy((3.9).

7.2. A Semi-Linear Example. Our first example is a special case of equation| (5.4).

Example 7.7.LetQ) C R? be a convex polygonal domain, aice L?(2). Consider the
weak form formulation of the semi-linear equati@)

Findu € Hy(Q), s.t.(Vu, Vo) + (u?,0) = (f,v), Yv e Hy(Q). (7.14)
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Here, the solution and test spaces are the Hilbert sfaee Y := H}(Q). Let X, =

Y, C H}(Q) be the continuous piecewise linear finite element spacesedebn7;,

which we assume to be an exact partitiortbfFor convenience, we denai¢u, v) :=
(Vu, Vo) andN (u) = »3. Itis not difficult to see that

(N(u) = N(v),u—v) > 0, Yu,v€ Hy(5), (7.15)

||N(u) — N(U)HC(Hl(Q)’Hfl(Q)) < ||u — UHQ’Q, Vu, RS LOO(Q) (716)

~

The Galerkin approximation of the equatién (7.7) then reads
Find Uk € Xk, such thatz(uk, Uk) + (N(uk), Uk) = (f, Uk), Y, € Xp. (717)

Existence and uniqueness of solutions to ([7.14) and|(7dliéyf by standard variational
or fixed-point arguments, cf. [64, 38]. To establish batbriori anda posteriorierror es-
timates, we will need.> control of the continuous solutianand as well as the discrete
solutionsuy,.

Lemma 7.8 (ContinuousA Priori Estimates) Let u € H}(Q) be the exact solution
to (Z.12) Thenu € L>=(Q).

Proof. We split the solution: = u! + u™, whereu! is the solution to the linear equation
(Vu',0) = (f,v), WY e Hy(Q).

Since(2 is convex, elliptic regularity theory implieg € H?(2) N H}(2), henceu! €
L>(Q). It remains to show that” € L>°. Using arguments similar to [3[7, 20], define

a = arg max{(c+ supu')? < 0} , p[=arg min{(c+ ugg u')® > 0} . (7.18)

c e c
Let¢ = (u" — B)F := max{u" — 3,0} and¢ = (u" — @)~ := min{u" — o, 0}. Then
obviously¢, ¢ € Hj(Q2). Hence, forp = ¢ or ¢ = ¢ we have
(Vu", Vo) = —((u" +u')*, ¢) <0.
This impliesO < ||V¢|| < 0,s0¢ = 0. Thusa < u™ < g almost everywhere ife. [

In order to establish priori L> bounds foru,, we require the mesh satisfy the regu-
larity condition

0= [ Vovo <o i (7.19)
Q

See for example [20] for a discussion of this condition. Wentlhave the following
priori L*>° estimate for the discrete solutian.

Lemma 7.9(DiscreteA Priori Estimates) Letu, € X, C H(}(Q2) be the exact solution
to (Z.I7) Assume the triangulatiofy, of 2 satisfie7.19) Thenu, € L>(1).

Proof. See [[37] 20]. O

Lemmd 7.8 and Lemnia 7.9 providepriori L> bounds for: andu,. That is, ifu and
uy, are exact solutions t6 (7.14) and (7.17), then they musdfgati

u_(x) < u(z),up(r) < up(x), foralmost everyr € ),

whereu_,u, € L* are fixeda priori bounds. In other words, we know that any so-
lutions v andu;, to (7.14) and[(7.17) can be found i_,«.] N H} (), so that we do
not have to look in the larger spadé} () for v andu,. We now have the tools in
place for establishing the following quasi-optinelriori error estimate for Galerkin
approximations.
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Proposition 7.10(Quasi-OptimalA Priori Error Estimates)Let« andw; be exact solu-
tions to(Z.14)and (Z.17) respectively. If both, u, € L>(Q), then we have

[u—urha S min ju—xxo
Proof. Note that the errot — u;, satisfies that
b(u — ug, vg) + (N(u) — N(ug),vp) =0, Vo, € Xg.
Therefore, we have

lu — Ukﬁﬂ = a(u — ug, u — uy)

a(u — ug, u — vg) + alu — ug, Vg — ug)

N

lu — wel1,0lu — vilr,0 = (N(u) = N(uk), v — ug)

lu — urlialu — vilio — (W —ul,u —ug) + (u® — ud,u— o)

N |U - Uk|1Q|U - Uk|1,Q-
Here, we noted thatV (u) — N(ux), u — ug) > 0 by (Z.15) and
(N(u) = N(u),u =) 5 sup(fufz) + (1 - 0)ur(2))?[lu — wplu — vg|
< |U - Uk\19|u - Uk‘l,ﬂa

Y

by a priori L>° bounds foru and u; and the Poincaré inequality. Singg € X is
arbitrary, we haveu — uy|1.o S miny, ex, |v — Xi|1,0- O

Remark 7.11. We note a major difference between Proposition]7.10 andd¢&itipn5.4
is that Propositio 7.710 does not require the initial mesbéecsufficiently small; however
we need tha priori L>° bound foru;, which was built in Lemmia_7.9.

Using the results in Sectidn 6.2, we can now easily establistsi-orthogonality.

Lemma 7.12(Quasi-Orthogonality)Let « be the solution to equatiofY.14) and .,
andu;, be the solutions t¢7.17)on 7., and 7, respectively. Lef;, C X, and the
triangulations7;, satisfy the conditiorfZ.19) Assume that there existaa,; > 0 with
or+1 — 0 @ask — oo such that

[u = wkllon < okl Vu = Vg |log, (7.20)
Then there exists a constatit > 0, such that for sufficiently smaill, we have
lu — Uk+1ﬁ,9 < Apgr|u — Ukﬁﬂ — [up g1 — uk‘%ﬂa
whereAy.1 = (1 — C*041 K) ™ > 0with K = 3sup, 1 X3 ]|o0-

Proof. From the definitiona(-, -) is a symmetric coercive bilinear form. The energy
norm [[v]| := a(v,v) = |v|3q is equivalent to thed '-norm in Hj(2). Now we verify
the Lipschitz continuity[(6.32) folN (u) = 3. It follows by thea priori error estimates
Lemmd 7.8 and Lemmia 7.9 efandu; :

[(N(u) = N(ugs), venn)| < sup }||3X2||oo||u—uk+1||o79||vk+1||o,n
XE|U—, Ut

< Klju — uglloollvis 1,0,

whereK = sup, ¢, .. 13x*lls < co. The conclusion follows by Theorem 6.4. [
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Now that the Quasi-Orthogonality Assumptlonl6.6 is in pJaeeall that the residual-
baseda posteriorierror indicator for equatio (7.14) is given by (5.6):

nk(ukv 7_)2 = h?’””i - f||g,T + Z hO’ ||[vuk ' nO’]Hé,U?

oCOoT

with 7, (v, S) == (3, cs i (v, r))% for any subseS C 7. The second ingredient of the
contraction argument, namely the Upper Bound Assumpti@ni§.provided by Theo-
rem[5.5. To apply the contraction Theoreml 7.6, we only neacktidy the Local Lips-
chitz Assumption_7]1, which implies the Indicator Reduetleemma 7.R. To this end,
we introduce the PDE-related indicator:

(D7) = k2 sup |13x%% -

X€[u—,u4]

For any subse$ C 7, letn(D,S) := max,cs{n(D, 7)}. By the definition, it is obvious
thatn(D, 7") is monotone decreasing, i.e.,

n(D,T.) <n(D,T) (7.21)
for any refinement, of 7.

Lemma 7.13(Local Lipschitz) Let7 be a conforming partition. For alt € 7 and for
any pair of discrete functions, w € [u_,u;] N X (7), it holds that

|77('U7 7_) - 77(“% T)| < ‘/_\177(D7 T)|U - w|1,wrv (722)

whereA; > 0 depends only on the shape-regularity7gf and the maximal values that
u® can obtain on the.>-interval [u_, u].

Proof. By the definition ofy, we have
1 1
n(,7) S 0w, 7)+ hello’ = o + 3 > hélne - V(v = w)lloo

ocCOT

Notice that

X€[u—,u4]

lv? = w’llo, < ( sup H3x2||oo,7> lo —wlor-
On the other hand, we also have
e - [V (0 = )]l < hr * [0 = Vi,
Therefore ,we get the desired estimaterfor OJ
Combining all of the above we obtain a contraction resultfier AFEM algorithm:

Theorem 7.14(Contraction and Convergencd)et {7, Vi, ux } x>0 be the sequence of
finite element meshes, spaces, and solutions, respecivetiuced by AFEM,/) with
marking parametef € (0, 1] and bisection level > 1. Leth, be sufficiently fine so that
Lemmd 7. IR holds fofT7x, Vi, ux }x>0- Then, there exist constan{s> 0 anda € (0, 1),
depending only oA, ¢, and the shape-regularity of the initial triangulatigi, such that

lu — Uk+1|%,ﬂ + 777/3+1 <o (|u - Ulcﬁg + 7771%) .
Consequently, we have the following convergence of AFEbrigihgn:

u = upl? o + 0§ < Coa™,

for some constanty = Cy(uq, ho, 0,1, 7).

Proof. The results follow from Theorenis 7.6. O
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7.3. The Poisson-Boltzmann Equation.The second example we consider is the non-

linear Poisson-Boltzmann equation (PBE), which is widedgdifor modeling the elec-

trostatic interactions among charges particles; it is irtgpd in many areas of science

and engineering, including biochemistry and biophysids monlinear PBE is
—V - (eVa) + k?sinha = f, inQ,

uw = 0, onos, (7.23)

wheref = SN ¢;6(x;), with z; € Q,,, C Q. Here,e = ¢(x) > 0 is a strictly positive
spatially-dependent dielectric coefficient, with the nfiedi Debye-Huckel constant tak-
ing the valuex = 0 in the solute (molecule) regidn,, and then strictly positive in the
solvent regiort), := Q \ ©,,. We will denote the interface between the molecular and
solvent regions aB = 0¢2,,.

One of the main analysis and approximation theory diffiegltvith the PBE arises
from the singular functiorf, which does not belong t& ~*(£2); this implies [7.2B) does
not have a solution i/ (2), or at least does not have a nornial weak formulation
with test functions coming formi/!. To address this and other features of the PBE, Chen,
Xu and Holst[20] used a two-scale decomposition (see al&6/Z)) to split the solution
into a self-energy corresponding to the electrostaticrmi@k.®, and a screening potential
due to high dielectric and mobile ions in the solution regidhe singular component
of the electrostatic potential satisfies

N
-V (e, Vu®) = Z qi0(z;), (7.24)
i=1

which can be assembled from the Green’s functiohs= "1 | ¢i/(e,n|x — ;). Sub-
tracting (7Z.24) from[(Z.23) gives the equation for

— V- (eVu) + k?sinh(u + u®) = V- ((e — €,)Vu®). (7.25)

In [20], a new solution theory, approximation theory, andwargent AFEM algorithm
for the nonlinear PBE was established, based on this decsitiggo However, it was
discovered later numerically that this decomposition nexputhat the regular component
must be solved at an extremely high accuracy. This defeciilisibto the decomposition
itself due to the large scale separation between the two ooegs of the splitting. A
related decomposition scheme without this stability peablwas studied numerically
for finite difference schemes in [21], and then analyzedfadyein [31]. This 3-term
decomposition uses the same first component in the molectilas defined in[(7.24);
the second component is the harmonic extension of the tracewdfon T (the interface
betweer2,, and(),) into the molecular region, with" satisfying

—Aut = 0 in Q,,,

u" = —u* onl. (7.26)

One setsu® + v = 0 in Q,, with the harmonic extension” continuous across the
interface by construction. The remaining regular composaftisfies the Regularized
PBE (RPBE):
—V - (eVu) + k?sinh(u) = 0 inQ
[ulr = 0 and [e(%h — g onl | (7.27)
ulgn = g onod.
where
O(u® + u™)

8np ‘F.

gr = gr ‘= Em
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Apart from the techniques required to handle the singulaiufes described above, the
remaining complexities (the discontinuous dielectric &ebye-Huckel constants and
super-critical nonlinearity) can be handled directly bg tramework described in this
paper; in particular, both forms of the regularized probl@a23) and[(7.27), analyzed
in [20] and in [31] respectively, fit into the class of semdar problems described in
Section7Z.P. The results remaining to be established forotisee AFEM contraction
framework essentially all follow from Lipschitz control ¢lie nonlinearity[(6.32); this
control is gained through establishing continuous andreisa priori L>° estimates for
the weak solution to (7.2%) and[(7.27), and for the Galerkin approximatigrof these
solutions. Sucla priori L estimates are established in analyzed in [20] and [31], fol-
lowing cutoff-function arguments similar to those used emima 7.B above. Both the
guasi-orthogonality result in Theorem 6.4 and the nonlineaal Lipschitz Assump-
tion[7.1 follow from the thesepriori L> bounds; for details seg [31]. Contraction (hence
convergence) of AFEM then follows by the contraction Theof&6; seel[31] for the
complete argument. For a short derivation of the equatind,aamore detailed discus-
sion of the solution theory, the approximation theory, ataive methods, see [20,/31].

7.4. The Hamiltonian Constraint Equation. The third example we consider is the
scalar Hamiltonian constraint equation, which togethéhwhe vector momentum con-
straint, appears as the coupled Einstein constraint emsathich arise in general rel-
ativity. The derivation of the constraint equations is lohsa aconformal decomposi-
tion technique, introduced by Lichnerowicz and York![41] [70,. 7 certain physical
situations (constant mean extrinsic curvature of the 3#uolahspatial domain), the con-
straints decouple so that the (linear) momentum consttaimbe solved first for a vector
potentialw, leaving the Hamiltonian constraint to be solved separdtela scalar con-
formal factoru. Let 2 ¢ R? be bounded and polyhedral, with> 2. We consider then
AFEM algorithms the scalar Hamiltonian constraint equatieind « such that

—V - (AVu)+ N(u) = 0 in Q,
n-(AVu)+Gu) = 0 on dyf2, (7.28)
u = 0 on Opf2.

The boundary conditions of primary interest in both mathgrahand numerical rela-
tivity include the case®,2 = () or Ox2 = (), which covers various combinations of
boundary conditions considered in the literature [72| 8} f@r the constraint equations.
The tensorA is a Riemannian metric, so it appears here as a uniformlyipesiefinite
symmetric matrix function of:

Cl|£|2 < Azg(x)gzgj < 02‘5‘2, a.e. iIl Q, (729)

with component functionsi;; € L*. The principle part of equation_(7.28) is the
Laplace-Beltrami operator with certain Riemannian méigc The (nonlinear) bound-
ary functionG is assumed to b€?(0x2). The nonlinear functiodv (-) in the Hamilton-
ian constraint equation reads:

N(¢) = arp + a:¢° — a,p™> — awg™,

wherea,, a,, a,, € H;' () are nonnegative functions, ang := R € H;'(Q2), with
the scalar curvatur® of the metrich,,. Here

u_,uy € HH(Q) NL®(Q)with0 < u_ < uy < oo.

The construction of the subsolutian and the supersolutiom, for the constraint equa-
tions was discussed in detail in [33].
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Note thatV (u) is well-defined only on essentially bounded subsets®of
N :[u_,uy] C L*(Q) = H;'(Q). (7.30)
Such a restriction will give rise to a Lipschitz property/gfon this set:
[V (u) — N(”)HE(HlD(Q),Hgl(Q)) < Kllu =02, Vu,v € [u_,ui] N L*(), (7.31)

which is a key tool for controlling the nonlinearity in thelstion theory, when combined
with a priori L>° bounds to establish the interval_, u. |, as we saw in Sectidn 7.2.
A weak formulation of equatio (7.28) is then: FindE [u_, u, | N H}(Q) such that

a(u,v) + (f(u),v) =0, Vo€ HLH(), (7.32)
where

a(u,v) = /AVU-Vvdx,
0

(Flu),v) = / Nt + [ Glujuds.

Thanks to the control of the nonlinearity provided by tngriori > bounds we es-
tablished on any solution to the Hamiltonian constraint, it was showed in[33] that
equation [(7.32) is a well-posed problem. In particularreéhexists a solution, €
[u—, us] N HE(Q).

The remaining ideas in design the AFEM algorithm and its eogence analysis are
the same as before. Namely, we develop @hgriori > bounds ofu and the finite
element approximation,. Based on thesa priori bounds, we then establish quasi-
orthogonality and the local Lipschitz property. Finallpntraction and convergence of
the AFEM algorithm follows by the contraction Theorem|7.@r B detailed discussion
of the equation, the solution theory, approximation theand convergence analysis of
AFEM, see([35, 33].

8. CONCLUSION

In this article we developed convergence theory for a géotass of adaptive approx-
imation algorithms for abstract nonlinear operator equmetion Banach spaces, and then
used the theory to obtain convergence results for pracaptive finite element meth-
ods (AFEM) applied to a several classes of nonlinear etliptjuations. In the first part
of the paper, we developed a weak-* convergence framewarkdalinear operators,
whose Gateaux derivatives are locally Lipschitz and satsfocal inf-sup condition.
The framework can be viewed as extending the recent conveegeesults for linear
problems of Morin, Siebert and Veeser to a general nonlisettimg. We formulated
an abstract adaptive approximation algorithm for nonlirgeerator equations in Banach
spaces with local structure. The weak-* convergence framnewas then applied to this
class of abstract locally adaptive algorithms, giving aggahconvergence result. The
convergence result was then applied to a standard AFEMidigoin the case of sev-
eral semilinear and quasi-linear scalar elliptic equatiand elliptic systems, including
a semilinear problem with polynomial nonlinearity, theastg Navier-Stokes equations,
and a more general quasilinear problem. This yielded skmera AFEM convergence
results for these nonlinear problems.

In the second part of the paper, we developed a second abstraergence frame-
work based on strong contraction, extending the recentractidn results for linear
problems of Cascon, Kreuzer, Nochetto, and Siebert and ¢cchey and Nochetto to
abstract nonlinear problems. We then established conditiader which it is possible to
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apply the contraction framework to the abstract adaptigeréghm defined earlier, giv-
ing a contraction result for AFEM-type algorithms appliedionlinear problems. The
contraction result was then applied to a standard AFEM édlgarin the case of sev-
eral semilinear scalar elliptic equations, including a dieear problem with polynomial
nonlinearity, the Poisson-Boltzmann equation, and the ianian constraint in general
relativity, yielding AFEM contraction results in each case
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