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1 Introduction

In this article we study adaptive finite element methods (AFEM) with inexact solvers
for a class of semilinear elliptic interface problems. We are particularly interested in
nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear
Poisson-Boltzmann equation and its regularizations. The algorithm we study con-
sists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to
many adaptive finite element algorithms, but where the SOLVE step involves only a
full solve on the coarsest level, and the remaining levels involve only single Newton
updates to the previous approximate solution. We summarize a recently developed
AFEM convergence theory for inexact solvers appearing in [2], and present a se-
quence of numerical experiments that give evidence that the theory does in fact pre-
dict the contraction properties of AFEM with inexact solvers. The various routines
used are all designed to maintain a linear-time computational complexity.

An outline of the paper is as follows. In Section 2, we give a brief overview of
the Poisson-Boltzmann equation. In Section 3, we describe AFEM algorithms, and
introduce a variation involving inexact solvers. In Section 4, we give a sequence of
numerical experiments that support the theoretical statements on convergence and
optimality. Finally, in Section 5 we make some final observations.

2 Regularized Poisson-Boltzmann Equation

We use standard notation for Sobolev spaces. In particular, we denote ‖ · ‖0,G the L2

norm on any subset G⊂ R3, and denote ‖ · ‖1,2,G the H1 norm on G.
Let Ω := Ωm ∪Γ ∪Ωs be a bounded Lipschitz domain in R3, which consists

of the molecular region Ωm, the solvent region Ωs and their interface Γ := Ω m∩Ω s
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Fig. 1. Schematic of a molecular domain.

(see Figure 2). Our interest in this paper is to solve the following regularized Poisson-
Boltzmann equation in the weak form: find u ∈ H1

g (Ω) := {u ∈ H1(Ω) : u|∂Ω = g}
such that

a(u,v)+(b(u),v) = ( f ,v) ∀v ∈ H1
0 (Ω), (1)

where a(u,v) =
∫

Ω
ε∇u ·∇vdx, (b(u),v) =

∫
Ω

κ2 sinh(u)vdx. Here we assume that
the diffusion coefficient ε is piecewise positive constant ε|Ωm = εm and ε|Ωs = εs. The
modified Debye-Hückel parameter κ2 is also piecewise constant with κ2(x)|Ωm = 0
and κ2(x)|Ωs > 0. The equation (1) arises from several regularization schemes (cf.
[4, 5]) of the nonlinear Poisson-Boltzmann equation:

−∇ · (ε∇u)+κ
2 sinhu =

N

∑
i=1

ziδ (xi),

where the right hand side represents N fixed points with charges zi at positions xi,
and δ is the Dirac delta distribution.

It is easy to verify that the bilinear form in (1) satisfies:

c0‖u‖2
1,2 ≤ a(u,u), a(u,v)≤ c1‖u‖1,2‖v‖1,2, ∀u,v ∈ H1

0 (Ω),

where 0 < c0 ≤ c1 < ∞ are constants depending only on ε . These properties imply
the norm on H1

0 (Ω) is equivalent to the energy norm ||| · ||| : H1
0 (Ω)→ R,

|||u|||2 = a(u,u), c0‖u‖2
1,2 ≤ |||u|||2 ≤ c1‖u‖2

1,2.

Let Th be a shape-regular conforming triangulation of Ω , and let Vg(Th) := {v∈
H1(Ω) : v|τ ∈ P1(τ) ∀τ ∈Th} be the standard piecewise linear finite element space
defined on Th. For simplicity, we assume that the interface Γ is resolved by Th. Then
the finite element approximation of (1) reads: find uh ∈Vg(Th) such that

a(uh,v)+(b(uh),v) = ( f ,v), ∀v ∈V0(Th). (2)

We close this section with a summary of a priori L∞ bounds for the solution u
to (1) and the discrete solution uh to (2), which play a key role in the finite element
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error analysis of (2) and adaptive algorithms. For interested reader, we refer to [4, 7]
for details.

Theorem 1. There exist u+,u− ∈ L∞(Ω) such that the solution u of (1) satisfies the
following a priori L∞ bounds:

u− ≤ u≤ u+, a.e. in Ω . (3)

Moreover, if the triangulation Th satisfies that

a(φi,φ j)≤−
σ

h2 ∑
ei, j⊂τ

|τ|, for some σ > 0, (4)

for all the adjacent vertices i 6= j with the basis function φi and φ j, then the discrete
solution uh of (2) also has the a priori L∞ bound

‖uh‖L∞(Ω) ≤C, (5)

where C is a constant independent of h.

We note that the mesh condition is generally not needed practically, and in fact can
also be avoided in analysis for certain nonlinearites [2].

3 Adaptive FEM with Inexact Solvers

Given a discrete solution uh ∈Vg(Th), let us define the residual based error indicator
η(uh,τ):

η
2(uh,τ) = h2

τ‖b(uh)− f‖2
0,τ + ∑

e⊂∂τ

he‖[(ε∇uh) ·ne]‖2
0,e,

where [(ε∇uh) · ne] denote the jump of the flux across a face e of τ. For any subset
S ⊂ Th, we set η2(uh,S ) := ∑τ∈S η2(uh,τ). By using the a priori L∞ bounds
Theorem 1, we can show (cf. [7]) that the error indicator satisfies:

|||u−uh|||2 ≤C1η
2(uh,T̂h); (6)

and
|η(v,τ)−η(w,τ)| ≤C2|||v−w|||ωτ

, ∀v,w ∈Vg(Th) (7)

where ωτ = ∪τ ′∈Th,τ̄
′∩τ̄ 6= /0τ ′ and |||v|||2ωτ

=
∫

ωτ
ε|∇v|2dx.

Given an initial triangulation T0, the standard adaptive finite element method
(AFEM) generates a sequence

[
uk,Tk,{η(uk,τ)}τ∈Tk

]
based on the iteration of the

form:
SOLVE→ ESTIMATE→MARK→ REFINE.

Here the SOLVE subroutine is usually assumed to be exact, namely uk is the exact
solution to the nonlinear equation (2); the ESTIMATE routine computes the element-
wise residual indicator η(uk,τ); the MARK routine uses standard Dörfler marking
(cf. [6]) where Mk ⊂Tk is chosen so that
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η(uk,Mk)≥ θη(uk,Tk)

for some parameter θ ∈ (0,1]; finally, the routine REFINE subdivide the marked
elements and possibly some neighboring elements in certain way such that the new
triangulation preserves shape-regularity and conformity.

During last decade, a lot of theoretical work has been done to show the conver-
gence of the AFEM with exact solver (see [9] and the references cited therein for
linear PDE case, and [8] for nonlinear PDE case). To the best of the authors knowl-
edge, there are only a couple of convergence results of AFEM for symmetric linear
elliptic equations (cf. [10, 1]) which take the numerical error into account. To distinct
with the exact solver case, we use ûk and T̂k to denote the numerical approximation
to (2) and the triangulation obtained from the adaptive refinement using the inexact
solutions.

Due to the page limitation, we only state the main convergence result of the
AFEM with inexact solver for solving (1) below. More detailed analysis and exten-
sion are reported in [2].

Theorem 2. Let {T̂k, ûk}k≥0 be the sequence of meshes and approximate solutions
computed by the AFEM algorithm. Let u denote the exact solution and uk denote
the exact discrete solutions on the meshes T̂k. Then, there exist constants µ > 0,
ν ∈ (0,1), γ > 0, and α ∈ (0,1) such that if the inexact solutions satisfy

µ|||uk− ûk|||2 + |||uk+1− ûk+1|||2 ≤ νη
2(ûk,T̂k) (8)

then
|||u−uk+1|||2 + γη

2(ûk+1,T̂k+1)≤ α
2(|||u−uk|||2 + γη

2(ûk,T̂k)). (9)

Consequently, limk→∞ uk = limk→∞ ûk = u.

The proof of this theorem is based on the upper bound (6) of the exact solution,
the Lipschitz property (7) of the error indicator, Dörfler marking, and the following
quasi-orthogonality between the exact solutions:

|||u−uk+1|||2 ≤Λ |||u−uk|||2−|||uk+1−uk|||2 (10)

where Λ can be made close to 1 by refinement. For a proof of the inequality (10), see
for example [7].

To achieve the optimal computational complexity, we should avoid solving the
nonlinear system (2) as much as we could. The two-grid algorithm [11] shows that a
nonlinear solver on a coarse grid combined with a Newton update on the fine grid still
yield quasi-optimal approximation. Motivated by this idea, we propose the follow-
ing AFEM algorithm with inexact solver, which contains only one nonlinear solver
on the coarsest grid, and Newton updates on each follow-up steps: In Algorithm 1,
the NSOLVE routine is used only on the coarsest mesh and is implemented using
Newton’s method run to certain convergence tolerance. For the rest of the solutions,
a single step of Newton’s method is used to update the previous approximation. That
is, UPDATE computes ûk+1 such that
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Algorithm 1 :
[
ûk,T̂k,{η(ûk,τ)}τ∈T̂k

]
:= Inexact_AFEM(T0,θ)

1 û0 = u0 := NSOLVE(T0) %Nonlinear solver on initial triangulation
2 for k := 0,1, · · · do
3 {η(ûk,τ)}τ∈T̂k

:= ESTIMATE(ûk,T̂k)

4 Mk := MARK({η(ûk,τ)}τ∈T̂k
,T̂k,θ)

5 T̂k+1 := REFINE(T̂k,Mk)
6 ûk+1 := UPDATE(ûk,T̂k+1) %One-step Newton update
7 end

a(ûk+1− ûk,φ)+(b′(ûk)(ûk+1− ûk),φ) = 0 (11)

for every φ ∈V (T̂k+1). We remark that since (11) is only a linear problem, we could
use the local multilevel method to solve it in (near) optimal complexity (cf. [3]).
Therefore, the overall computational complexity of the Algorithm 1 is nearly opti-
mal.

We should point out that it is not obvioius how to enforce the required approxima-
tion property (8) that ûk must satisfy for the theorem. This is examined in more detail
in [2]. However, numerical evidence in the following section shows Algorithm 1 is an
efficient algorithm, and the results matches the ones from AFEM with exact solver.

4 Numerical Experiments

In this section we present some numerical experiments to illustrate the result in The-
orem 2, implemented with FETK. The software utilizes the standard piecewise-linear
finite element space for discretizing (1). Algorithm 1 is implemented with care taken
to guarantee that each of the steps runs in linear time relative to the number of ver-
tices in the mesh. The linear solver used is Conjugate Gradients preconditioned by
diagonal scaling. The estimator is computed using a high-order quadrature rule, and,
as mentioned above, the marking strategy is Dörfler marking where the estimated
error have been binned to maintain linear complexity while still marking the ele-
ments with the largest error. Finally, the refinement is longest edge bisection, with
refinement outside of the marked set to maintain conformity of the mesh.

We present three sets of results in order to explore the effects of the inexact
solver in multiple contexts. For all problems, we present a convergence plot using
both inexact and exact solvers (including a reference line of order N−

1
3 ) as well as

a representative cut-away of a mesh with around 30,000 vertices. The exact discrete
solution is computed using the standard AFEM algorithm where the solution on each
mesh is computed by allowing Newton’s method to continue running to convergence
to within a tolerance of 10−8. This modifies not only the solution on a given mesh,
but also the sequence of meshes generated, since the algorithm may mark differ-
ent simplices. However, in all cases, convergence is identical to high precision and
meshes place the unknowns as expected.
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The first result uses constant coefficients across the entire domain Ω = [0,1]3

and we choose a right hand side so that the derivative of the exact solution is large
near the origin. The boundary conditions chosen for this problem are homoegenous
Dirichlet boundary conditions. Specifically, the exact solution is given by u = u1u2
where

u1 = sin(πx)sin(πy)sin(πz)

is chosen to satisfy the boundary condition and

u2 = (x2 + y2 + x2 +10−4)−1.5.

The results can be seen in Figure 2.
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Fig. 2. Convergence plot and mesh cut-away for the corner singularity problem.

The second result uses the domain Ω = [−1,1]3 and Ωm =
[
− 1

4 ,
1
4

]
with con-

stants εs = 80,εm = 2,κs = 1, and κm = 0. Homogeneous Neumann conditions are
chosen for the boundary and the right hand side is simplified to a constant. Because
an exact solution is unavailable for this (and the following) problem, the error is
computed by comparing to a discrete solution on a mesh with around 10 times the
number of vertices as the finest mesh used in the adaptive algorithm. Figure 3 shows
the results for this problem. As can be seen the refinement favors the interface and
the inexact and exact solvers perform as expected.

The final result is chosen to test the robustness of the inexact method to large
coefficient jumps. The domain and boundary conditions are the same as the previous
example, but the constants chosen as are εs = 1000,εm = 10,κs = 1, and κm = 0. The
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Fig. 3. Convergence plot and mesh cut-away for the Poisson-Boltzmann problem.

results can be seen in Figure 4, and they show a scenario very similar to the previous
example, with the refinement restricted even further to the interface.
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Fig. 4. Convergence plot and mesh cut-away for the exaggerated-jump Poisson-Boltzmann
problem.
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5 Conclusion

In this article we have studied AFEM with inexact solvers for a class of semilinear
elliptic interface problems with discontinuous diffusion coefficients, with emphasis
on the nonlinear Poisson-Boltzmann equation. The algorithm we studied consisted
of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to many
adaptive finite element algorithms, but where the SOLVE step involves only a full
solve on the coarsest level, and the remaining levels involve only single Newton up-
dates to the previous approximate solution. The various routines used are all designed
to maintain a linear-time computational complexity. Our numerical results indicate
that the recently developed AFEM convergence theory for inexact solvers in [2] does
predict the actual behavior of the methods.
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