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Abstract

We develop local elliptic regularity for operators having coefficients in a range of Sobolev-type func-
tion spaces (Bessel potential, Sobolev-Slobodeckij, Triebel-Lizorkin, Besov) where the coefficients have a
regularity structure typical of operators in geometric analysis. The proofs rely on a nonstandard technique
using rescaling estimates and apply to operators having coefficients with low regularity. For each class of
function space for an operator’s coefficients, we exhibit a natural associated range of function spaces of the
same type for the domain of the operator and we provide regularity inference along with interior estimates.
Additionally, we present a unified set of multiplication results for the function spaces we consider.

1 Introduction

Elliptic differential operators associated with Riemannian metrics having limited regularity arise naturally
in the construction of initial data in general relativity. Moreover, because of connections with the asso-
ciated evolution problem, it is natural to work with metrics having regularity measured in Sobolev-type
scales, and with a non-integral number of derivatives [KR05][ST05][Ma06]. In this paper we develop a
largely self-contained account of the mapping properties and local elliptic regularity theory for differential
operators having coefficients in any one of a broad category of Sobolev-type spaces, including spaces with
non-integral levels of differentiability, where the coefficients also admit a regularity structure typical of ge-
ometric differential operators. For each category of function spaces considered, we allow for coefficients
with low regularity, and our approach to local elliptic theory is apparently novel in this context, relying on
rescaling estimates for Sobolev-type spaces to reduce the problem to that of constant-coefficient operators.

Local elliptic regularity is a well-established subject, with a wealth of results available in a number of con-
texts, even in low-regularity settings. For second-order scalar elliptic operators in divergence form [Tr73]
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treats a form of elliptic regularity assuming only that the coefficients are measurable, although only for a
very limited set of (operator-dependent) function spaces. A related theory appears in the text [GT01] that
applies to a range of integer-based Sobolev spaces under progressively stronger hypotheses on the coeffi-
cients of the elliptic operator. See also [Gi93], which contains analogous results that apply to systems of
equations. Spaces with a non-integral number of derivatives include the L2-based spaces Hs which appear
naturally in hyperbolic problems as well as their generalizations: Bessel potential spaces Hs,p, Sobolev-
Slobodeckij spaces W s,p, Triebel-Lizorkin spaces F s,p

q , and Besov spaces Bs,p
q . So long as the differential

operators involved have smooth coefficients, elliptic theory for these spaces can be found in [Tr10]. For less
regular coefficients, one is led to the theory of pseudodifferential operators with non-smooth symbols and
paradifferential calculus. See, e.g., [Ta91] and [Ma88]. Nevertheless, this theory is somewhat technical, and
it can be difficult for non-practitioners to apply it immediately to the specific class of questions addressed in
the current work.

Within the mathematical relativity literature one finds instead a sequence of custom-made regularity theo-
rems for second-order operators associated with with a metric g on a domain of dimension n ≥ 3:

• [CC81]: g ∈ Wk,2 with k ∈ N, k > n/2 + 1 and hence possessing Hölder continuous derivatives,

• [Ch04][Ma05]: g ∈ Wk,p with k ∈ N, k ≥ 2 and k > n/p and hence Hölder continuous,

• [Ma06]: g ∈ Hs with s ∈ R, s > n/2 and hence Hölder continuous,

• [HNT09] g ∈ W s,p with s ∈ R, s ≥ 1 and s > n/p and hence Hölder continuous.

Although [Ma06] was the first work in this context to treat spaces with a fractional number of derivatives,
its limited focus on the L2 setting meant that it did not recover the full set of earlier results. By contrast,
[HNT09] recovers prior results fully, but its main regularity result, Lemma 32, contains an error that is not
straightforward to correct. Moreover, although Sobolev-Slobodeckij spaces W s,p are a reasonable choice for
interpolating between integer-based Sobolev spaces, Bessel potential spaces Hs,p enjoy better interpolation
and embedding properties and are a compelling alternative. Hence it would be desirable to extend the
results above to other classes of function spaces, and indeed our work here concerning Bessel potential
spaces provides the elliptic theory used by the recent preprint [ALM22], which treats geometric operators
on asymptotically hyperbolic manifolds.

Our main results concern local elliptic regularity for differential operators having coefficients in any of the
Sobolev-type spaces Hs,p, W s,p, F s,p

q and Bs,p
q mentioned above. Although we use basic techniques from the

theory of paraproducts in the proofs of some of our work, we do so with a minimum of theoretical overhead,
and Section 3.2 contains a short survey of the few tools needed. Moreover, although Bessel potential spaces
are a special case of Triebel-Lizorkin spaces and could have been dealt with as a consequence of the general
theory, in Section 2 we present a simplified approach in the Bessel potential context that is free from para-
product methods. This approach comes at the expense of establishing a less-than-sharp intermediate result
on rescaling (Proposition 2.17 vs. Proposition 3.10), but this has no impact on the final regularity theory.
Readers who are only interested in the Bessel potential case can stop reading at the end of Section 2 without
needing to move on to the relative complexities of the more general function spaces.

In addition to extending the scope of [Ma06] and [HNT09] to a broader class of function spaces, the results
of this paper strengthen our earlier work. Rather than simply obtaining a-priori estimates for functions with
a known level of regularity, we obtain full regularity inference in the spirit of, e.g., [GT01] Theorem 8.8.
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Additionally, we have extended the range of parameters of the function spaces treated. This extension is
only marginal in the generic case, but substantially extends the range of parameters whenever the operators
involved omit low-order terms; see the discussion following Definition 2.4. Although we restrict our atten-
tion to interior regularity, the tools developed here are also sufficient to address boundary value problems.
We have omitted these considerations, in part for simplicity of exposition: boundary traces generally lie in
Besov spaces, which are among the most technical of the spaces we consider, and which we treat last. We
will address boundary regularity in followup work.

Principal applications of elliptic regularity only apply to the range of Lebesgue exponents 1 < p < ∞.
Motivated by this, and again for the sake of simple exposition, we have avoided the edge cases of F s,p

q and
Bs,p

q where p, q = 1,∞, much less the quasi-normed spaces where p, q < 1. We observe, however, that the
multiplication rules of Theorems 3.5 and 5.4 and the rescaling estimates of Propositions 3.10 and 5.11 are
candidates that could benefit from extending beyond the parameter ranges treated here.

1.1 Coefficient regularity structure

Differential operators in geometric analysis admit a representation in local coordinates in terms of coeffi-
cients that are universal expressions involving the values and derivatives of the coordinate representation gab

of a metric g. The prototypical example is the Laplacian ∆g associated with g, which can be written in terms
of the inverse metric gab and the determinant

√
g as

∆g = gab∂a∂b +
∑

a

√
g
(
∂a

(
1
√

g
gab

))
∂b.

The leading order coefficients have the regularity of gab, whereas the next order coefficients involve first
derivatives of gab. More generally, consider the conformal Laplacian Cg of g,

Cg = −cn∆g + Rg

where cn = −4(n − 1)/(n − 2) and where Rg is the scalar curvature of the metric. If the coefficients of the
metric lie in W1,p

loc with p > n, a computation using Hölder’s inequality and Sobolev embedding shows that
Cg has the form

Cg = −cngab∂a∂b + β
a∂a + γ

where

gab ∈ W1,p
loc , βa ∈ W0,p

loc , γ ∈ W−1,p
loc .

In particular, the leading order coefficients have the regularity of the metric, and there is a loss of one
derivative as we descend from one order of coefficient to the next. This leads us to consider elliptic dth-order
operators of the form

L =
∑
|α|≤d

aα∂α (1.1)

where the top-most coefficients lie in a space J s with s derivatives and more generally where each aα ∈
J s−d+|α|. While this category of operator is not the most general possible in geometric analysis [St75], it
is sufficiently broad to include many operators of interest, including Hodge Laplacians, the Lichnerowicz

3



Laplacian [Be87], the vector Laplacian [Is95] and the conformal Laplacian, so long as s ≥ 1 and so long as
the underlying metric lies in a space sufficiently regular so as to ensure Hölder continuity. It also includes
the class of geometric operators satisfying the hypotheses of Assumption P of [ALM22].

Given an operator of the form (1.1) with leading order coefficients in some space J s with s derivatives, one
wants to find compatible spaces Kσ with σ derivatives such that that L : Kσ → Kσ−d and such that local
elliptic regularity holds: roughly that if u is regular enough that L can act on it, and if Lu ∈ Kσ−d, then
locally u ∈ Kσ along with associated estimates. We establish this theory for elliptic operators of the form
(1.1) where the topmost coefficients come from a space J s of one of the following types:

• a Bessel potential space Hs,p, in which case Kσ is another Bessel potential space Hσ,q (Section 2),

• a Triebel-Lizorkin space F s,p
q , in which case Kσ is another Triebel-Lizorkin space Fσ,a

b (Section 3),

• a Sobolev-Slobodeckij space W s,p, in which case Kσ is another Sobolev-Slobodeckij space Wσ,q (Sec-
tion 4),

• a Besov space Bs,p
q , in which case Kσ is another Besov space Bσ,ab (Section 5).

In all these cases, the space J s is restricted to be suitably regular so that its elements are Hölder continuous,
and we give a careful description of the parameters determining the allowable spaces Kσ.

1.2 Rescaling estimates

Our general approach is the same for all the function spaces considered, and in the specific case of Bessel
potential spaces Hs,p the core ingredients are:

1. Multiplication properties for Hs,p spaces, Theorem 2.5.

2. Mapping properties: given an operator L of the form (1.1) with leading coefficients in Hs,p, for which
spaces Hσ,q does L map Hσ,q → Hσ−d,q? This is the content of Proposition 2.6.

3. A rescaling estimate, described below.

4. A coefficient freezing/blowup argument which uses the rescaling estimate to establish “regularity at a
point”, Proposition 2.20.

5. A partition of unity decomposition and bootstrap to obtain the main regularity result, Theorem 2.21.

Coefficient freezing as used in step 4 above is classical, but we use a nonstandard rescaling technique to
manage the perturbations from the constant coefficient operator. To motivate this technique, consider the
simplest case of integer-based Sobolev spaces on the unit ball B1 ⊂ Rn, and let u ∈ Wk,p(B1), where k ∈ N,
1 < p < ∞. For 0 < r ≤ 1 we define u{r}(x) = u(rx), so u{r} rescales u up from the ball of radius r to the
unit ball. Derivatives are damped under this rescaling operation, but the singularities permitted by Lp spaces
are enhanced, and a computation using Sobolev embedding and Hölder’s inequality shows

||u{r}||Wk,p(B1) ≲ rα||u||Wk,p(B1) (1.2)

4



where α = min(k − n
p , 0), except in the marginal case k = n/p, in which case we can take α to be any

negative number. The cap α ≤ 0 appears in this estimate because of the constants, which are invariant under
rescaling. However, if k > n/p so that elements of Wk,p(B1) are Hölder continuous, and if f (0) = 0, one can
do better. Now estimate (1.2) holds with α = min(k − n/p, 1), except in the marginal case k = n/p + 1, in
which case we can use any α < 1. Regardless, if k > n/p and if f (0) = 0, estimate (1.2) holds for some
α > 0.

Now consider a differential operator L =
∑

|β|≤d aβ∂β with coefficients aβ ∈ Wk−d+|β|,p(B1) and with k > n/p.
The leading order coefficients lie in Wk,p(B1) and are therefore Hölder continuous. Hence we can define the
principal part of L at 0,

L0 =
∑
|β|=d

aβ(0)∂β.

If u is a distribution that is regular enough that L can act on it, a computation shows that

rd(Lu){r} = L0u{r} +
∑
|β|=d

(aβ − aβ(0)){r}∂βu{r}︸                           ︷︷                           ︸
:=B[r]u{r}

+
∑
|β|<d

rd−|β|aβ{r}∂βu{r}︸                    ︷︷                    ︸
:=C[r]u{r}

.

The aim at this point is to show that by taking r sufficiently small, the coefficients of the perturbations B[r]
and C[r] can be made as small as desired so that a parametrix for L0 can be employed to deduce regularity
properties of u{r}, and this is where the rescaling estimate (1.2) is needed. Using the structural hypothesis
aβ ∈ Wk−d+|β|,p(B1) along with the rescaling estimate (1.2) we find, except in marginal cases where an
unimportant adjustment is needed, that the coefficients of C[r] satisfy

||rd−|β|(aβ){r}||Wk−d+|β|,p(B1) ≲ rd−|β|rmin(k−d+|β|−n/p,0)||aβ||Wk−d+|β|,p(B1).

Since |β| < d for each of these coefficients, and since k > n/p, we obtain

rd−|β|rmin(k−d+β−n/p,0) = rmin(k−n/p,d−|β|) = rϵ

for some ϵ > 0. Hence the coefficients of C[r] scale away as r → 0. On the other hand, the high order
perturbation coefficients aβ − aβ(0) lie in Wk,p(B1) with k > n/p and vanish at 0, so the improved variation
of the scaling estimate (1.2) again shows that the coefficients of B[r] vanish as r → 0.

Propositions 3.10 and 5.11 show that estimate (1.2) generalizes to Triebel-Lizorkin and Besov spaces re-
spectively. For Triebel-Lizorkin spaces, the proof requires elementary techniques from Littlewood-Paley
theory and paramultiplication, and the necessary background is recalled in Section 3.2 prior to the proof
of Proposition 3.10. The analogous results for Besov spaces follow from the Triebel-Lizorkin result and
interpolation. As mentioned above, in the interest of approachability, for Bessel potential spaces we use
an alternative approach with a rescaling estimate, Proposition 2.17, that is not sharp, but which admits an
elementary proof that is independent of Littlewood-Paley theory.

1.3 Multiplication

Mapping properties of differential operators with coefficients in Sobolev-type spaces depend on pointwise
multiplication rules that determine when a product of factors from two given function spaces lies in a third
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space. There is an extensive literature on this subject, including [Pa68] [Zo77] [Am91] [ST95] [RS96]
[Jo95] [BH21] that contains individual pieces of the theory we require. Chapter 4 of [RS96] is especially
comprehensive. Where these works overlap, there is generally agreement on the hypotheses, but certain
edge cases are treated, or not, by different authors. Rather than attempt to assemble these disparate pieces
into a coherent whole, we include a self-contained proof of multiplication rules for Triebel-Lizorkin spaces,
Theorem 3.5, and for Besov spaces, Theorem 5.4, in the appendices. Corresponding rules for Bessel poten-
tial spaces and Sobolev-Slobodeckij spaces, Theorems 2.5 and 4.2 respectively, follow as corollaries. The
proofs rely on the same elementary Littlewood-Paley/paramultiplication techniques that we use to obtain the
rescaling estimates of Section 3.2. Although we have limited our analysis to the region 1 < p, q < ∞ for
the spaces F s,p

q and Bs,p
q , in this restricted setting we obtain a consistent set of hypotheses over all ranges of

s that are simpler in character, and that are at least as sharp, as what appears currently in the literature.

2 Coefficients in Bessel Potential Spaces

In this section we prove interior elliptic estimates for operators having coefficients in Bessel potential spaces,
with a goal of presenting the result using a minimum of technology. The primary background requirements
are:

• standard facts about Sobolev spaces with integer orders of differentiability,

• embedding, interpolation and duality theory for Bessel potential spaces,

• multiplication rules for Bessel potential spaces, which we recall below, and

• elementary tools from harmonic analysis needed to construct parametrices for elliptic operators with
constant coefficients.

In particular, the approach is otherwise independent of Littlewood-Paley theory or the general theory of
pseudodifferential operators, beyond what is required to define the spaces themselves.

Let F denote the Fourier transform and for s ∈ R let Ds be the pseudodifferential operator given by

F[Dsu](ξ) = (1 + |ξ|2)s/2F[u](ξ).

Given 1 < p < ∞ and s ∈ R a tempered distribution u on Rn belongs to the Bessel potential space Hs,p(Rn)
if D−su ∈ Lp(Rn), in which case

||u||Hs,p(Rn) = ||D−su||Lp(Rn).

We use the same notation for for distributions taking on values in a real vector space (e.g., Rk or Rk×k).
When k ∈ Z, then Hk,p(Rn) with this definition coincides with standard Sobolev spaces of distributions
having derivatives laying in Lebesgue spaces.

Given an open set Ω ⊆ Rn the space Hs,p(Ω) consists of restrictions of distributions in Hs,p(Rn) to Ω and is
given the quotient norm. That is,

||u||Hs,p(Ω) = inf{||û||Hs,p(Rn) : û ∈ Hs,p(Rn), û|Ω = u}.
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We say an open set Ω is a C∞ domain if each point in the boundary admits an open ball centered at it and
a diffeomorphism from it to an open subset of Rn such that the image of the intersection of Ω with the ball
is a simply connected subset of the upper half space Rn,+. If Ω is a bounded C∞ domain and if k ∈ Z, then
Hk,p(Ω) coincides with the usual integer-based Sobolev spaces.

We have the following embedding, interpolation, and duality properties of Bessel potential spaces, which
are special cases of the same results cited in Section 3 for the more general Triebel-Lizorkin spaces.

Proposition 2.1. Assume 1 < p, p1, p2 <∞ and s, s1, s2 ∈ R, and suppose Ω is a bounded open set in Rn.

1. If s1 > s2 then Hs1,p(Rn) ↪→ Hs2,p(Rn) and Hs1,p(Ω) ↪→ Hs2,p(Ω).

2. If p1 ≥ p2 then Hs,p1 (Ω) ↪→ Hs,p2 (Ω).

3. If s1 > s2 and 1
p1
− s1

n =
1
p2
− s2

n then Hs1,p1 (Rn) ↪→ Hs2,p2 (Rn).

4. If s1 > s2 and 1
p1
− s1

n ≤ 1
p2
− s2

n then Hs1,p1 (Ω) ↪→ Hs2,p2 (Ω).

5. If 0 < α < 1 then H
n
p+α,p(Rn) ↪→ C0,α(Rn) and H

n
p+α,p(Ω) ↪→ C0,α(Ω).

In the final embedding above, C0,α(Rn) denotes the Hölder space with norm ||u||C0,α(Rn) = ||u||L∞(Rn) +

supx,y

∣∣∣∣ f (x)− f (y)
|x−y|α

∣∣∣∣, with an analogous norm for functions defined on Ω.

Proposition 2.2. Assume 1 < p1, p2 < ∞ and s1, s2 ∈ R, and suppose Ω is either Rn or is a bounded C∞

domain in Rn. For 0 < θ < 1,
[Hs1,p1 (Ω),Hs2,p2 (Ω)]θ = Hs,p(Ω)

where
s = (1 − θ)s1 + θs2,

1
p
= (1 − θ)

1
p1
+ θ

1
p2

Proposition 2.3. Assume 1 < p < ∞ and s ∈ R. The bilinear map C∞(Rn) × C∞(Rn) → R given by
⟨ f , g⟩ :=

∫
Ω

f g extends to a continuous bilinear map F s,p
q (Rn)×F−s,p∗

q∗ (Rn) → R where 1/p∗ = 1− 1/p and

1/q∗ = 1 − 1/q. Moreover, f 7→ ⟨ f , ·⟩ is a continuous identification of F s,p
q (Rn) with (F−s,p∗

q∗ (Rn))∗.

2.1 Mapping properties

The following definition encodes the regularity structure of the coefficients of differential operators appear-
ing frequently in geometric analysis.

Definition 2.4. Consider a dth order differential operator on an open set Ω ⊆ Rn,

L =
∑
|α|≤d

aα∂α

where the coefficients are Rk×k-valued for a system of k variables. We say that L is of class Ld(Hs,p;Ω) for
some s ∈ R and 1 < p <∞ if each

aα ∈ Hs+|α|−d,p(Ω).
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If L omits terms of order lower than d0 for some 0 ≤ d0 ≤ d, i.e.,

L =
∑

d0≤|α|≤d

aα∂α,

we say L ∈ Ld
d0

(Hs,p;Ω).

To motivate the roles of the pair of indices d and d0 in the previous definition, recall from the introduction
the conformal Laplacian Cg = −cn∆g + R[g] of a metric g on a bounded C∞ domain Ω. An elementary
computation using Sobolev embedding shows that if g ∈ H1,p(Ω) with p > n then Cg is of class L2(H1,p;Ω).
The low-order term is the scalar curvature R[g] ∈ H−1,p(Ω) and its presence restricts the set of spaces that Cg

can act on: functions in these spaces must possess at least one derivative. By contrast, the ordinary Laplacian
for the same metric has no zero-order term and consequently is an operator of class L2

1(H1,p;Ω). Moreover,
one can show that it acts on a broader class of spaces and, for example, defines a map Lp(Ω) → H−2,p(Ω).
Hence, in addition to the order d of the differential operator we also track the order d0 of the term with the
lowest number of derivatives appearing in the operator.

Consider an operator L of class Ld
d0

(Hs,p;Ω). It defines a map from C∞(Ω), the set of smooth functions
on Ω admitting smooth extensions to Rn, to the set D′(Ω) of distributions on Ω, and we wish to establish
finer-grained mapping properties. Specifically, we would like to determine the indices (σ, q) ∈ R × (1,∞)
such that L is continuous Hσ,q(Ω) → Hσ−d,q(Ω).

The following result on multiplication of Bessel potential spaces is the tool needed to establish these mapping
properties. It can be readily proved for integral orders of differentiability using only Sobolev embedding and
duality arguments, and a slightly less sharp version that would, in fact, be sufficient for our purposes can
be proved with interpolation techniques ([BH21] Theorem 5.1). See also [Pa68], the original reference
for multiplication of Bessel potential spaces, which also considers the case of more than two factors. The
statement below is a special case of the multiplication rules for the broader class of Triebel-Lizorkin spaces
proved in Appendix A.

Theorem 2.5. Let Ω be a bounded open subset of Rn. Suppose 1 < p1, p2, q < ∞ and s1, s2, σ ∈ R. Let
r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
q
− σ

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map Hs1,p1 (Ω) × Hs2,p2 (Ω) →
Hσ,q(Ω) so long as

s1 + s2 ≥ 0 (2.1)
min(s1, s2) ≥ σ (2.2)

max
(

1
r1
,

1
r2

)
≤ 1

r
(2.3)

1
r1
+

1
r2

≤ 1 (2.4)

1
r1
+

1
r2

≤ 1
r

(2.5)

with inequality (2.5) strict if min(1/r1, 1/r2, 1 − 1/r) = 0.
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There are admittedly a large number of conditions in the previous result, but they all have an easy interpre-
tation. For a pair (σ, q) ∈ R× (1,∞) we call

1
r
=

1
q
− σ

n

the Lebesgue regularity of the pair, the terminology motivated by the observation that if 0 < 1/r < 1 then
Sobolev embedding implies Hσ,q

loc (Rn) embeds in Lr
loc(Rn). Using this vocabulary, the conditions (2.1)–(2.5)

are, loosely:

(2.1) If one factor has a negative number of derivatives, the remaining factor must have at as many positive
derivatives.

(2.2) The product will not have, in general, more derivatives than either factor.

(2.3) The product will not have, in general, better Lebesgue regularity than either factor.

(2.4) L1 is a least-regular barrier for multiplication of Lp spaces. Note that in light of inequality (2.5) this
condition only plays a role if s < 0.

(2.5) The Lebesgue regularity of the product is consistent with multiplication of Lp spaces. Strictness of
this inequality is needed in edge cases because L∞ is not the right target space for borderline Sobolev
embeddings.

Repeated applications of Theorem 2.5 imply the following mapping result, where we emphasize the new
hypothesis s > n/p which ensures, among other consequences, that the highest order coefficients of the
differential operator are continuous.

Proposition 2.6. Let Ω be a bounded open subset of Rn. Suppose 1 < p, q < ∞, s > n/p, σ ∈ R and
d, d0 ∈ Z≥0 with d ≥ d0. An operator of class Ld

d0
(Hs,p;Ω) extends from a map C∞(Ω) 7→ D′(Ω) to a

continuous linear map Hσ,q(Ω) 7→ Hσ−d,q(Ω) so long as

σ ∈ [d − s, s + d0]

1
q
− σ

n
∈

[
1
p
− s + d0

n
,

1
p∗ − d − s

n

]
(2.6)

where 1/p∗ = 1 − 1/p is the conjugate Lebesgue exponent of p. Moreover, the map A between these spaces
depends continuously on its coefficients aα ∈ Hs−d+α,p(Ω).

Conditions (2.6) onσ and q describe the natural Sobolev indices of spaces for an operator of class Ld
d0

(Hs,p;Ω)
to act on, and it is convenient to have notation for this set.

Definition 2.7. Suppose 1 < p < ∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. The compatible Sobolev indices
for an operator of class Ld

d0
(Hs,p;Ω) acting on a bounded open set Ω is the set

Sd
d0

(Hs,p) ⊆ R× (1,∞)

of tuples (σ, q) ∈ R× (1,∞) satisfying (2.6).
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Figure 1: The region Sd
d0

(Hs,p) for n = 3, d = 2, d0 = 0, p = 1.7 and s = n
p +

1
2 .

The second condition of (2.6) is a restriction on the Lebesgue regularity of (σ, q) and it is helpful to visualize
Sd

d0
(Hs,p) after making the transformation q 7→ 1/q since sets of constant Lebesgue regularity then appear

as straight lines with slope 1/n as in Figure 1.

For any particular collection of parameters, it may be that Sd
d0

(Hs,p) is empty. The following result establishes
when the set is nonempty and hence when an operator of class Ld

d0
(Hs,p;Ω) has a suitable collection of Bessel

potential spaces to act on.

Lemma 2.8. Suppose 1 < p < ∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Then Sd
d0

(Hs,p) is nonempty if and
only if

s ≥ (d − d0)/2, and (2.7)
1
p
− s

n
≤ 1

2
− (d − d0)/2

n
. (2.8)

If S d
d0

(Hs,p) is non-empty then it contains (s + d0, p), (d − s, p∗), and ((d + d0)/2, 2). Moreover, if (σ, q) ∈
Sd

d0
(Hs,p), then we have the continuous inclusions of Fréchet spaces

Hs+d0,p
loc (Rn) ⊆ Hσ,q

loc (Rn) ⊆ Hd−s,p∗

loc (Rn). (2.9)

Proof. The intervals in (2.6) defining Sd
d0

(Hs,p) are non-empty if and only if s ≥ (d − d0)/2 and

1
p
− s + d0

n
≤ 1 − 1

p
− d − s

n
,

10



which is equivalent to inequality (2.8). Moreover, if these intervals are nonempty, then (s + d0, p) and
(d − s, p∗) evidently belong to Sd

d0
(Hs,p). To show that (σ, q) = ((d + d0)/2, 2) ∈ Sd

d0
(Hs,p) whenever this set

is nonempty, define

1
r1
=

1
p
− s + d0

n
,

1
r2
=

1
p∗

− d − s
n

, and
1
r
=

1
2
− (d + d0)/2

n
.

Then ((d + d0)/2, 2) ∈ Sd
d0

(Hs,p) so long as

d − s ≤ d + d0

2
≤ s + d0 (2.10)

and
1
r1

≤ 1
r
≤ 1

r2
. (2.11)

Since Sd
d0

(Hs,p) is nonempty, d − s ≤ s + d0 and 1/r1 ≤ 1/r2. Inequalities (2.10) and (2.11) are then
consequences of the observations

d + d0

2
=

1
2

[(d − s) + (s + d0)]

and
1
r
=

1
2

(
1
r 1
+

1
r 2

)
.

Finally, recall that Hs1,p1
loc (Rn) embeds continuously in Hs2,p2

loc (Rn) if s1 ≥ s2 and if

1
p1

− s1

n
≤ 1

p2
− s2

n
.

So conditions (2.6) ensure that if (σ, q) ∈ Sd
d0

(Hs,p) then we have the continuous inclusions (2.9).

The indices (s + d0, p) and (d − s, p∗) correspond to the most regular and least regular spaces an operator
in Ld

d0
(Hs,p;Ω) can naturally act on; indices (σ, q) ∈ Sd

d0
(Hs,p) yield spaces Hσ,q

loc (Rn) that lie intermediate

between the two extreme spaces Hs+d0,p
loc (Rn) and Hd−s,p∗

loc (Rn). Indeed, one interpretation of Lemma 2.8
is that Sd

d0
(Hs,p) is nonempty exactly when Hs+d0,p

loc (Rn) includes Hd−s,p∗

loc (Rn). Alternatively, inequalities
(2.7)–(2.8) are exactly the condition that Hs,p

loc includes H(d+d0)/2,2
loc , which highlights the importance of this

L2-based space. In effect, Lemma 2.8 implies Sd
d0

(Hs,p) is nonempty exactly when it contains ((d+d0)/2, 2).
For example, consider the case of a general second-order operator, so d = 2 and d0 = 0. Then S2

0 (Hs,p) is
non-empty when Hs,p

loc (Rn) contains H1,2
loc (Rn), the natural L2-based space for a weak existence theory. See

also Figure 1, where the key L2-based space appears as a small square.

In addition to the mapping properties of L described in Proposition 2.6 we require an analogous result for
the commutator of L with a smooth cutoff function ϕ.

Lemma 2.9. LetΩ be a bounded open subset of Rn. Suppose 1 < p, q <∞, s > n/p, σ ∈ R and d, d0 ∈ Z≥0
with d ≥ d0. Let L be an operator of class Ld

d0
(Hs,p;Ω) and let ϕ ∈ D(Ω). Then [L, ϕ] extends from a map

C∞(Ω) 7→ D′(Ω) to a continuous linear map Hσ,q(Ω) 7→ Hσ−d+1,q(Ω) so long as (σ + 1, q) ∈ Sd
d0

(Hs,p).
Moreover, if d0 = 0, the same result holds if (σ, q) ∈ Sd

0 (Hs,p).

11



Proof. Suppose u ∈ Hσ,q(Ω). A term of [L, ϕ]u has the form

aα∂βϕ∂γu

where aα ∈ Hs−d+|α|,p and where max(1, d0) ≤ |α| ≤ d and |γ| ≤ |α| − 1. The result in the case of general
d0 follows from a direct computation using these facts along with Theorem 2.5.

If d0 = 0, we can improve the result as follows. Let L̂ be L with its zero-order term removed, so L̂ ∈
Ld

1(Hs,p;Ω). Then [L, ϕ] = [L̂, ϕ] and using the result just proved we find that the commutator [L, ϕ] maps
Hσ,q(Ω) → Hσ−d+1,a(Ω) so long as (σ+1, q) ∈ Sd

1 (Hs,p). But a routine computation shows that this condition
is equivalent to (σ, q) ∈ Sd−1

0 (Hs,p) and the claimed improvement follows since S d−1
0 (Hs,p) ⊃ S d

0(Hs,p).

2.2 Rescaling estimates

For a Schwartz function u let u{r}(x) = u(rx). This rescaling operation extends to general tempered distri-
butions by continuity and duality arguments, and we use the same notation when u is a distribution. When
m is a non-negative integer, it is easy to see that u 7→ u{r} is a continuous automorphism of Hm,p(Rn) for all
1 < p < ∞. The same holds for Hs,p(Rn) for s > 0 by interpolation, and for s < 0 by an elementary duality
argument.

In this section, we prove two principal estimates for the norms of rescaling operators, with bounds depending
on r along with the parameters of the function space being acted on. First, we have Proposition 2.10, which
establishes the desired estimates for functions with integer-order differentiability. Then, using interpolation,
we generalize the estimates to non-integer differentiability at the penalty of a mild loss of sharpness; this
is the content of Proposition 2.17, which is the main result of this section. In fact, one can recover the
sharpness using more sophisticated tools from Littlewood-Paley theory, and indeed we do for the broader
class of Triebel-Lizorkin spaces in Section 3.2. Nevertheless, the less-than optimal estimates of Proposition
2.17 are sufficient to establish local elliptic regularity in the context of Bessel potential function spaces, and
it permits a proof using only a minimal set of tools.

Proposition 2.10. Suppose 1 < p < ∞, m ∈ Z and that χ is a Schwartz function on Rn. There exists a
constant α ∈ R such that for all 0 < r ≤ 1 and all u ∈ Hm,p(Rn)

||χu{r}||Hm,p(Rn) ≲ rα||u||Hm,p(Rn). (2.12)

Specifically:

1. Inequality (2.12) holds with

α = min
(
m − n

p
, 0

)
unless m − n/p = 0, in which case it holds for any choice of α < 0, with implicit constant depending
on α.

2. If m > n/p (in which case functions in Hm,p(Rn) are Hölder continuous) and if u(0) = 0, then inequal-
ity (2.12) holds with

α = min
(
m − n

p
, 1

)

12



unless m − n/p = 1, in which case it holds for any choice of α < 1, with implicit constant depending
on α.

Proposition 2.10 is established in the following sequence of elementary results which treat specific subcases
and supporting lemmas. Specifically, it is an immediate consequence of Corollary 2.13, Lemma 2.14 and
Corollary 2.16 below. In applications, χ in Proposition 2.10 will be compactly supported and we are ef-
fectively interested in rescaling u from a ball of radius r < 1 up to a ball of fixed radius. Derivatives are
dampened under this operation, and the role of χ is to control the zero-frequency terms; without the cutoff
function, for all m > 0 the optimal scaling would be α = −n/p instead.

We begin in the easier setting m ≤ 0, in which case it turns out that the the cutoff function plays no role.
When m = 0, we have the following consequence of the change of variables formula that the Lp norm has
straightforward scaling behavior for all r > 0.

Lemma 2.11. Suppose 1 < p <∞, r > 0, and u ∈ Lp(Rn). Then

||u{r}||Lp(Rn) = ||u||Lp(Rn)r−n/p.

Turning to the case m < 0 in Proposition 2.10, the proof proceeds via a duality argument, for which we need
the following result concerning rescaling Hk,p(Rn) for k > 0 with r > 1 (rather than r ≤ 1).

Lemma 2.12. Suppose 1 < p <∞ and k ∈ Z≥0. For all r ≥ 1 and all u ∈ Hk,p(Rn),

||u{r}||Hk,p(Rn) ≲ ||u||Hk,p(Rn)r
m− n

p . (2.13)

Proof. Lemma 2.11, the Gagliardo-Nirenberg-Sobolev inequality and the fact that r ≥ 1 imply

||u{r}||Hk,p(Rn) ≲ ||u{r}||Lp(Rn) +
∑
|α|=k

||∇αu{r}||Lp(Rn)

= r−
n
p ||u||Lp(Rn) + rk

∑
|α|=k

||(∇αu){r}||Lp(Rn)

= r−
n
p ||u||Lp(Rn) + rk− n

p

∑
|α|=k

||(∇αu)||Lp(Rn))

≲ rk− n
p ||u||Hk,p(Rn).

The following corollary follows from duality from Lemma 2.12.

Corollary 2.13. Suppose 1 < p <∞ and m ∈ Z≤0. For all 0 < r ≤ 1 and all u ∈ Hm,p(Rn)

||u{r}||Hm,p(Rn) ≲ rm− n
p ||u||Hm,p(Rn).

13



Proof. Using a density argument it is enough to establish the result when u is smooth and compactly sup-
ported. For any test function ϕ,

|
〈
u{r}, ϕ

〉
| =

∣∣∣∣∣∫
Rn

u(rx)ϕ(x) dx
∣∣∣∣∣

= r−n
∣∣∣∣∣∫
Rn

u(y)ϕ(y/r) dy
∣∣∣∣∣

≤ r−n||u||Hm,p(Rn)||ϕ{1/r}||H−m,p∗ (Rn).

(2.14)

Since −m ≥ 0 and since 1/r ≥ 1, Lemma 2.12 implies

||ϕ{1/r}||H−m,p∗ (Rn) ≲ rm+ n
p∗ ||ϕ||H−m,p∗ (Rn)

where the implicit constant is independent of r and u. Hence

|
〈
u{r}, ϕ

〉
| ≲ ||u||Hm,p(Rn)||ϕ||H−m,p∗ (Rn)r

−n+m+ n
p∗ = ||u||Hm,p(Rn)||ϕ||H−m,p∗ (Rn)r

m− n
p ,

which concludes the proof, noting that Hm,p(Rn) is the dual space of H−m,p∗ (Rn).

Corollary 2.13 implies Proposition 2.10 in the case m ≤ 0, for if χ is a Schwartz function ||χu||Hm,p(Rn) ≲
||u||Hm,p(Rn). We now turn to the more involved case of Proposition 2.10, m > 0.

Lemma 2.14. Suppose 1 < p < ∞, m ∈ N and that χ is a Schwartz function on Rn. There exists α ∈ R
such that for all 1 < r ≤ 1 and all u ∈ Hm,p(Rn)

||u{r}||Hm,p(Rn) ≲ rα||u||Hm,p(Rn). (2.15)

Specifically, we can take α = min(0,m − n/p) in inequality (2.15) unless m − n/p = 0, in which case
inequality (2.15) holds for any choice of α < 0 and the implicit constant depends on α.

Proof. Repeated applications of the Gagliardo-Nirenberg-Sobolev inequality imply

||χu{r}||Hm,p(Rn) ≲ ||χu{r}||Lp(Rn) + ||∇mu{r}||Lp(Rn) (2.16)

where the implicit constant depends on χ; since χ is fixed the explicit dependence is unimportant.

The second term on the right-hand side of equation (2.16) is easy to estimate. Using the identity ∇mu{r} =

rm(∇mu){r} Lemma 2.11 we find

||∇mu{r}||Lp(Rn) ≲ rm−n/p||∇mu||Lp(Rm) ≤ rm−n/p||u||Hm,p(Rn).

Turning to the low order term, first consider the case m > n/p. Sobolev imbedding implies u ∈ L∞(Rn) and

||χu{r}||Lp(Rn) ≤ ||χ||Lp(Rn)||u{r}||L∞(Rn) = ||χ||Lp(Rn)||u||L∞(Rn)

≲ ||u||Hm,p(Rn) = rmin(0,m−n/p)||u||Hm,p(Rn)

Now suppose m < n/p. Then Sobolev embedding implies u ∈ Lq(Rn) where

1
q
=

1
p
− m

n
.
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Hölder’s inequality, the fact that χ lies in every Lebesgue space, and Lemma 2.11 imply

||χu{r}||Lp(Rn)) ≲ ||u{r}||Lq(Rn) ≤ r−n/q||u||Lq(Rn)

= rm−n/p||u||Lq(Rn) ≲ rm−n/p||u||Hm,p(Rn) = rmin(m−n/p,0)||u||Hm,p(Rn).

When m = n/p we use the marginal case of Sobolev embedding and an argument similar to the above to
conclude

||χu{r}||Lp(Rn) ≲ r−n/q||u||Hm,p(Rn)

for any q ≥ p. Taking q sufficiently large we find inequality (2.15) holds for any choice of α < 0.

Lemma 2.14 completes the proof of part (1) of Proposition 2.10, and the following two results establish part
(2).

Lemma 2.15. Let χ be a Schwartz function on Rn and let α ∈ [0, 1]. For all 0 < r ≤ 1 and all u ∈ C0,α(Rn)
with u(0) = 0,

||χu{r}||Lp(Rn) ≲ ||u||C0,α(Rn)r
α.

Proof. We divide Rn into three regions: the ball B1(0), the annulus A = B1/r(0) \ B1(0) and the exterior
region E = Rn \ B1/r(0). On the unit ball, since u(0) = 0,

||χu{r}||Lp(B1(0)) ≲ ||χ||L∞(Rn)||u||C0,α(B1(0))r
α.

To obtain the remainder of the estimate, pick a constant B > 0 such that |χ(x)| ≤ B|x|−(n+1)/p−α for all
x ∈ Rn with |x| ≥ 1. Then, letting Cn be the volume of the unit n − 1 sphere, we find on the annulus A,∫

A
χpup

{r} ≤ Cn

∫ 1/r

1
Bps−n−1−αp||u||pC0,α(Rn)(rs)αpsn−1 ds

≤ CnBp||u||pC0,α(Rn)r
pα

∫ 1/r

1
s−2 ds ≤ CnBp||u||pC0,α(Rn)r

pα.

(2.17)

Taking pth roots establishes the desired estimate on A.

Finally, for the exterior region we have∫
E
|χu{r}|p ≤ CnBp||u||pC0,α(Rn)

∫ ∞

1/r
s−n−1−αpsn−1 ds = CnBp||u||pC0,α(Rn)

1
1 + αp

r1+αp

which completes the proof.

Corollary 2.16. Let χ be a Schwartz function on Rn. Suppose 1 < p < ∞ and m ∈ N with m > n/p. There
exists α ∈ R such that for all 0 < r ≤ 1 and all u ∈ Hm,p(Rn) with u(0) = 0

||χu{r}||Hm,p(Rn) ≲ rα||u||Hm,p(Rn). (2.18)

Specifically, we can take α = min(1,m − n/p) in inequality (2.18) unless m − n/p = 1, in which case
inequality (2.18) holds for any choice of α < 1 and the implicit constant depends on α.
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Figure 2: Interpolation regions in Proposition 2.17.

Proof. Following the argument of the beginning of the proof of Lemma 2.14 we know that

||χu{r}||Hm,p(Rn) ≲ ||χu{r}||Lp(Rn) + ||∇mu{r}||Lp(Rn)

and that ||∇mu{r}||Lp(Rn) ≲ rm−n/p||u||Hs,p(Rn). Hence it suffices to show

||χu{r}||Lp(Rn) ≲ rmin(1,m−n/p)||u||Hm,p(Rn).

Suppose first that 0 < m − n/p < 1. Then u ∈ C0,α(Rn) with α = m − n/p. Since u(0) = 0, Lemma 2.15
implies

||χu{r}||Lp(Rn) ≲ ||u||C0,α(Rn)r
α ≲ ||u||Hm,p(Rn)rm−n/p = ||u||Hm,p(Rn)rmin(1,m−n/p).

On the other hand, if m − n/p > 1 then u lies in C0,1(Rn) and the same argument shows

||χu{r}||Lp(Rn) ≲ ||u||Hm,p(Rn)r1 = ||u||Hm,p(Rn)rmin(1,m−n/p)

The result in the marginal case m − n/p = 1 follows from a similar argument using the fact that Hm,p(Rn)
embeds into C0,α(Rn) for any α ∈ (0, 1).

Having now established Proposition 2.10, we turn to its generalization to non-integer orders of differentia-
bility. In fact, one can show that the statement of Proposition 2.10 generalizes without change, other than
replacing m ∈ Z with s ∈ R; see Proposition 3.10 which establishes an extension of this fact to the broader
class of Triebel-Lizorkin spaces. The following result is mildly weaker, but is easier to prove and is suffi-
cient for our application establishing local elliptic regularity. The key difference is that the equal sign in the
definition of the exponent α in parts (1) and (2) of Proposition 2.10 has been replaced with a strict inequality.

16



Proposition 2.17. Suppose 1 < p < ∞, s ∈ R and χ is a Schwartz function on Rn. There exists α ∈ R such
that for all 0 < r ≤ 1 and all u ∈ Hs,p(Rn),

||χu{r}||Hs,p(Rn) ≲ rα||u||Hs,p(Rn). (2.19)

In particular:

1. Inequality (2.19) holds with any

α < min
(
s − n

p
, 0

)
with implicit constant depending on α.

2. If s > n/p and u(0) = 0 then inequality (2.19) holds with any

α < min
(
s − n

p
, 1

)
with implicit constant depending on α.

Proof. We divide the tuples (s, 1/p) in R× (0, 1) into the following regions (see Figure 2):

A: s ≤ n − 1, 0 < 1/p < 1, s − n/p < 0,

B: s ≥ 1, 0 < 1/p < 1, s − n/p > 0,

C: s < 1, s − n/p ≥ 0,

D: s > n − 1, s − n/p ≤ 0,

E : 1 ≤ s ≤ n − 1, s − n/p = 0.

Suppose (s, 1/p) ∈ A and for the moment assume s ≥ 0. If s is an integer, the result follows from Proposi-
tion 2.10 so we can assume 0 < s < n − 1. There exist 1/p0, 1/p1 ∈ (0, 1) such that (s, 1/p) lies on the line
joining (0, 1/p0) and (n − 1, 1/p1). That is,

(s, 1/p) = (1 − θ)(0, 1/p0) + θ(n − 1, 1/p1)

for some θ ∈ (0, 1). Since Hs,p(Rn) = [H0,p0 (Rn),Hn−1,p1 (Rn)]θ we conclude from Proposition 2.10 and
interpolation applied to the map u 7→ χu{r} that

||χu{r}||Hs,p(Rn) ≲ (r−n/p0 )1−θ(rn−1−n/p1 )θ||u||Hs,p(Rn) = rs−n/p||u||Hs,p(Rn).

Replacing Proposition 2.10 with Corollary 2.13, the same technique works in region A if s < 0 and indeed
the argument is simpler since we can select p0 = p1 = p.

If (s, 1/p) ∈ B and s is an integer then Proposition 2.10 implies inequality (2.12) holds with α = 0. When s
is not an integer we can interpolate between (⌊s⌋, 1/p1) and (⌈s⌉, 1/p2) for appropriate choices of p1 and p2
to obtain the same result.
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Next, suppose (s, 1/p) lies in the triangular region C, so n/p < s < 1. Consider any σ with 0 < σ < n/p, so
σ < s < 1 as well. Then

Hs,p(Rn) = [Hσ,p(Rn),H1,p(Rn)]θ

with θ = (s − σ)/(1 − σ) ∈ (0, 1). From interpolation we find

||χu{r}||Hs,p(Rn) ≲ (rσ−n/p)1−θ||u||Hs,p(Rn).

Noting that 1 − θ → (1 − s)/(1 − n/p) < ∞ as σ → n/p we can take σ as close to n/p from below as we
please to conclude that inequality (2.19) holds with any fixed choice of α < 0. Note that this interpolation,
and the one to follow for region D, is the source of the loss of sharpness of the current proposition.

In the region D the argument is similar to the argument for region C; we now interpolate between a point
with s = n − 1 and a point with s > n/p in region A taken arbitrarily close to the line s = n/p. On the
line segment E the proof follows by interpolating between a point in region A and a point region B taken
arbitrarily close to the line segment. This completes the proof of part (1).

The proof of part (2) is proved in a completely analogous way with the main division now occurring on the
line s = n/p + 1. Given the careful proof of part (1) we omit the details.

2.3 Interior elliptic estimates

This section contains our principal elliptic regularity results, which are established in two steps. First, Propo-
sition 2.20 shows that if an operator is elliptic at a single point, then elliptic regularity can be established
for functions that are supported in a sufficiently small neighborhood near the point. The rescaling estimates
of the previous section, along with a parametrix construction, are the key tools needed at this first stage.
Theorem 3.21 then builds on Proposition 2.20 to obtain full interior regularity for elliptic operators using
a partition of unity argument along with a bootstrap. The commutator estimates of Lemma 2.9 are the key
technical used at this second stage.

Definition 2.18. Let Ω be an open subset of Rn. Suppose 1 < p <∞ and s > n/p. An operator∑
|α|≤d

aα∂α

of class Ld
d0

(Hs,p;Ω) is elliptic at x0 ∈ Ω if for every ξ ∈ Rn \ {0}∑
|α|=d

aα(x0)ξα ∈ Rk×k

is non-singular, where ξα = ξα1 · · · ξαd .

We have the following standard parametrix construction for homogeneous, constant coefficient elliptic op-
erators.

Lemma 2.19. Suppose L =
∑

|α|=d aα∂α is a constant coefficient elliptic differential operator. There exists
maps Q and T acting on tempered distributions supported on BR(0) such that
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• Q : Hs−d,p(Rn) → Hs,p(Rn) is is continuous for all s ∈ R and 1 < p <∞,

• T : Hs1,p(Rn) → Hs2,p(Rn) is continuous for all s1, s2 ∈ R and 1 < p <∞,

• QLu = u + Tu for all tempered distributions u.

Proof. Let χ be a smooth, compactly supported cutoff function that equals 1 in a neighborhood of zero.
Define the parametrix Q on tempered distributions by Qu = F−1(1−χ(ξ))(aαξα)−1F , where F is the Fourier
transform. Similarly, let T be the smoothing map Tu = F−1χ(ξ)F . A computation shows QLu = u+Tu for
all tempered distributions.

Setting ⟨ξ⟩ =
√

1 + |ξ|2, the claimed continuity properties of Q follows from factoring the multiplier as[
(1 − χ(ξ))(aαξα)−1 ⟨ξ⟩d

]
⟨ξ⟩−d

The continuity of the multiplier operator determined by the the first factor follows from the Mikhlin multi-
plier theorem whereas the second factor is handled by the definition of Bessel potential spaces.

The smoothing map T has a compactly supported multiplier and its continuity properties follow from the
same arguments as above, without restriction on the gain in derivatives.

We now establish Proposition 2.20, the regularity result for functions supported in a sufficiently small region
near a point where an operator is elliptic. The statement of this proposition requires notation for function
spaces associated with compactly supported functions on a bounded open set Ω, and there are two natural
classes of spaces one can work with. The first is the closure of D(Ω) in Hs,p(Ω). We find it more convenient
to take the closure of D(Ω) in Hs,p(Rn) instead; following the notation of [Mc00] we denote this latter space
by H̃s,p(Ω). An element in H̃s,p(Ω) is, by definition, an element of Hs,p(Rn) and it is easy to see that it has
support in Ω. Moreover, if u ∈ Hs,p(Ω) has support contained in a compact set V ⊆ Ω, an easy argument
using a cutoff function that equals 1 on V and vanishes outsideΩ shows that there exists a unique ũ ∈ H̃s,p(Ω)
with ũ|Ω = u, and indeed one has the estimate ||ũ||H̃s,p(Ω) ≲ ||u||Hs,p(Ω) with implicit constant depending on
V . Following standard practice we informally identify u with its zero extension ũ.

Proposition 2.20. Let Ω ⊂ Rn be a bounded open set. Suppose s ∈ R, 1 < p < ∞, d, d0 ∈ Z≥0 with
d0 ≤ d, that s > n/p, and that these parameters satisfy inequalities (2.7)–(2.8) of Lemma 2.8 and hence
Sd

d0
(Hs,p) , ∅. Suppose additionally that L =

∑
|α|≤d aα∂α is a differential operator of class Ld

d0
(Hs,p;Ω)

and that for some x ∈ Ω that
L0 =

∑
|α|=m

aα(x)∂α

is elliptic. Given (σ, q) ∈ Sd
d0

(Hs,p) there exists r > 0 such that Br(x) ⊂ Ω and such that if

u ∈ H̃d−s,p∗ (Br(x)) and

Lu ∈ Hσ−d,q(Ω)

then u ∈ Hσ,q(Ω) and
||u||Hσ,q(Ω) ≲ ||Lu||Hσ−d,q(Ω) + ||u||Hd−s−1,p∗ (Ω) (2.20)

with implicit constant independent of u but depending on all other parameters.
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Proof. It suffices to prove the result assuming x = 0 and that B1(0) ⊂ Ω. From the definition of Bessel
potential spaces on bounded domains, we can further assume that the coefficients of L have been extended
to all of Rn.

For each r ∈ (0, 1] define
L[r] = L0 + B[r] +C[r]

where
B[r] =

∑
|α|=d

(aα − aα(0)){r}∂α

C[r] =
∑
|α|<d

rd−|α|(aα){r}∂α.
(2.21)

Suppose u ∈ H̃d−s,p∗ (Br(0)) for some r < 1 and that Lu ∈ Hσ−d,q(Ω). Recall that by definition u ∈
Hd−s,p∗ (Rn). Moreover, Lu is compactly supported in Ω and hence defines an element of H̃σ−d,q(Ω) ⊂
Hσ−d,q(Rn) ⊂ H−s,p∗ (Rn). In particular, we can treat u and Lu as distributions on Rn and a short computation
shows u{r} satisfies

L0u{r} + B[r]u{r} +C[r]u{r} = rd(Lu){r}

as an equation in H−s,p∗ (Rn).

Pick a cutoff function χ that equals 1 on a neighborhood of B1(0). Since u{r} is supported on B1(0),

L0u{r} + χB[r]u{r} + χC[r]u{r} = rd(Lu){r} (2.22)

as well.

Let Q and T be the parametrix and smoothing operator for L0 from Lemma 2.19. Applying χQ to equation
(2.22) we have

u{r} + χTu{r} + χQ ◦ (χ(B[r] +C[r]))u{r} = rdχQ(Lu){r}. (2.23)

It will be convenient to define Q′ = χQ and T ′ = χT , in which case Q′ has the same continuity properties as
in Lemma 2.19 and, using the compact support of χ, T ′ is a continuous map Hs1,p1 (Rn) → Hs2,p2 (Rn) for all
choices of s1, s2, p1, p2.

Consider a coefficient of C[r], cα = rd−|α|(aα){r} ∈ Hs−d+|α|,p(Rn). From Proposition 2.17, for any ϵ > 0

||χcα||Hs−d+|α|,p(Rn) ≲ rd−|α|rmin
(
s−d+|α|− n

p ,0
)
−ϵ ||aα||Hs+d−|α|,p(Rn) = rmin

(
s− n

p ,d−|α|
)
−ϵ ||aα||Hs+d−|α|,p(Rn). (2.24)

Similarly, consider a coefficient bα = (aα − aα(0)){r} of B[r]. Since aα ∈ Hs,p(Rn) when |α| = d, and since
bα(0) = 0, Proposition 2.17 implies

||χbα||Hs,p(Rn) ≲ rmin
(
s− n

p ,1
)
−ϵ ||bα||Hs,p(Rn). (2.25)

Pick ϵ > 0 with ϵ < min
(
s − n

p , 1
)
. Since d − |α| ≥ 1 in estimate (2.24) it follows that the coefficients

of χB[r] and χC[r] converge to zero in the norms indicated on the left-hand sides of inequalities (2.24) and
(2.25) as r → 0. Using the fact that these coefficients are compactly supported in a common bounded open
set, a computation using Theorem 2.5 shows that χ(B[r]+C[r]) converges to zero as an operator Hσ′,q′ (Rn) →
Hσ′−d,q′ (Rn) as r → 0 for any choice of (σ′, q′) ∈ Sd

d0
(Hs,p). Hence we may take r sufficiently small so
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that I + Q′ ◦ (χ(B[r] + C[r])) has a continuous inverse U[r] : Hs−d,p∗ (Rn) → Hs−d,p∗ (Rn) that also maps
Hs+d0,p(Rn) → Hs+d0,p(Rn) and Hσ,q(Rn) → Hσ,q(Rn). Applying U[r] to equation (2.23) we conclude

u{r} + U[r]T ′u{r} = rdU[r]Q′(Lu){r}

and consequently
||u{r}||Hσ,q(Rn) ≲ ||U[r]T ′u{r}||Hσ,q(Rn) + ||U[r]Q′(Lu){r}||Hσ,q(Rn)

≲ ||U[r]T ′u{r}||Hs+d0 ,p(Rn) + ||Q′(Lu){r}||Hσ,q(Rn)

≲ ||u{r}||Hd−s−1,p∗ (Rn) + ||(Lu){r}||Hσ−d,q(Rn).

(2.26)

Note that the implicit constants above depend on r, but this dependence is unimportant since the smallness
of r has already be chosen. Since rescaling v 7→ v{r} with fixed r is a continuous automorphism of any
Bessel potential space on Rn we conclude

||u||Hσ,q(Rn) ≲ ||Lu||Hσ−d,q(Rn) + ||u||Hd−s−1,p∗ (Rn). (2.27)

Estimate (2.20) follows from inequality (2.27) along with the fact that if v ∈ Hσ′,q′ (Rn) for some (σ′, q′) has
support on a fixed Br(0) ⊂ Ω, then ||v||Hσ′ ,q′ (Ω) ∼ ||v||Hσ′ ,q′ (Rn) with implicit constants depending on r.

We now arrive at our main regularity result.

Theorem 2.21. Let Ω be a bounded open set in Rn and suppose s, p, d0 and d are parameters as in Lemma
2.8 such that s > n/p and such that inequalities (2.7)–(2.8) are satisfied so Sd

d0
(Hs,p) , ∅. Suppose L is of

class Ld
d0

(Hs,p;Ω) and is elliptic on Ω. If u ∈ Hd−s,p∗ (Ω) and Lu ∈ Hσ−d,q(Ω) for some (σ, q) ∈ Sd
d0

(Hs,p)
then for any open set U with U ⊆ Ω, u ∈ Hσ,q(U) and

||u||Hσ,q(U) ≲ ||Lu||Hσ−d,q(Ω) + ||u||Hd−s−1,p∗ (Ω). (2.28)

Proof. The proof is a bootstrap that relies on the following main step. We have initially assumed that
u ∈ Hd−s,p∗ (Ω) so that L can be applied to it, and that Lu ∈ Hσ−d,q(Ω) for some (σ, q) ∈ Sd

d0
(Hs,p).

Suppose we know additionally that on some open set ΩA with U ⊂ ΩA ⊂ Ω that u ∈ HσA,qA (ΩA) for some
pair (σA, qA) such that the commutator result Lemma 2.9 applies. Now consider a target level of regularity
(σB, qB) satisfying the following:

H1: σB ≤ σ,

H2:
1
q
− σ

n
≤ 1

qB
− σB

n
,

H3: σB ≤ σA + 1,

H4:
1
qA

− σA + 1
n

≤ 1
qB

− σB

n
.

The first two conditions ensure via Sobolev embedding that Hσ,q(Ω) is contained in HσB,qB (Ω) and form a
hard limit on the target regularity. The second two conditions ensure HσB,qB (ΩA) ⊃ HσA+1,qA (ΩA) and limit
the improvement in regularity that can be achieved on a single step of the bootstrap. We claim that under

21



these hypotheses that u ∈ HσB,qB (ΩB) for some open set ΩB ⊂ ΩA such that U ⊂ ΩB and that we have the
estimate

||u||HσB ,qB (ΩB) ≲ ||Lu||Hσ−d,q(Ω) + ||u||HσA ,qA (ΩA) (2.29)

with implicit constant independent of u.

To establish inequality (2.29) we first select an open set ΩB with U ⊆ ΩB ⊆ ΩB ⊆ ΩA. Since ΩB is compact
we can select finitely many balls Bi = Bri (xi) ⊂ Ω0 that coverΩB and such that the conclusion of Proposition
2.20 holds for the pair (σB, qB). Using a partition of unity subordinate to the balls Bi and ΩA \ ΩB we can
find non-negative smooth functions ϕi compactly supported in Bi such that

∑
ϕi = 1 on ΩB.

Consider
L(ϕiu) = ϕiLu + [L, ϕi]u. (2.30)

From conditions (H1)–(H2) and Sobolev embedding we know

||ϕiLu||HσB−d,qB (ΩB) ≲ ||Lu||HσB−d,qB (ΩB) ≲ ||Lu||Hσ−d,q(Ω). (2.31)

Conditions (H3)–(H4) allow us to apply Sobolev embedding to the commutator term from equation (2.30)
and we have

||[L, ϕi]u||HσB−d,qB (Bi) ≲ ||[L, ϕi]u||HσA−d+1,qA (Bi). (2.32)

Since we have assumed that (σA, qA) satisfies the conditions of Lemma 2.9 (i.e., either (σA + 1, qA) ∈
Sd

d0
(Hs,p) or d0 = 0 and (σA, qA) ∈ Sd

d0
(Hs,p)), we have

||[L, ϕi]u||HσA−d+1,qA (Bi) ≲ ||u||HσA ,qA (Bi) ≲ ||u||HσA ,qA (ΩA). (2.33)

Combining inequalities equalities (2.31), (2.32) and (2.32) we find L(ϕiu) ∈ HσB−d,qB (Bi) and we conclude
from Proposition 2.20 that ϕiu ∈ HσB,qB (Rn) and additionally

||ϕiu||HσB ,qB (ΩA) ≲ ||Lu||Hσ,q(Ω) + ||u||HσA ,qA (ΩA).

Inequality (2.29) now follows from the observation ||ϕiu||HσB ,qB (ΩB) ≲ ||ϕiu||HσB ,qB (ΩA) and summing on i.

We now describe the bootstrap in the easier case when d0 = 0, where Lemma 2.9 has the fewest restrictions.
The argument begins with (σ0, q0) = (d − s − 1, p∗) and (σ1, q1) = (d − s, p∗). Conditions (H1)–(H2) are
an immediate consequence of the definition of the region Sd

0 (Hs,p) and conditions (H3)–(H4) are obvious.
Moreover, since (σ0 + 1, q0) = (d − s, p∗) ∈ Sd

0 (Hs,p), Lemma 2.9 applies. Hence all the conditions of the
bootstrap step are met and we conclude there is an open set Ω1 with U ⊂ Ω1 ⊂ Ω such that

||u||Hd−s,p∗ (Ω1) ≲ ||Lu||Hσ,q(Ω) + ||u||Hd−s−1,p∗ (Ω). (2.34)

We now iteratively apply the bootstrap step through a finite sequence (σk, qk) in S d
0(Hs,p) described below

that starts at (s − d, p∗) and terminates at (σ, q). At each step we ensure conditions (H1)–(H4) hold and
obtain inequalities

||u||Hσk+1 ,qk+1 (Ωk+1) ≲ ||Lu||Hσ,q(Ω) + ||u||Hσk ,qk (Ωk) (2.35)

for a sequence nested open sets U ⊂ Ωk+1 ⊂ Ωk ⊂ Ω. Because we have assumed that d0 = 0, and since
each (σk, qk) ∈ Sd

0 (Hs,p), we are assured that at each step we can use the commutator estimate from Lemma
(2.9). Inequality (2.28) follows from chaining together the initial estimate (2.34) with the estimates (2.35)
obtained along the bootstrap.
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The specific sequence (σk, qk) can be achieved as follows, starting from (σ1, q1) = (d − s, p∗), in two cases
depending on whether 1/q ≤ 1/p∗ or not as depicted in Figure 3.

If 1/q ≤ 1/p∗ we first lower 1/qk by steps of at most 1/n until it has been lowered to 1/q. At this point we
raise σk by steps of at most 1 until it has been raised to q. Note that at each step k,

1
p
− s

n
≤ 1

q
− σ

n
≤ 1

qk
− σk

n
≤ 1

q1
− σ1

n
=

1
p∗

− d − s
n

and hence the sequence remains in Sd
0 (Hs,p) as is required to apply Lemma 2.9. These same inequalities also

show that conditions (H1)–(H2) are maintained at each step. Moreover, conditions (H3)–(H4) hold because
we either fix σk and lower qk by at most 1/n or we fix qk and raise σk by at most 1.

Now suppose 1/q > 1/p∗. Since 1/q − σ/n ≤ 1/p∗ − (d − s)/n, we can lower σ to a value σ′ such that
the inequality becomes an equality. We now start the bootstrap by raising σk to min(σk + 1, σ′) at each step
while simultaneously raising 1/qk so that the value 1/qk −σk/n = 1/p∗ − (d − s)/n remains invariant. This
stage ends when (σk, qk) = (σ′, q). We then increase σk while leaving qk fixed as in the earlier argument
when 1/q < 1/p∗. The first stage of the sequence has d − s ≤ σk ≤ σ′ ≤ σ ≤ s and

1
p
− s

n
≤ 1

q
− σ

n
≤ 1

p∗
− d − s

n
=

1
qk

− σk

n
.

Hence for this first part of the sequence the terms (σk, qk) lie in Sd
0 (Hs,p) and additionally conditions (H1)–

(H2) are maintained. Moreover, condition (H3) is enforced because we raise σk by at most 1, and condition
(H4) is satisfied because it is an equality during this first stage where we lower 1/qk. The same argument as
in the case when 1/q ≤ 1/p∗ then shows that conditions (H1)–(H4) hold in the second stage when we raise
σk while leaving qk fixed. The proof is now complete in event that d0 = 0.

We now turn to the case d0 > 0 where the bootstrap requires more care because the hypotheses of Lemma
2.9 are more restrictive. Consider the case d0 = 1. If (σ, q) ∈ Sd

0 (Hs,p), we can simply apply the earlier
result, so it suffices to assume (σ, q) ∈ Sd

1 (Hs,p)) but (σ, q) < Sd
0 (Hs,p). Because d0 = 1 we can define a

point (σ′, q′) in Sd
0 (Hs,p) determined by (σ, q) and the following rules:

1. If σ < s, leave σ′ = σ fixed but raise 1/q by at most 1/n to 1/q′ such that 1/q′ − σ/n = 1/p − s/n.

2. If σ ≥ s and 1/p − s/n ≤ 1/q − σ/n, lower σ by at most 1 to s while simultaneously lowering 1/q
by at most 1/n so that the Lebesgue regularity 1/q − σ/n = 1/q′ − σ′/n is unchanged.

3. Otherwise, (σ, q) satisfies s ≤ σ ≤ σ + 1 and

1
p
− s + 1

n
≤ 1

q
− σ

n
<

1
p
− s

n

and we set (σ′, q′) = (s, p).

In each of these cases Hs,q(Ω) is contained in Hs′,q′ (Ω) by Sobolev embedding, so we can apply the original
bootstrap for d0 = 0 to get to (σ′, q′). Since (σ′, q′) ∈ Sd

0 (Hs,p) a computation shows (σ′+1, q′) ∈ Sd0
1 (Hs,p)

and hence the commutator result Lemma 2.9 can be applied at (σ′, q′). One verifies that in all three cases
listed above, the target regularity (σ, q) satisfies conditions (H1)-(H4) when starting from (σ′, q′) and we can
apply the bootstrap step exactly once to arrive at (σ, q). This proves the result when d0 = 1, and iterating
this argument obtains the proof for any value of d0.
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Figure 3: Two possible bootstrap paths.

3 Coefficients in Triebel-Lizorkin Spaces

This section generalizes the results of Section 2 to operators having coefficients in Triebel-Lizorkin spaces,
which are defined defined in terms of Littlewood-Paley projection operators. Let ϕ be a smooth radial bump
function that equals 1 on B1 and vanishes outside of B2 and let ψ(ξ) = ϕ(ξ)− ϕ(2ξ), so ψ(ξ) = 0 if |ξ| > 2 or
|ξ| < 1/2. For k ∈ Z we define the Littlewood-Paley projections Pk and P≤k

F[Pku](ξ) = ψ(2−kξ)F[u](ξ)

F[P≤ku](ξ) = ϕ(2−kξ)F[u](ξ).

We also use the notation Pa≤·≤b for
∑b

j=a P j.

Let s ∈ R and 1 < p, q < ∞. Given a tempered distribution u, each Pku is an analytic function on Rn and a
tempered distribution belongs to the Triebel-Lizorkin space F s,p

q (R) if

||u||F s,p
q (Rn) = ||P≤0u||Lp(Rn) +

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∞∑

k=1

(2sk|Pku|)q

1/q∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Rn)

<∞.

We call p the Lebesgue parameter, whereas q is the fine parameter. Bessel potential spaces are Triebel-
Lizorkin spaces with fine parameter q = 2 and, as recalled in the following section, Sobolev-Slobodeckij
spaces W s,p(Rn) are also special cases of Triebel-Lizorkin spaces with either q = 2 or q = p. Just as for
Bessel potential spaces, on an open set Ω ⊆ Rn, F s,p

q (Ω) consists of the restrictions to Ω of distributions
in F s,p

q (Rn) to Ω and is given the quotient norm. The text [Tr10] contains a comprehensive description of
Triebel-Lizorkin spaces, and indeed considers a wider set of parameters than those we employ here.
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Embedding properties for Triebel-Lizorkin spaces follow those for Bessel potential spaces with the following
rule of thumb: when a loss of derivatives is involved, the fine parameter has no role. Specifically, we
recall the following results summarizing [Tr10] Proposition 2.3.2/2 and Theorems 2.7.1 and 3.3.1 along
with [Tr78] Theorems 2.8.1 and 4.6.1; the notation A ↪→ B denotes a continuous inclusion of space A
into space B. Note that here and elsewhere when we quote established results, we restrict the range of the
parameters to 1 < p, q <∞ even when they apply with greater generality.

Proposition 3.1. Assume 1 < p, p1, p2, q, q1, q2 < ∞ and s, s1, s2 ∈ R, and suppose Ω is a bounded open
set in Rn.

1. If s1 > s2 then F s1,p
q1 (Rn) ↪→ F s2,p

q2 (Rn) and F s1,p
q1 (Ω) ↪→ F s2,p

q2 (Ω).

2. If q1 ≤ q2 then F s,p
q1 (Rn) ↪→ F s,p

q2 (Rn) and F s1,p
q1 (Ω) ↪→ F s2,p

q2 (Ω).

3. If p1 ≥ p2 then F s,p1
q (Ω) ↪→ F s,p2

q (Ω).

4. If s1 > s2 and 1
p1
− s1

n =
1
p2
− s2

n then F s1,p1
q1 (Rn) ↪→ F s2,p2

q2 (Rn).

5. If s1 > s2 and 1
p1
− s1

n ≤ 1
p2
− s2

n then F s1,p1
q1 (Ω) ↪→ F s2,p2

q2 (Ω).

6. If 0 < α < 1 then F
n
p+α,p

q (Rn) ↪→ C0,α(Rn) and F
n
p+α,p

q (Ω) ↪→ C0,α(Ω).

Note that for bounded open sets Ω, [Tr10] and [Tr78] proves these embedding properties under the the
addition hypothesis that Ω is a C∞ domain. The results for arbitrary bounded open sets follow as a corollary
using the quotient space definition of the relevant spaces.

Complex interpolation of Triebel-Lizorkin spaces is described in [Tr10] Theorems 2.4.7 and 3.3.6.

Proposition 3.2. Assume 1 < p1, p2, q1, q2 <∞ and s1, s2 ∈ R, and suppose Ω is either Rn or is a bounded
C∞ domain in Rn. For 0 < θ < 1,

[F s1,p1
q1 (Ω), F s2,p2

q2 (Ω)]θ = F s,p
q (Ω)

where
s = (1 − θ)s1 + θs2,

1
p
= (1 − θ)

1
p1
+ θ

1
p2
, (1 − θ)

1
q1
+ θ

1
q2
.

Duality of spaces of functions on Rn follows from [Tr10] Theorem 2.11.2. Duality for Lipschitz bounded do-
mains can be found in [Tr02], but the theory is more complex and we have avoided its use in our arguments;
see, e.g., Proposition A.7.

Proposition 3.3. Assume 1 < p, q < ∞ and s ∈ R. The bilinear map D(Rn) × D(Rn) → R given by
⟨ f , g⟩ :=

∫
Ω

f g extends to a continuous bilinear map F s,p
q (Rn)×F−s,p∗

q∗ (Rn) → R where 1/p∗ = 1− 1/p and

1/q∗ = 1 − 1/q. Moreover, f 7→ ⟨ f , ·⟩ is a continuous identification of F s,p
q (Rn) with (F−s,p∗

q∗ (Rn))∗.
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3.1 Mapping properties

Operators with coefficients in Triebel-Lizorkin spaces are defined analogously to those of Definition 2.4.

Definition 3.4. Suppose d0, d ∈ Z≥0 with d0 ≤ d. A differential operator on an open set Ω ⊆ Rn of the form∑
d0≤|α|≤d

aα∂α

is of class Ld
d0

(F s,p
q ;Ω) for some s ∈ R, and 1 < p, q <∞ if each

aα ∈ F s+|α|−d,p
q (Ω).

We have the following multiplication rules for Triebel-Lizorkin spaces that generalize the rules found in
Theorem 2.5. A self-contained proof is given in Appendix A.

Theorem 3.5. Let Ω be a bounded open subset of Rn. Suppose 1 < p1, p2, p, q1, q2, q <∞ and s1, s2, s ∈ R.
Let r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
p
− s

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map F s1,p1
q1 (Ω) × F s2,p2

q2 (Ω) →
F s,p

q (Ω) so long as

s1 + s2 ≥ 0 (3.1)
min(s1, s2) ≥ s (3.2)

max
(

1
r1
,

1
r2

)
≤ 1

r
(3.3)

1
r1
+

1
r2

≤ 1 (3.4)

1
r1
+

1
r2

≤ 1
r

(3.5)

with the the following caveats:

• Inequality (3.5) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.

• If si = s for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 then 1
q1
+ 1

q2
≥ 1.

• If s1 = s2 = s = 0 then
1
q
≤ 1

2
≤ 1

qi
for i = 1, 2.

Repeated applications of Theorem 3.5 lead to the following analogue of Proposition 2.6.
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Proposition 3.6. Let Ω be a bounded open set in Rn. Suppose 1 < p, q, a, b < ∞, s > n/p, σ ∈ R and
d, d0 ∈ Z≥0 with d ≥ d0. An operator of class Ld

d0
(F s,p

q ;Ω) extends from a map C∞(Ω) 7→ D′(Ω) to a
continuous linear map Fσ,a

b (Ω) 7→ Fσ−d,a
b (Ω) so long as

σ ∈ [d − s, s + d0]

1
a
− σ

n
∈

[
1
p
− s + d0

n
,

1
p∗ − d − s

n

]
(3.6)

and so long as:

• If σ = s + d0 then 1
q ≥ 1

b .

• If σ = d − s then 1
b ≥ 1

q∗ .

Moreover, operators in Ld
d0

(F s,p
q ;Ω) depend continuously on their coefficients aα ∈ F s−d+α,p

q (Ω).

Note that in the Bessel potential case, q = b = 2 in Proposition 3.6 and the supplemental conditions at
σ = s + d0 and σ = d − s are always satisfied. We have the following generalization of Definition 2.7.

Definition 3.7. Suppose 1 < p, q <∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. The compatible Sobolev indices
for an operator of class Ld

d0
(F s,p

q ;Ω) is the set

Sd
d0

(F s,p
q ) ⊆ R× (1,∞) × (1,∞)

of tuples (σ, a, b) satisfying (3.6) along with the additional conditions at the end of Proposition 3.6 when
σ = s + d0 or σ = d − s.

The proof of Lemma 2.8 generalizes to the Triebel-Lizorkin context with minimal changes, using Proposition
3.1 for facts about Sobolev embedding. The only interesting difference is that the marginal conditions at the
end of Proposition 3.6 adds an additional condition when s is the smallest possible value such that Sd

d0
(F s,p

q )
is nonempty.

Lemma 3.8. Suppose 1 < p, q <∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Then Sd
d0

(F s,p
q ) is nonempty if and

only if

s ≥ (d − d0)/2, and (3.7)
1
p
− s

n
≤ 1

2
− (d − d0)/2

n
(3.8)

with the additional condition q ≤ 2 in the marginal case s = (d − d0)/2. If S d
d0

(F s,p
q ) is non-empty then it

contains (s + d0, p, q), (d − s, p∗, q∗), and ((d + d0)/2, 2, 2). Moreover, if (σ, a, b) ∈ Sd
d0

(F s,p
q ), then we have

the continuous inclusions of Fréchet spaces

F s+d0,p
q,loc (Rn) ⊆ Fσ,a

b,loc(Rn) ⊆ Fd−s,p∗

q∗,loc (Rn). (3.9)
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Just as in the Bessel potential case, if an operator of class Ld
d0

(F s,p
q ;Ω) is compatible with any indices at all,

it acts on a compatible L2-based Bessel potential space, F(d−d0)/2,2
2 (Ω) = H(d−d0)/2,2(Ω).

The following commutator result generalizes Lemma 2.9.

Lemma 3.9. Suppose 1 < p, q, a, b < ∞, s > n/p, σ ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Let L be an
operator of class Ld

d0
(F s,p

q ;Ω) and let ϕ ∈ D(Ω). Then [L, ϕ] extends from a map C∞(Ω) 7→ D′(Ω) to a
continuous linear map Fσ,a

b (Ω) 7→ Fσ−d+1,a
b (Ω) so long as (σ + 1, a, b) ∈ Sd

d0
(F s,p

q ). Moreover, if d0 = 0, the
same result holds if (σ, a, b) ∈ Sd

0 (Hs,p
q ).

Proof. The proof in the case of general d0 is a computation that follows the analogous part of the proof of
Lemma 2.9. The only difference is that there are fine parameter restrictions that need to be checked. In
the notation of Theorem 3.5, nontrivial restrictions could happen when si = s, when s1 + s2 = 0 and when
s1 = s2 = s = 0. One readily verifies that under the given hypotheses that s1 = s2 = s = 0 cannot happen
and that in the remaining cases the fine parameter restrictions are always met.

If d0 = 0 the proof again follows the strategy of Lemma 2.9. First we observe that [L, ϕ] = [L̂, ϕ] where L̂
is L with its constant term eliminated. Using the case d0 = 1 already proved we have continuity so long as
(σ+1, a, b) ∈ Sd

1 (F s,p
q ), and computation shows that if (σ, a, b) ∈ Sd

0 (F s,p
q ) then (σ+1, a, b) ∈ Sd

1 (F s,p
q ).

3.2 Rescaling estimates

In this section we show that the rescaling estimates of Proposition 2.10 carry over to Triebel-Lizorkin spaces.

Proposition 3.10. Suppose 1 < p, q < ∞, s ∈ R and that χ is a Schwartz function on Rn. There exists a
constant α ∈ R such that for all 0 < r ≤ 1 and all u ∈ F s,p

q (Rn)

||χu{r}||F s,p
q (Rn) ≲ rα||u||F s,p

q (Rn). (3.10)

Specifically:

1. Inequality (3.10) holds with

α = min
(
s − n

p
, 0

)
unless s − n/p = 0, in which case it holds for any choice of α < 0, with implicit constant depending
on α.

2. If s > n/p (in which case functions in F s,p
q (Rn) are Hölder continuous) and if u ∈ F s,p

q (Rn) with
u(0) = 0, then inequality holds with

α = min
(
s − n

p
, 1

)
unless s − n/p = 1, in which case it holds for any choice of α < 1, with implicit constant depending
on α.

The remainder of this section is an extended proof of this result, and relies on the following elementary facts
from Littlewood-Paley theory.
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Proposition 3.11. Let 1 < p, q, t <∞.

1. If η is a Schwartz function then for any M > 0,

|(Pkη)(x)| ≲ 2−Mk

(1 + |x|M)

with implicit constant independent of x and k but depending on η and M.

2. There exist Schwartz functions κ, κ∗ such that for any tempered distribution u,

(Pku)(x) =
∫

u(x + 2−ky)κ(y) dy

(P≤ku)(x) =
∫

u(x + 2−ky)κ∗(y) dy,

with convolution and scaling interpreted in the distributional sense.

3. For all u ∈ Lp(Rn), k ∈ N, and x ∈ Rn

|Pku(x)| ≲ |(Mu)(x)| and

|P≤ku(x)| ≲ |(Mu)(x)|.

Here M is the Hardy-Littlewood maximal operator and the implicit constants are independent of u, k
and x.

4. For any sequence { fk}k∈N of functions in Lp(Rn),∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k∈N
|Pk fk|q


1/q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 ∑

k∈N
| fk|q


1/q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

.

5. Let s > 0 and a ∈ N. For all u ∈ F s,p
q (Rn),

||u||F s,p
q (Rn) ∼ ||u||Lp(Rn) +

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥a

|2skPku|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

.

6. (Littlewood-Paley Trichotomy) Suppose u ∈ Lp(Rn) and v ∈ Lt(Rn). Given k, k′, k′′ ∈ Z,

Pk((Pk′u)(Pk′′v)) = 0

unless one of the following three conditions holds:

• k′ ≤ k − 4 and k − 3 ≤ k′′ ≤ k + 3,

• k − 3 ≤ k′ ≤ k + 3 and k′′ ≤ k + 5,

• k′ ≥ k + 4 and |k′ − k′′| ≤ 2.
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Part (1) is a consequence of the definition of the projection operator and elementary properties of the Fourier
transform. The proof of parts (2) and (3) can be found in the approachable lecture notes [Ta01], weeks 2/3.
Part (4) in full generality follows from the Fefferman-Stein inequality [FS71] together with part (3). We
note, however, that the cases of greatest interest (Bessel potential spaces and Sobolev-Slobodeckij spaces)
only involve the cases q = 2 and q = p, which do not require the full power of [FS71]. The lecture notes
[Ta01] contain a proof of part (4) when q = 2, and the result when q = p is an easy consequence of part
(3) and the Hardy-Littlewood maximal inequality. Part (5) follows from the definition of the norm, part (2)
and embedding F s,p

q (Rn) ↪→ F0,p
2 (Rn) = Lp(Rn). Part (6) is just a computation based on the supports of

convolutions of functions ψk used to define Littlewood-Paley projection; see [Ta01] for a related statement.
Note that there is an artificial asymmetry in part (6) between k′ and k′′, and symmetry can be restored at the
expense of increasing the number of cases.

As for Bessel potential spaces, rescaling u 7→ u{r} is a continuous automorphism of any space F s,p
q (Rn); for

s > 0 this is a straightforward consequence of the Closed Graph Theorem, using the fact that rescaling is
continuous acting on Lp(Rn), whereas for s < 0 and s = 0 the result follows from duality and interpolation
respectively. We initially require the following basic estimate for the norms of the rescaling maps.

Lemma 3.12. Let R > 0, and suppose 1 < p, q <∞ and s ∈ R. Then

||u{r}||F s,p
q (Rn) ≲ ||u||F s,p

q (Rn)

for all u ∈ F s,p
q (Rn) and all r ∈ [−R,R].

Proof. Recall the cutoff functions ϕ and ψ used to define the Littlewood-Paley projection operators and
define

ψk(ξ) =


0 k < 0
ϕ(ξ) k = 0
ψ(2−kξ) k > 0

A computation shows that for k ≥ 0,
(Pku{r})(x) = fk(rx)

where fk = F−1MkFu and where
Mk(ξ) = ϕk(rξ).

From the bound |r| ≤ R we can find J independent of r such that

Mk = Mk

J∑
j=−J

ψk+ j

with the convention that ψk = 0 for k < 0. Hence

fk =
J∑

j=−J

(F−1MkF)[Pk+ ju].

Using [Tr10] Theorem 1.6.3 via the same argument as in [Tr10] Proposition 2.3.2/1 we find∫ (∑
| fk|q

)p/q
≲

∫ (∑
|Pku{r}|q

)p/q
= ||u||p

F s,p
q (Rn)
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with implicit constant independent of r ∈ [−R,R]. Recalling that (Pku{r})(x) = fk(rx) the result now follows
from the obvious uniform bounds on rescaling in Lp(Rn) for |r| ≤ R.

We now proceed with the proof of Proposition 3.10 part (1) is broken into three cases depending on whether
s > 0, s < 0, or s = 0. We begin with s > 0 and first establish the following technical lemma, which is
needed to control high frequency rescaling.

Lemma 3.13. Suppose s > 0. For all 0 < r ≤ 1 and all u ∈ F s,p
q (Rn),∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥1

|2ksPku{r}|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ rs− n
p ||u||F s,p

q (Rn).

Proof. Suppose first that r = 2− j for some j ∈ Z≥0. An easy computation from the definition of the Fourier
transform and change of variables shows for each k ∈ N,

(Pku{r}) = (Pk+ ju){r}

for all Schwartz functions u, and hence also for all u ∈ F s,p
q (Rn). But then∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥1

|2ksPku{r}|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

= 2− js

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 ∑

k≥1+ j

|2ks(Pku)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

= 2− js2−n/p

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 ∑

k≥1+ j

|2ksPku|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ 2− jsr−n/p||u||F s,p
q (Rn)

= rs− n
p ||u||F s,p

q (Rn).

This completes the proof in the case r = 2− j. The general case follows from the consequence of Lemma
3.12 that that u 7→ u{r} is uniformly bounded in F s,p

q (Rn) for 1/2 ≤ r ≤ 2.

Proposition 3.10 part (1) when s > 0 now follows from the following.

Proposition 3.14. Suppose 1 < p, q < ∞ and s > 0, and let χ be a Schwartz function. For all u ∈ F s,p
q (Rn)

and 0 < r ≤ 1,
||χu{r}||F s,p

q (Rn) ≲ rα||u||F s,p
q (Rn) (3.11)

where

α = min
(
s − n

p
, 0

)
(3.12)

unless s = n/p, in which case α can be any (fixed) negative number. The implicit constant in (3.11) depends
on χ is independent of u and r.
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Proof. We first assume that s , n/p and define α according to equation 3.12. Since s > 0, Proposition 3.11
part (5) implies

||χu{r}||F s,p
q (Rn) ≲ ||χu{r}||Lp(Rn) +

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|Pk(χu{r})|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

. (3.13)

To estimate the first term on the right-hand side of inequality (3.13) first consider the case s < n/p. Define t
by

1
t
=

1
p
− s

n
(3.14)

and observe that since 1/p < 1 and since s < n/p, we have 0 < 1/t < 1. Proposition 3.1 implies F s,p
q (Rn)

embeds in F0,t
2 (Rn) = Lt(Rn). From Hölder’s inequality we find

||χu{r}||Lp(Rn) ≤ ||χ||Lτ(Rn)||u{r}||Lt(Rn)

where 1
τ
= 1

p − 1
t . Hence, from Lemma 2.11

||u{r}||Lt(Rn) = r−
n
t ||u||Lt(Rn) = rs− n

p ||u||Lt(Rn) ≲ rα||u||F s,p
q (Rn)

and we conclude ||χu{r}||Lp(Rn) ≲ rα||u||F s,p
q (Rn). On the other hand, if s > n/p then

||χu{r}||Lp(Rn) ≲ ||u{r}||L∞(Rn)||χ||Lp(Rn) ≲ ||u||F s,p
q (Rn) = rα||u||F s,p

q (Rn).

Hence in both cases, ||χu{r}||Lp(Rn) ≲ rα||u||F s,p
q (Rn).

Turning to the second term on the right-hand side of inequality (3.13) we introduce the notation

P̃k = Pk−3≤·≤k+3.

The Littlewood-Paley trichotomy, Proposition 3.11 part (6), implies

Pk(χu{r}) = Pk


(P̃kχ)(P≤k−4u{r})︸                ︷︷                ︸

high-low

+ (P≤k+5χ)P̃ku{r})︸               ︷︷               ︸
low-high

+
∑

k′≥k+4

(P̃k′χ)(Pk′u{r})︸                     ︷︷                     ︸
high-high


(3.15)

and we estimate the contributions from each of these three terms individually via the triangle inequality.

Starting with the high-low term, Proposition 3.11 parts (4) and (3) imply∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk

{(
P̃kχ

) (
P≤k−4u{r}

)}
|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2sk
(
P̃kχ

) (
P≤k−4u{r}

)
|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣|Mu{r}|

∑
k≥10

|2skP̃kχ|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)
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where M is the Hardy-Littlewood maximal operator. Now suppose s < n/p and pick t according to equation
(3.14). Then Hölder’s inequality and the triangle inequality imply∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣|Mu{r}|
∑

k≥10

|2skP̃kχ|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ ||Mu{r}||Lt(Rn)||χ||F s,τ
q (Rn)

where again 1/τ = 1/p − 1/t. The Hardy-Littlewood maximal inequality and Lemma 2.11 then imply
||Mu{r}||Lt(Rn) ≲ ||u{r}||Lt(Rn) ≲ r−

n
t ||u||Lt(Rn) = rα||u||F s,p

q (Rn), which yields the desired estimate∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2ksPk

{(
P̃kχ

) (
Pk−4u{r}

)}
|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ rα||u||F s,p
q (Rn).

Obtaining this same inequality in the case s > n/p is similar but easier, using the estimate

|Mu{r}| ≲ ||u||L∞(Rn) ≲ ||u||F s,p
q (Rn) = rα||u||F s,p

q (Rn)

along with the fact χ ∈ F s,p
q (Rn).

To estimate the low-high term we estimate |P≤k+5χ| ≲ ||χ||L∞(Rn) and use Proposition 3.11 part (4) and
Lemma 3.13 to conclude∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥10

|Pk

{
2ks (P≤k+5χ

) (
P̃ku{r}

)}
|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2ksP̃ku{r}|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥7

|2ksPku{r}|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ rs− n
p ||u||F s,p

q (Rn)

≲ rα||u||F s,p
q (Rn).

Finally, for the high-high term we observe from Proposition 3.11 part (2) that P̃ jχ ≲ 2− j is uniformly
bounded in L∞(Rn) independent of j and hence Proposition 3.11 part (4) and Lemma 3.13 along with the
triangle inequality imply∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣∣∣∣∣2ksPk

 ∑
k′≥k+4

(Pk′u{r})(P̃k′χ)


∣∣∣∣∣∣∣∣
q

1
q

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣∣∣∣∣2ks
∑

k′≥k+4

(Pk′u{r})(P̃k′χ)

∣∣∣∣∣∣∣∣
q

1
q

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Lp(Rn)

≲
∑
a≥4

2−as

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣2(k+a)sPk+au{r}
∣∣∣q

1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲
∑
a≥4

2−as

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥1

|2ksPku{r}|q


1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ rs− n
p ||u||F s,p

q (Rn).

This concludes the proof unless s = n/p, in which case the result follows from interpolation.
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The proof of Proposition 3.10 part (1) when s < 0 uses a duality argument analogous to that used for the
same step in Section 2.2. First, the following generalization of Lemma 2.12 follows from [Tr10] Proposition
3.4.1/1, which is proved similarly to Lemma 3.13.

Lemma 3.15. Suppose 1 < p, q <∞, and s > 0. For all r ≥ 1 and all u ∈ F s,p
q (Rn),

||u{r}||F s,p
q (Rn) ≲ ||u||F s,p

q (Rn)r
s− n

p . (3.16)

The following corollary, which completes the case of part (1), is proved identically to Corollary 2.13 using
the duality property of Proposition 3.3.

Corollary 3.16. Suppose 1 < p, q <∞ and s < 0. For all 0 < r ≤ 1 and all u ∈ F s,p
q (Rn)

||u{r}||F s,p
q (Rn) ≲ rσ−

n
p ||u||F s,p

q (Rn).

Proposition 3.10 part (1) has now been established except for the case s = 0, which follows from the
following easy interpolation argument.

Lemma 3.17. Suppose 1 < p, q <∞. For all 0 < r ≤ 1 and all u ∈ F0,p
q (Rn),

||u{r}||F0,p
q (Rn) ≲ r−

n
p ||u||F0,p

q (Rn).

Proof. Pick σ ∈ R such that 0 < σ < n/p. Then for all Schwartz functions u, Corollary 3.16 and Proposition
3.14 imply

||u{r}||Fσ,p
q (Rn) ≲ rσ−

n
p ||u||Fσ,p

q (Rn)

||u{r}||F−σ,p
q (Rn) ≲ r−σ−

n
p ||u||Fσ,p

q (Rn).

for all 0 < r ≤ 1. The result follows from interpolation.

With the proof of Proposition 3.10 part (1) now complete we turn to part (2), the improved estimate when
u(0) = 0. The following estimate is the key to controlling low-frequency interactions near x = 0.

Lemma 3.18. Suppose u ∈ C0,α(Rn) for some α ∈ (0, 1] and that u(0) = 0. For all k ∈ N and all 0 < r ≤ 1

|P≤ku{r}(x)| ≲ ||u||C0,α(Rn) min(rα(|x|α + 1), 1).

Proof. Proposition 3.11 part (2) implies there is a Schwartz function κ∗ such that

P≤ku{r}(x) =
∫

u(rx + r2−ky)κ∗(y) dy.

We therefore have the easy estimate ||P≤ku{r}||L∞(Rn) ≲ ||u||C0,α(Rn) and it suffices to show

|P≤ku{r}(x)| ≲ ||u||C0,α(Rn)r
α(|x|α + 1)

as well.
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Since u(0) = 0, on each annulus A j = {y : 2 j ≤ |y| ≤ 2 j+1} for j ∈ Z≥0 we find

|u{r}(x + 2−ky)| ≤ ||u||C0,α(Rn)r
α|x + 2−ky|α ≲ rα||u||C0,α(Rn)

(
|x|α + 2α j

)
where the implicit constant is independent of j. Hence∣∣∣∣∣∣

∫
A j

u(rx + r2−ky)κ∗(y) dy

∣∣∣∣∣∣ ≲ rα||u||C0,α(Rn)

(
|x|α + 2α j

) ∫
A j

|κ∗(y)| dy.

Since κ∗ is a Schwartz function,
∫

A j
|κ∗(y)| dy ≲ 2−(1+α) j and hence∣∣∣∣∣∣

∫
A j

u(rx + r2−ky)κ∗(y) dy

∣∣∣∣∣∣ ≲ rα||u||C0,α(Rn)(|x|α + 1)2− j. (3.17)

On the other hand, ∣∣∣∣∣∣
∫

B1(0)
u(rx + r2−ky)κ∗(y) dy

∣∣∣∣∣∣ ≤ ||u||C0,α(Rn)r
α(|x| + 1)α

∫
B1

|κ∗(y)| dy

≲ ||u||C0,α(Rn)r
α(|x|α + 1).

(3.18)

The result follows from adding the contributions in inequalities (3.17) and (3.18).

Part (2) of Proposition 3.10 now follows from the following.

Proposition 3.19. Suppose 1 < p, q <∞ and s > n/p, and let χ be a Schwartz function. For all u ∈ F s,p
q (Rn)

with u(0) = 0, and for all 0 < r ≤ 1,

||χu{r}||F s,p
q (Rn) ≲ rα||u||F s,p

q (Rn) (3.19)

where

α = min
(
s − n

p
, 1

)
(3.20)

unless s = n/p + 1, in which case α can be any (fixed) number less than 1. The implicit constant in (3.19)
depends on χ but is independent of u and r.

Proof. We start by assuming s , n
p + 1 and define α according to equation (3.20). Hence F s,p

q (Rn) embeds
in C0,α(Rn).

As in the proof of Proposition 3.14 we start from the estimate

||χu{r}||F s,p
q (Rn) ≲ ||χu{r}||Lp(Rn) +

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣2ksPk(χu{r})
∣∣∣q

1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

. (3.21)

The second term on the right-hand side is again estimated using the Littlewood-Paley trichotomy (equation
(3.15)) and the proof of Proposition 3.14 shows that the low-high and high-high terms of that decomposition
satisfy a bound of the form rs− n

p ||u||F s,p
q (Rn), regardless of the value of u at zero. Consequently, we need
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only estimate the effects of the low-frequency contributions from u{r}, namely the high-low term, as well as
||χu{r}||Lp(Rn).

For the low-high term, let vr(x) = min(rα(|x|α + 1), 1) and hence Lemma 3.18 implies |u{r}| ≲ ||u||C0,α(Rn)vr

for all 0 < r ≤ 1. Recalling the notation P̃k = Pk−3≤·≤k+3, Proposition 3.11 part 4 and Lemma 3.18 imply∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣2ksPk

{(
P̃kχ

) (
P≤k−4u{r}

)}∣∣∣∣q
1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣2ks
(
P̃kχ

) (
P≤k−4u{r}

)∣∣∣∣q
1
q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ ||u||C0,α(Rn)||vrη||Lp(Rn)

(3.22)

where η =
[∑

k≥10 |2ksP̃kχ|q
] 1

q . Since χ is a Schwartz function, Proposition 3.11 part (1) implies that given
M > 0 we can estimate

|(P jχ)(x)| ≲ 2−M j

(1 + |x|)M

with implicit constant independent of j. As a consequence, |η(x)| ≲ 1/(1+ |x|)M; i.e., η is rapidly decreasing.

To estimate ||vrη||Lp(Rn) we divide Rn into three regions: the ball B1(0), the annulus A = B1/r(0) \ B1(0) and
the exterior region E = B1/r(0)c. On the unit ball |vr| ≲ rα and hence

||vrη||Lp(B1(0)) ≲ rα. (3.23)

Outside the unit ball, |vr(x)| ≲ rα(|x|α + 1) ≲ rα|x|α and |η(x)| ≲ |x|−(n+1)/p−α So∫
A
ηpvp

r ≲

∫ 1/r

1
s−n−1−αp(rs)αpsn−1 ds ≤ rpα

∫ 1/r

1
s−2 ds ≲ rpα (3.24)

Finally, for the exterior region we estimate |vr| ≤ 2 and find∫
E
ηp|vr|p ≲

∫ ∞

1/r
s−n−1−αpsn−1 ds ≲ r1+αp ≲ rαp. (3.25)

Combining inequalities (3.23), (3.24) and (3.25) we conclude ||vrη||Lp(Rn) ≲ rα which, when combined with
inequality (3.22), completes the estimate for the low-high term.

It remains to show that ||χu{r}||Lp(Rn) ≲ ||u||F s,p
q (Rn)rα. The argument that showed ||vrη||Lp(Rn) ≲ rα only used

the fact that η was rapidly decreasing, and hence we also find ||vrχ||Lp(Rn) ≲ rα. Again using the estimate
|u{r}| ≲ ||u||C0,α(Rn)vr we obtain

||χu{r}||Lp(Rn) ≲ ||u||C0,α(Rn)||χvr||Lp(Rn) ≲ ||u||F s,p
q (Rn)r

α.

This concludes the proof assuming s , n
p + 1. For the marginal case, let F s,p

q,0(Rn) denote the closed subspace
of F s,p

q (Rn) consisting of functions that vanish at zero, assuming of course that s > n/p. The proof when
s = n/p + 1 follows from interpolation if we can show

[F s1,p
q,0 (Rn), F s2,p

q,0 (Rn)]θ = F s,p
q,0(Rn) (3.26)

assuming that si > n/p for i = 1, 2 and that 0 < θ < 1 and s = s1(1 − θ) + s2θ.
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Let ϕ be a compactly supported smooth function with ϕ(0) = 1. For smooth compactly supported functions
u define Ru = u − u(0)ϕ. This extends to a continuous retraction F s,p

q (Rn) → F s,p
q,0(Rn) so long as s > n/p,

with the co-retraction being the natural embedding. The interpolation property (3.26) now follows from, e.g,
[Tr76] Lemma 6.

3.3 Interior elliptic estimates

Elliptic operators for operators with coefficients in Triebel-Lizorkin spaces are defined analogously to Defi-
nition 2.18. This section contains our primary elliptic regularity result,

which relies on the following generalization of the rescaling estimates of Proposition 2.10. The proof of
these estimates is a little involved, so we record the result for now and defer the proof to Section 3.2.

The “regularity at a point” result, Proposition 2.20, admits a straightforward generalization. Note that
F̃ s,p

q (Ω) denotes the closure of D(Ω) in F s,p
q (Rn).

Proposition 3.20. Let Ω ⊂ Rn be a bounded open set. Suppose 1 < p, q < ∞, s ∈ R, that d, d0 ∈ Z≥0
with d0 ≤ d, that s > n/p, and that the conditions of Lemma 3.8 are are satisfied and hence Sd

d0
(F s,p

q ) , ∅.
Suppose additionally that L =

∑
|α|≤d aα∂α is a differential operator of class Ld

d0
(F s,p

q ;Ω) and that for some
x ∈ Ω that

L0 =
∑
|α|=m

aα(x)∂α

is elliptic. Given (σ, a, b) ∈ Sd
d0

(F s,p
q ) there exists r > 0 such that Br(x) ⊂ Ω and such that if

u ∈ F̃d−s,p∗

q∗ (Br(x)) and

Lu ∈ Fσ−d,a
b (Ω)

then u ∈ Fσ,a
b (Ω) and

||u||Fσ,a
b (Ω) ≲ ||Lu||Fσ−d,a

b (Ω) + ||u||Fd−s−1,p∗
q∗ (Ω) (3.27)

with implicit constant independent of u but depending on all other parameters.

Proof. The proof is essentially the same as the proof of Proposition 2.20, with the following notes:

1. The proof of the natural generalization of Lemma 2.19 regarding the parametrix goes through now
using [Tr10] Theorems 2.3.7 and 2.3.8 in place of the Mikhlin multiplier theorem to establish the
desired continuity properties.

2. We replace the use of the rescaling result Proposition 2.17 with Proposition 3.10, which results in a
little simplification because the replacement result is sharper.

3. Fine parameters need tracking, but the changes are straightforward. When the Lebesgue parameter
is p the fine parameter is q, when the Lebesgue parameter is p∗ the fine parameter is q∗ and for the
intermediate spaces the Lebesgue parameter is a and the fine parameter is b.
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The proof of the main interior regularity result for Bessel potential spaces, Theorem 2.21, carries over to the
Triebel-Lizorkin setting. The bulk of the new work consists of tracking the fine parameter.

Theorem 3.21. Let Ω be a bounded open set in Rn and suppose s, p, q, d0 and d are parameters as in
Lemma 3.8 such that s > n/p and such that the conditions of Lemma 3.8 are satisfied so Sd

d0
(F s,p

q ) , ∅.
Suppose L is of class Ld

d0
(F s,p

q ;Ω) and is elliptic on Ω. If u ∈ Fd−s,p∗,q∗ (Ω) and Lu ∈ Fσ−d,a
b (Ω) for some

(σ, a, b) ∈ Sd
d0

(F s,a
b ) then for any open set U with U ⊆ Ω, u ∈ Fσ,a

b (U) and

||u||Fσ,a
b (U) ≲ ||Lu||Fσ−d,a

b (Ω) + ||u||Fd−s−1,p∗
q∗ (Ω). (3.28)

Proof. The proof follows that of Theorem 2.21 with the following changes needed to manage the fine pa-
rameter.

A bootstrap step starts with knowing u ∈ FσA,aA
bA

(ΩA) for some open set ΩA containing U and we wish to
improve these parameters to (σB, aB, bB) while shrinking ΩA. We assume:

H1: σB ≤ σ,

H2:
1
q
− σ

n
≤ 1

qB
− σB

n
,

H3: σB ≤ σA + 1,

H4:
1
qA

− σA + 1
n

≤ 1
qB

− σB

n
,

H5: if σB = σ then bB ≥ b,

H6: if σB = σA + 1 then bB ≥ bA.

Hypotheses (H1)–(H4) are exactly those of Theorem (2.21) expressed in terms of the notation of the current
result. Condition (H5) is needed additionally to ensure Fσ,a

b (Ω) ⊂ FσB,aB
bB

(Ω). Similarly (H6) is the extra
hypothesis needed to ensure FσA+1,aA

bA
(ΩA) ⊂ FσB,aB

bB
(ΩA). If we additionally assume that (σA, aA, bA) satisfies

the conditions of Lemma 3.9 so that its commutator estimate applies, the bootstrap step argument of Theorem
2.21 then goes through with obvious changes and we obtain an open set ΩB with U ⊂ ΩB ⊂ ΩA such that
u ∈ FσB,aB

bB
(ΩB) along with the estimate

||u||FσB ,aB
bB

(ΩB) ≲ ||Lu||Fσ−d,a
b (Ω) + ||u||FσA ,aA

bA
(ΩA).

Now consider the bootstrap in the case d0 = 0 where we pass through a sequence of regularity parameters
(σk, ak, bk) starting from (σ,a0, b0) = (d− s−1, p∗, q∗); we need not track the shrinking open sets. Focusing
for the moment only on the parameters σk and ak, the bootstrap consists of three distinct stages:

1. The initial step arriving at (σ1, a1, b1) = (d − s, p∗, q∗).

2. A low regularity stage that either

• preserves σk = d − s while lowering 1/ak by at most 1/n per step, or
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• preserves the Lebesgue regularity at the low value 1/p∗ − (d − s)/n while raising σk by at most
1 per step.

At the end of the low regularity stage σk ≤ σ and ak = a.

3. A derivative improving stage where ak = a is fixed and σk is raised by at most 1 per step until arriving
at its final value.

We now discuss the sequence of fine parameters bk, which will in fact be set to q∗ throughout the sequence
just described except at the last step, where it is set to its desired value.

1. The initial stage starts at (σ0, a0, b0) = (d − s − 1, p∗, q∗) and wish to improve to (−d + s, p∗, q∗).
Because (σ0+1, a0, b0) ∈ Sd

0 (F s,p
q ), the commutator result Lemma 3.9 applies. Hypotheses (H1)–(H4)

hold for the same reasons as in Theorem 2.21. At this step, hypothesis (H5) reads “if d − s = σ then
b ≤ q∗”, which is satisfied by the definition of Sd

0 (F s,p
q ). Finally, hypothesis (H8) holds trivially. Thus

this first bootstrap step is justified.

2. During the low regularity stage we again preserve bk = q∗ at every step. This is justified as follows
for the two possibilities:

• Consider a step where σk = d − s and where 1/ak is lowered by at most 1/n. Conditions (H1)–
(H4) are met for the same reasons as in Theorem (2.21) and condition (H8) is met trivially.
Condition (H7) is a restriction only if σ = d − s, in which case it requires b ≤ q∗; this condition
is met by the definition of Sd

0 (F s,p
q ). We also need to ensure that the commutator estimate can be

employed, which can be done by showing that (σk, ak, bk) = (d − s, ak, q∗) ∈ Sd
0 (F s,p). In fact,

the definition of Sd
0 (F s,p

q ) permits the fine parameter to be q∗ along the line σ = d− s, even in the
marginal case s = d − s where the region S d

0(F s,p
q ) collapses to a line segment. The remainder of

the justification of the commutator estimate is the same as in Theorem 2.21.

• Consider a step where the Lebesgue regularity is preserved at the low value 1/p∗−(d− s)/n. and
whereσk is raised by at most 1; without loss of generality we can assume we raiseσk by less than
1. Hypotheses (H1)–(H4) are met for the same reasons as in Theorem 2.21. Condition (H6) is
always met because of our additional restriction on the step size. Condition (H7) only comes into
play if we are raising σk to its terminal value, in which case we also set the fine parameter to its
terminal value b (and stop the bootstrap). We need to ensure that each non-terminal (σk, ak, bk)
lies in S d

0(F s,p
q ) in order to apply the commutator estimate, but this is ensured because a fine

parameter value of q∗ is always permitted along this line of Lebesgue regularity.

3. On a step where we raise σk and leave ak fixed at its terminal value we can again assume we raise σk

by less than 1. Throughout this stage we again leave bk fixed at q∗ except at the very last step. There
are no fine parameter restrictions that arise to allow the commutator estimate to apply, and hypotheses
(H1)–(H4) hold for the same reasons as in Theorem (2.21). Hypothesis (H6) is always met because
of our restriction on the step size and hypothesis (H7) only comes into play at the final step, where we
meet it by setting bk to its terminal value b.

At this point of the procedure we have arrived at the desired parameters (σ, a, b), except in the marginal case
σ = d − s in which case we are at (d − s, a, q∗). Since σ = d − s, the definition of Sd

0 (F s,p
q ) implies b ≤ q∗

and we can use this inequality to confirm that conditions (H1)–(H8) hold if we perform one more bootstrap
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step to improve the fine parameter to its desired value b; note that the commutator result Lemma (3.9) is
available for this bootstrap step since (d − s, a, q∗) ∈ Sd

0 (F s,p
q ).

Now consider the case where d0 = 1. As in Theorem 2.21 it suffices to consider assume (σ, a, b) ∈ Sd
1 (F s,p

q )
but (σ, a, b) < Sd

0 (F s,p
q ). Starting from (σ, a, b) we define (σ′, a′, b′) ∈ Sd

0 (F s,p
q ) by setting b′ = max(q, b)

and then applying the following rules:

1. If σ < s, leave σ′ = σ fixed but raise 1/a by at most 1/n to 1/a′ such that 1/a′ − σ/n = 1/p − s/n.

2. If σ ≥ s and 1/p − s/n ≤ 1/a − σ/n, lower σ by at most 1 to s while simultaneously lowering 1/a
by at most 1/n so that the Lebesgue regularity 1/a − σ/n = 1/a′ − σ′/n is unchanged.

3. Otherwise, (σ, a) satisfies s ≤ σ ≤ σ + 1 and

1
p
− s + 1

n
≤ 1

a
− σ

n
<

1
p
− s

n

and we set (σ′, a′) = (s, p).

Note that we set b′ = max(q, b) to satisfy the fine parameter restriction on Sd
0 (F s,p

q ) when σ′ = s. In all of
these three cases, Fσ,a

b (Ω) is contained in Fσ′,a′

b′ (Ω) and we can therefore apply the d0 = 0 bootstrap to arrive
at (σ′, a′, b′). Since (σ′, a′, b′) ∈ Sd

0 (F s,p
q ), a computation shows that (σ′ + 1, a′, b′) ∈ Sd

1 (F s,p
q ) and hence

the commutator result from Lemma 3.9 can be applied starting from (σ′, a′, b′). Hence we can apply one
round of the bootstrap starting from (σA, aA, bA) = (σ′, a′, b′) to arrive at (σB, aB, bB) = (σ, a, b) so long as
hypotheses (H1)–(H6) are met. The first four are satisfied for the same reasons as in Theorem 2.21 and (H5)
is satisfied trivially since bB = b. Finally, (H6) is a restriction only if σB = σA + 1, in which case σ = s + 1.
But then, since (σ, a, b) ∈ Sd

1 (F s,p
q ), we have assumed q ≤ b and hence b′ = max(q, b) = b. So we are not

changing the fine parameter and condition (H6) is met. This completes the proof when d0 = 1, and the result
for higher values of d0 follows from iterating this argument.

4 Coefficients in Sobolev-Slobodeckij Spaces

Sobolev-Slobodeckij spaces of functions on an open set Ω ⊂ Rn are special cases of Triebel-Lizorkin spaces
as follows:

W s,p(Ω) =

F s,p
2 (Ω) s ∈ Z

F s,p
p (Ω) s < Z.

Hence the results of Section 3 specialize to statements about Sobolev-Slobodeckij spaces, which we briefly
record here.

Definition 4.1. Suppose d0, d ∈ Z≥0 with d0 ≤ d. A differential operator on an open set Ω ⊆ Rn of the form∑
d0≤|α|≤d

aα∂α

is of class Ld
d0

(W s,p;Ω) for some s ∈ R and 1 < p <∞ if each

aα ∈ W s+|α|−d,p(Ω).
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Theorem 4.2. Suppose 1 < p1, p2, p <∞ and s1, s2, s ∈ R. Let r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
p
− s

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map W s1,p1 (Ω)×W s2,p2 (Ω) →
W s,p(Ω) so long as

s1 + s2 ≥ 0 (4.1)
min(s1, s2) ≥ σ (4.2)

max
(

1
r1
,

1
r2

)
≤ 1

r
(4.3)

1
r1
+

1
r2

≤ 1 (4.4)

1
r1
+

1
r2

≤ 1
r

(4.5)

with the the following caveats:

• Inequality (4.5) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.

• If s = si < Z, then p = pi, i = 1, 2.

• If s1, s2 < Z and s1 + s2 = 0 then 1
p1
+ 1

p2
= 1.

Proposition 4.3. Let Ω be a bounded open subset of Rn. Suppose 1 < p, q < ∞, s > n/p, σ ∈ R and
d, d0 ∈ Z≥0 with d ≥ d0. An operator of class Ld

d0
(W s,p;Ω) extends from a map C∞(Ω) 7→ D′(Ω) to a

continuous linear map Wσ,q(Ω) 7→ Wσ−d,q(Ω) so long as

σ ∈ [d − s, s + d0]

1
q
− σ

n
∈

[
1
p
− s + d0

n
,

1
p∗ − d − s

n

]
(4.6)

and so long as:

• If s < Z and σ = s + d0 then q = p.

• If s < Z and σ = d − s then q = p∗.

Moreover, operators in Ld
d0

(W s,p;Ω) depend continuously on their coefficients aα ∈ W s,p+|α|−d(Ω).

Definition 4.4. Suppose 1 < p < ∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. The compatible Sobolev indices
for an operator of class Ld

d0
(W s,p;Ω) is the set

Sd
d0

(W s,p) ⊆ R× (1,∞)

of tuples (σ, q) satisfying (4.6) along with the additional conditions at the end of Proposition 4.3 when
σ = s + d0 or σ = d − s.
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Lemma 4.5. Suppose 1 < p < ∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Then Sd
d0

(W s,p) is nonempty if and
only if

s ≥ (d − d0)/2, and (4.7)
1
p
− s

n
≤ 1

2
− (d − d0)/2

n
(4.8)

with the additional condition when s < Z that p = 2 in the marginal case s = (d − d0)/2. If S d
d0

(W s,p) is
non-empty then it contains (s + d0, p), (d − s, p∗), and ((d + d0)/2, 2). Moreover, if (σ, q) ∈ Sd

d0
(W s,p), then

we have the continuous inclusions of Fréchet spaces

W s+d0,p
loc (Rn) ⊆ Wσ,q

loc (Rn) ⊆ Wd−s,p∗

loc (Rn). (4.9)

Theorem 4.6. LetΩ be a bounded open set in Rn and suppose s, p, d0 and d are parameters as in Lemma 4.5
such that s > n/p and such that the conditions of Lemma 4.5 are satisfied so Sd

d0
(W s,p) , ∅. Suppose L is of

class Ld
d0

(W s,p;Ω) and is elliptic on Ω. If u ∈ Wd−s,p∗ (Ω) and Lu ∈ Wσ−d,q(Ω) for some (σ, q) ∈ Sd
d0

(W s,p)
then for any open set U with U ⊆ Ω, u ∈ Wσ,q(U) and

||u||Wσ,q(U) ≲ ||Lu||Wσ−d,q(Ω) + ||u||Wd−s−1,p∗ (Ω). (4.10)

5 Coefficients in Besov Spaces

We establish results for operators with coefficients in Besov spaces, mirroring the developments of the
preceding sections. Recall from Section 3 the Littlewood-Paley projectors Pk and P≤k. Let 1 < p, q < ∞
and s ∈ R. A tempered distribution u belongs to the Besov space Bs,p

q (Rn) if

||u||Bs,p
q (Rn) = ∥P≤0u∥Lp(Rn) +

∑
k≥1

2sqk∥Pku∥q
Lp(Rn)


1
q

<∞. (5.1)

On an open set Ω ⊆ Rn, the space Bs,p
q (Ω) consists of the restrictions of distributions in Bs,p

q (Rn) to Ω and is
given the quotient norm.

Embedding properties of Besov spaces can be found in [Tr10] Proposition 2.3.2/2, and Theorems 2.7.1 and
3.3.1 along with [Tr78] Theorems 2.8.1 and 4.6.1; we summarize these in the following proposition. The
important distinction here from Triebel-Lizorkin spaces is that when performing Sobolev embedding, the
fine parameter cannot be improved if the Lebesgue regularity 1/p− s/n stays fixed. This phenomenon is the
source of many of the additional fine parameter restrictions in this section beyond those of Section 3.

Proposition 5.1. Assume 1 < p, p1, p2, q, q1, q2 < ∞ and s, s1, s2 ∈ R, and suppose Ω is a bounded open
set in Rn.

1. If s1 > s2 then Bs1,p
q1 (Rn) ↪→ Bs2,p

q2 (Rn) and Bs1,p
q1 (Ω) ↪→ Bs2,p

q2 (Ω).

2. If q1 ≤ q2 then Bs,p
q1 (Rn) ↪→ Bs,p

q2 (Rn) and Bs,p
q1 (Ω) ↪→ Bs,p

q2 (Ω).

42



3. If p1 ≥ p2 then Bs,p1
q (Ω) ↪→ Bs,p2

q (Ω).

4. If s1 > s2 and 1
p1
− s1

n =
1
p2
− s2

n then Bs1,p1
q (Rn) ↪→ Bs2,p2

q (Rn) and Bs1,p1
q (Ω) ↪→ Bs2,p2

q (Ω).

5. If s1 > s2 and 1
p1
− s1

n < 1
p2
− s2

n then Bs1,p1
q1 (Ω) ↪→ Bs2,p2

q2 (Ω).

6. If 0 < α < 1 then B
n
p+α,p
q (Rn) ↪→ C0,α(Rn) and B

n
p+α,p
q (Ω) ↪→ C0,α(Ω).

As noted previously following Proposition 3.1, although [Tr10] and [Tr78] only prove the embedding results
above for bounded domains when the boundary is smooth, the result for arbitrary bounded open sets is an
easy corollary.

Complex interpolation of Besov spaces ([Tr10] Theorems 2.4.7 and 3.3.6) follows the same pattern as for
Triebel-Lizorkin spaces.

Proposition 5.2. Assume 1 < p1, p2, q1, q2 <∞ and s1, s2 ∈ R, and suppose Ω is either Rn or is a bounded
C∞ domain in Rn. For 0 < θ < 1,

[Bs1,p1
q1 (Ω), Bs2,p2

q2 (Ω)]θ = Bs,p
q (Ω)

where
s = (1 − θ)s1 + θs2,

1
p
= (1 − θ)

1
p1
+ θ

1
p2
, (1 − θ)

1
q1
+ θ

1
q2
.

Duality for Besov spaces of functions on Rn is analogous to that for Triebel-Lizorkin spaces; see [Tr10]
Theorem 2.11.2.

Proposition 5.3. Assume 1 < p, q < ∞ and s ∈ R. The bilinear map D(Rn) × D(Rn) → R given by
⟨ f , g⟩ :=

∫
Ω

f g extends to a continuous bilinear map Bs,p
q (Rn) × B−s,p∗

q∗ (Rn) → R. Moreover, f 7→ ⟨ f , ·⟩ is a

continuous identification of Bs,p
q (Rn) with (B−s,p∗

q∗ (Rn))∗.

5.1 Mapping properties

As for the other function spaces, mapping properties of differential operators depend on the rules for mul-
tiplication in Besov spaces. We recall the relevant result here, and give a self-contained proof in Appendix
B.

Theorem 5.4. Let Ω be a bounded open subset of Rn. Suppose 1 < p1, p2, p, q1, q2, q <∞ and s1, s2, s ∈ R.
Let r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
p
− s

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1
q1 (Ω) × Bs2,p2

q2 (Ω) →
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Bs,p
q (Ω) so long as

min(s1, s2) ≥ s (5.2)
s1 + s2 ≥ 0 (5.3)

max
(

1
r1
,

1
r2

)
≤ 1

r
(5.4)

1
r1
+

1
r2

≤ 1 (5.5)

1
r1
+

1
r2

≤ 1
r

(5.6)

with the following caveats:

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 or 1/r1 + 1/r2 = 1 then 1/q1 + 1/q2 ≥ 1.

• If equality holds in (5.6) then

◦ min(1/r1, 1/r2, 1 − 1/r) , 0.

◦ If min(s1, s2) ≤ 0 then 1/q1 + 1/q2 ≥ 1 and 1/q ≤ 1/r.

◦ If si has the same sign as min(s1, s2) for some i then 1/q ≤ 1/qi.

◦ If si has the same sign as max(s1, s2) for some i then 1/ri ≤ 1/qi.

◦ If s = 0 then 1/q ≤ 1/qi and 1/ri ≤ 1/qi for both i = 1, 2.

• If s1 = s2 = s = 0 then
1
q
≤ min

(
1
2
,

1
r

)
and max

(
1
2
,

1
ri

)
≤ 1

qi
for both i = 1, 2.

The list of caveats above is extensive in comparison with Theorem 3.5, but the bulk of these occur when
inequality (5.6) is not strict, and we do not encounter this edge case in our applications.

Operators with coefficients in Besov spaces are defined analogously to those of Definition 2.4.

Definition 5.5. Suppose d0, d ∈ Z≥0 with d0 ≤ d. A differential operator on an open set Ω ⊆ Rn of the form∑
d0≤|α|≤d

aα∂α

is of class Ld
d0

(Bs,p
q ;Ω) for some s ∈ R and 1 < p, q <∞ if each

aα ∈ Bs+|α|−d,p
q (Ω).

Theorem 5.4 implies the following. Notably, in the computations that lead to this result, the caveats of
Theorem 5.4 concerning the edge cases 1/r1 + 1/r2 = 1/r and s1 = s2 = s = 0 never occur.
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Proposition 5.6. Let Ω be a bounded open subset of Rn. Suppose 1 < p, q, a, b < ∞, s > n/p, σ ∈ R
and d, d0 ∈ Z≥0 with d ≥ d0. An operator of class Ld

d0
(Bs,p

q ;Ω) extends from a map C∞(Ω) 7→ D′(Ω) to a
continuous linear map Bσ,ab (Ω) 7→ Bσ−d,a

b (Ω) so long as

σ ∈ [d − s, s + d0]

1
a
− σ

n
∈

[
1
p
− s + d0

n
,

1
p∗ − d − s

n

]
(5.7)

and so long as:

• If σ = s + d0 or 1
a − σ

n =
1
p − s+d0

n then 1
b ≤ 1

q .

• If σ = d − s or 1
a − σ

n =
1

p∗ − d−s
n then 1

b ≥ 1
q∗ .

Moreover, operators in Ld
d0

(Bs,p
q ;Ω) depend continuously on their coefficients aα ∈ Bs−d+|α|,p

q (Ω).

We have the following generalization of Definition 2.7.

Definition 5.7. Suppose 1 < p, q < ∞), s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. The compatible Sobolev
indices for an operator of class Ld

d0
(Bs,p

q ;Ω) is the set

Sd
d0

(Bs,p
q ) ⊆ R× (1,∞) × (1,∞)

of tuples (σ, a, b) satisfying (5.7) along with the additional conditions at the end of Proposition 5.6 in any of
the boundary cases σ = s + d0, σ = d − s, 1/a − σ/n = 1/p − s/n or 1/a − σ/n = 1/p∗ − (d − s)/n.

The analogue of Lemma 2.8 in the Besov context is the following.

Lemma 5.8. Suppose 1 < p, q < ∞, s ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Then Sd
d0

(Bs,p
q ) is nonempty if and

only if

s ≥ (d − d0)/2, and (5.8)
1
p
− s

n
≤ 1

2
− (d − d0)/2

n
(5.9)

with the additional condition q ≤ 2 in each of the marginal cases s = (d − d0)/2 and 1
p − s

n =
1
2 − (d−d0)/2

n .
If S d

d0
(Bs,p

q ) is non-empty then it contains (s + d0, p, q), (d − s, p∗, q∗), and ((d + d0)/2, 2, 2). Moreover, if
(σ, a, b) ∈ Sd

d0
(Bs,p

q ), then we have the continuous inclusions of Fréchet spaces

Bs+d0,p
q,loc (Rn) ⊆ Bσ,ab,loc(Rn) ⊆ Bd−s,p∗

q∗,loc (Rn). (5.10)

The following commutator result is the analogue of Lemma 3.9

Lemma 5.9. Suppose 1 < p, q, a, b <∞, s > n/p, σ ∈ R and d, d0 ∈ Z≥0 with d ≥ d0. Let Ω be a bounded
open subset of Rn and let L be an operator of class Ld

d0
(Bs,p

q ;Ω). If ϕ ∈ D(Ω) then [L, ϕ] extends from a map

C∞(Ω) 7→ D′(Ω) to a continuous linear map Bσ,ab (Ω) 7→ Bσ−d+1,a
b (Ω) so long as (σ + 1, a, b) ∈ Sd

d0
(Bs,p

q ).
Moreover, if d0 = 0, the same result holds if (σ, a, b) ∈ Sd

0 (Bs,p
q ).
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Proof. The proof is a computation using Theorem 5.4 that parallels that of Lemma 3.9. The only difference
is that there are three additional fine parameter restrictions that arise. In the notation of Theorem 5.4, these
occur when r = ri, when 1/r1 + 1/r2 = 1 and when 1/r1 + 1/r2 = 1/r. Under the given hypotheses, the last
of these conditions never occurs, and in remaining two cases the fine parameter restrictions are met for the
same reasons as the analogous restrictions are met when s = si and when s1 + s2 = 0 in Lemma 3.9.

5.2 Rescaling estimates

The same argument used for Triebel-Lizorkin spaces shows that rescaling u 7→ u{r} is a continuous auto-
morphism of Besov spaces, and we wish to generalize the associated estimates of Theorem 3.10 to the Besov
setting. This could be accomplished by suitably modifying the arguments of Section 3.2, but we can prove
the desired results as a corollary of the Triebel-Lizorkin estimates using the following real interpolation
property, which follows from [Tr10] Theorem 2.4.2.

Proposition 5.10. Assume 1 < p, q1, q2, q < ∞ and s1, s2 ∈ R with s1 , s2. Suppose 0 < θ < 1 and let
s = (1 − θ)s1 + θs2. Then

[F s1,p
q1 (Rn), F s2,p

q2 (Rn)]θ,q = Bs,p
q (Rn).

Proposition 5.11. Suppose 1 < p, q < ∞, s ∈ R and that χ is a Schwartz function on Rn. There exists a
constant α ∈ R such that for all 0 < r ≤ 1 and all u ∈ Bs,p

q (Rn)

||χu{r}||Bs,p
q (Rn) ≲ rα||u||Bs,p

q (Rn). (5.11)

Specifically:

1. Inequality (5.11) holds with

α = min
(
s − n

p
, 0

)
unless s − n/p = 0, in which case it holds for any choice of α < 0, with implicit constant depending
on α.

2. If s > n/p (in which case functions in Bs,p
q (Rn) are Hölder continuous) and if u ∈ Bs,p

q (Rn) with
u(0) = 0, then inequality holds with

α = min
(
s − n

p
, 1

)
unless s − n/p = 1, in which case it holds for any choice of α < 1, with implicit constant depending
on α.

Proof. Suppose s < n/p. Pick ϵ > 0 such that s1 = s + ϵ < n/p as well, and let s2 = s − ϵ. From real
interpolation with endpoints F s1,p

2 (Rn) and F s2,p
2 (Rn) along with Proposition 3.10 we find

||ur||Bs,p
q (Rn) ≲ r

1
2

(
s1− n

p

)
+ 1

2

(
s2− n

p

)
||u||Bs,p

q (Rn) = rs− n
p ||u||Bs,p

q (Rn).

A similar and easier proof works when s > n/p and the marginal case s = n/p can be handled by inter-
polation between endpoints with differentiability s1 and s2 taken arbitrarily close to s, as in the proof of
Proposition 2.17.
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For the improved estimate in the Hölder continuous case, we let F s,p
q,0(Rn) be the closed subspace of F s,p

q (Rn)
of functions that vanish at 0, assuming of course that s > n/p. The spaces Bs,p

q,0 are defined similarly. The
same argument as at the end of the proof of Proposition 3.19 shows that

[F s1,p
q1,0

(Rn), F s2,p
q2,0

(Rn)]θ,q = Bs,p
q,0(Rn) (5.12)

assuming that si > n/p for i = 1, 2 and that 0 < θ < 1 and s = (1 − θ)s1 + θs2. Using this interpolation
property, the proof of the improved estimate now follows exactly as in the generic case.

5.3 Interior elliptic estimates

Elliptic operators with Besov space coefficients are defined analogously as in Definition 2.18. The following
“regularity at a point” result is proved identically as for Proposition 3.20, using the fact that the parametrix
result Lemma 2.19 is proved identically for Besov spaces. Note that B̃s,p

q (Ω) denotes the closure of D(Ω) in
Bs,p

q (Rn).

Proposition 5.12. Let Ω ⊂ Rn be a bounded open set. Suppose s ∈ R, 1 < p, q < ∞, that d, d0 ∈ Z≥0
with d0 ≤ d, that s > n/p, and that the conditions of Lemma 5.8 are are satisfied and hence Sd

d0
(Bs,p

q ) , ∅.
Suppose additionally that L =

∑
|α|≤d aα∂α is a differential operator of class Ld

d0
(Bs,p

q ;Ω) and that for some
x ∈ Ω that

L0 =
∑
|α|=m

aα(x)∂α

is elliptic. Given (σ, a, b) ∈ Sd
d0

(F s,p
q ) there exists r > 0 such that Br(x) ⊂ Ω and such that if

u ∈ B̃d−s,p∗

q∗ (Br(x)) and

Lu ∈ Bσ−d,a
b (Ω)

then u ∈ Bσ,ab (Ω) and
||u||Bσ,ab (Ω) ≲ ||Lu||Bσ−d,a

b (Ω) + ||u||Bd−s−1,p∗
q∗ (Ω) (5.13)

with implicit constant independent of u but depending on all other parameters.

With the previous proposition established, local elliptic regularity is proved using the same techniques as in
Theorem 3.21, taking into account extra fine-parameter restrictions that arise for Besov spaces.

Theorem 5.13. Let Ω be a bounded open set in Rn and suppose s, p, d0 and d are parameters as in Lemma
5.8 such that s > n/p and such that the conditions of Lemma 5.8 are satisfied so Sd

d0
(Bs,p

q ) , ∅. Suppose

L is of class Ld
d0

(Bs,p
q ;Ω) and is elliptic on Ω. If u ∈ Bd−s,p∗

q∗ (Ω) and Lu ∈ Bσ−d,a
b (Ω) for some (σ, a, b) ∈

Sd
d0

(Bs,p
q ) then for any open set U with U ⊆ Ω, u ∈ Bσ,ab (U) and

||u||Bσ,ab (U) ≲ ||Lu||Bσ−d,a
b (Ω) + ||u||Bd−s−1,p∗

q∗ (Ω). (5.14)

Proof. The proof very closely follows that of Theorem 3.21, and we list here the additional steps needed to
further manage the fine parameter.

In addition to conditions (H1)–(H6) from that proof, the bootstrap step requires two more hypotheses to
ensure the needed embeddings:
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H7: if 1
aB

− σB
n =

1
a − σ

n then bB ≥ b,

H8: if 1
aB

− σB
n =

1
aA

− σA+1
n then bB ≥ bA.

For the stages of the main bootstrap for d0 = 0 from Theorem 3.21 we make the following adjustments

1. In the initial step from (σ0, a0, b0) = (d− s−1, p∗, q∗) to (σ1, a1, b1) = (d− s, p∗, q∗) hypothesis (H8)
is met trivially and hypothesis (H7) only yields a restriction if 1

p∗ − d−s
n = 1

a − σ
n , in which case it

requires b ≤ q∗. But this fine parameter restriction is met because (σ, a, b) = (d − s, a, b) ∈ Sd
0 (Bs,p

q ).

2. During the low regularity stage we again preserve bk = q∗.

• If we preserve σk = d − s and lower 1/ak we can arrange to do so by less than 1/n. In this
case hypothesis (H8) is met automatically. Hypothesis (H7) only applies if σ = d − s and only
on the last step where we lower 1/ak, in which case we set the fine parameter to its final value
(satisfying (H7)) and the bootstrap stops. All other aspects of this stage are justified identically
to Theorem 3.21.

• If we preserve the Lebesgue regularity 1/p∗− (d− s)/n and raise σk then hypothesis (H8) is met
automatically. Hypothesis (H7) provides a restriction only if 1/a − σ/n = 1/p∗ − (d − s)/n, in
which case we have assumed b ≤ q∗ from the definition of Sd

0 (Bs,p
q ) and condition (H7) is met.

We need to ensure that the iterates (σk, ak, bk) all remain in S d
0(Bs,p

q ) in order for the commutator
result Lemma 5.9 to apply. Indeed, the line of Lebesgue regularity 1/p∗− (d− s)/n is associated
with a fine parameter restriction, but it is always met by keeping bk = q∗.

3. In the final stage we raise σk (by less than 1 per iteration) while keeping ak = a. Again we preserve
bk = q∗ except at the final step. Hypothesis (H8) is met because of the step size restriction and
hypothesis (H7) is a restriction only at the last step, at which point it is satisfied by setting the fine
parameter to its terminal value b.

At the end of this procedure, the bootstrap has stopped at its desired value except in the two marginal cases
σ = d− s and 1/a−σ/n = 1/p∗− (d− s)/n, in which case we have arrived at (σ, a, q∗). In both these cases
the definition of Sd

0 (Bs,p
q ) ensures that b < q∗. Using this inequality, one readily verifies that hypotheses

(H1)–(H8) hold if we perform one more bootstrap step to improve the fine parameter to its final value b. As
in the proof of Theorem 3.21, one needs to verify that the starting regularity (σ, a, q∗) for the bootstrap lies
in Sd

0 (Bs,p
q ) so as to use the commutator result Lemma 5.9, but this is always met for the fine parameter q∗

on the two marginal lines σ = d − s and 1/a − σ/n = 1/p∗ − (d − s)/n. This completes the proof when
d0 = 0.

Now consider the case d0 = 1. Arguing as in Theorem 3.21, we can apply the d0 = 0 bootstrap to arrive at
some (σ′, a′, b′) ∈ Sd

0 (Bs,p
q ) where b′ = max(q, b) and where (σ′, a′) is obtained from (σ, a) as follows:

1. If σ < s, leave σ′ = σ fixed but raise 1/a by at most 1/n to 1/a′ such that 1/a′ − σ/n = 1/p − s/n.

2. If σ ≥ s and 1/p − s/n ≤ 1/a − σ/n, lower σ by at most 1 to s while simultaneously lowering 1/a
by at most 1/n so that the Lebesgue regularity 1/a − σ/n = 1/a′ − σ′/n is unchanged.
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3. Otherwise, (σ, a) satisfies s ≤ σ ≤ σ + 1 and

1
p
− s + 1

n
≤ 1

a
− σ

n
<

1
p
− s

n

and we set (σ′, a′) = (s, p).

Note that we set b′ = max(q, b) to ensure that the fine parameter restrictions of Sd
0 (Bs,p

q ) along the lines
σ′ = s and 1/a′ − σ′/n = 1/p − s/n are met. Since Bσ,ab (Ω) embeds in Bσ

′,a′

b′ (Ω) we can initially apply the
d0 = 0 bootstrap to arrive at (σ′, a′, b′). At this point we wish to apply a single bootstrap step to terminate
at (σ, a, b). Since (σ′, a′, b′) ∈ Sd

0 (Bs,p
q ) a computation shows (σ′ + 1, a′, b′) ∈ Sd

1 (Bs,p
q ) and hence the

commutator Lemma 5.9 is available starting from (σ′, a′, b′). Hence we can perform the desired bootstrap
step if we show that hypotheses (H1)–(H8) hold with (σA, aA, bA) = (σ′, a′, b′) and (σB, aB, bB) = (σ, a, b).

Conditions (H1)–(H4) hold for the same reasons as in Theorem 2.21 and conditions (H5) and (H7) hold
trivially since we are setting the fine parameter to b. Condition (H6) holds for exactly the same reason
as in Theorem 3.21. Finally, condition (H8) implies a restriction only in cases (1) and (3) and only when
1/a − σ/n = 1/p − (s + 1)/n. But then (σ, a, b) ∈ Sd

1 (Bs,p
q ) is a spot where the fine parameter restriction

q ≤ b holds and hence b′ = max(q, b) = b already. Hence condition (H8) is met.

This concludes the proof when d0 = 1 and the result holds for higher values of d0 by iterating this argument.

A Multiplication in Triebel-Lizorkin Spaces

We prove the multiplication rules for Triebel-Lizorkin spaces, Theorem 3.5, which we restate here for con-
venience.

Theorem 3.5. Let Ω be a bounded open subset of Rn. Suppose 1 < p1, p2, p, q1, q2, q <∞ and s1, s2, s ∈ R.
Let r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
p
− s

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map F s1,p1
q1 (Ω) × F s2,p2

q2 (Ω) →
F s,p

q (Ω) so long as

s1 + s2 ≥ 0 (A.1)
min(s1, s2) ≥ s (A.2)

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.3)

1
r1
+

1
r2

≤ 1 (A.4)

1
r1
+

1
r2

≤ 1
r

(A.5)

with the the following caveats:
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• Inequality (A.5) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.

• If si = s for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 then
1
q1
+

1
q2

≥ 1.

• If s1 = s2 = s = 0 then
1
q
≤ 1

2
≤ 1

qi
for i = 1, 2.

The proof is broken into a number of cases depending on the value of min(s1, s2). Propositions A.5 and
A.6 cover the case min(s1, s2) > 0, Proposition A.7 is the case min(s1, s2) < 0 and the remaining case
min(s1, s2) = 0 is the content of Proposition A.8.

These results all build on the following two lemmas, which concern multiplication of spaces having the
same number s > 0 of derivatives and the same fine parameter, but where the Lebesgue parameters vary.
The lemmas employ the same elementary Littlewood-Paley techniques used in Section 3.2.

Lemma A.1. Suppose 1 < p2 ≤ p1 < ∞, 1 < q < ∞, s ∈ R and s > n/p1. Given u ∈ F s,p1
q (Rn) and

v ∈ F s,p2
q (Rn), both supported in BR(0) for some R > 0, uv ∈ F s,p2

q (Rn) and

||uv||F s,p2
q (Rn) ≲ ||u||F s,p1

q
(Rn)||v||F s,p2

q (Rn).

The implicit constant depends on s, p1, p2 q and R but is independent of u and v.

Proof. Since s > 0, Proposition 3.11(5) implies

||uv||F s,p2
q (Rn) ≲ ||uv||Lp2 (Rn) +

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk(uv)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

.

For the low frequency component we use the fact that s > n/p and Proposition 3.1 twice to conclude

||uv||Lp2 (Rn) ≲ ||u||L∞(Rn)||v||Lp2 (Rn) ≲ ||u||F s,p1
q (Rn)||v||F s,p2

q (Rn).

Turning to the high-frequency component we use the Littlewood-Paley trichotomy Proposition 3.11(6), to
conclude for any k ≥ 10

Pk(uv) = Pk


(P≤k−4u)(P̃kv)︸            ︷︷            ︸

low-high

+ (P̃ku)(P≤k+5v)︸           ︷︷           ︸
high-low

+
∑

k′≥k+4

(Pk′u)(P̃k′v)︸                ︷︷                ︸
high-high


(A.6)

where P̃k = Pk−3≤·≤k+3. For the low-high contributions we use Proposition 3.11 parts (4) and (3) to conclude∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk((P≤k−4u)(P̃kv))|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2sk(P≤k−4u)(P̃kv)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲ ||Mu||L∞(Rn)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2skP̃kv|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

.
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Since s > n/p, ||Mu||L∞(Rn) ≲ ||u||L∞(Rn) ≲ ||u||F s,p1
q (Rn). Moreover the triangle inequality implies∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥10

|2skP̃kv|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲ ||v||F s,p2
q (Rn)

and we conclude that the low-high interactions are controlled by ||u||F s,p1
q (Rn)||v||F s,p2

q (Rn).

To analyze the high-low term we set
1
t
=

1
p2

− 1
p1

and observe that since p1 ≥ p2, 1 < t ≤ ∞. The estimate now proceeds similarly to the low-high case:
using Proposition 3.11 parts (4) and (3) along with Hölder’s inequality and the Hardy-Littlewood maximal
inequality we find∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk((P̃ku)(P≤k+5v))|2


1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2sk(P̃ku)|q


1/q

|Mv|

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2sk(P̃ku)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp1 (Rn)

||Mv||Lt(Rn)

≲ ||u||F s,p1
q (Rn)||v||Lt(Rn).

Since s > n/p1 we have
1
t
=

1
p2

− 1
p1

>
1
p2

− s
n
.

So Sobolev embedding and the bounded support of v imply

||v||Lt(Rn) ≲ ||v||F s,p2
q (Rn)

with implicit constant depending on the radius R of support. We conclude that the low-high terms are
controlled by ||u||F s,p1

q (Rn)||v||F s,p2
q (Rn).

Finally, for the high-high contributions we start by applying Proposition 3.11 parts (4) and (3) to obtain∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣∣∣∣∣2skPk

 ∑
k′≥k+4

(Pk′u)(P̃k′v


∣∣∣∣∣∣∣∣
q

1/q∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣|Mu|

∑
k≥10

∣∣∣∣∣∣∣∣2sk

 ∑
k′≥k+4

(P̃k′v


∣∣∣∣∣∣∣∣
q

1/q∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲ ||Mu||L∞(Rn)

∑
a≥4

2−sa

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣2s(k+a)
(
P̃k+av

)∣∣∣∣q
1/q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲ ||Mu||L∞(Rn)||v||F s,p2
q (Rn)

∑
a≥4

2−sa.

Since s > 0 the sum is finite, and we have already seen that ||Mu||L∞(Rn) ≲ ||u||F s,p1
q (Rn). So the high-high

terms are also controlled by ||u||F s,p1
q (Rn)||v||F s,p2

q (Rn) as needed.
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Lemma A.2. Suppose s > 0, 1 < p ≤ p2 ≤ p1 <∞, 1 < q <∞ and s < n/p1. Suppose moreover that

1
p
≥ 1

p1
+

1
p2

− s
n

(A.7)

Given u ∈ F s,p1
q (Rn) and v ∈ Hs,p2

q (Rn), both supported in BR(0) for some R > 0, uv ∈ F s,p
q (Rn) and

||uv||F s,p
q (Rn) ≲ ||u||F s,p1

q (Rn)||v||F s,p2
q (Rn).

The implicit constant depends on s, p1, p2, q and R but is independent of u and v.

Proof. The proof follows the pattern of Lemma A.1. First apply Proposition 3.11(5) to obtain

||uv||F s,p
q (Rn) ≲ ||uv||Lp(Rn) +

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk(uv)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

.

To estimate the low frequency term define
1
t
=

1
p
− 1

p2
(A.8)

and observe 1 > 1/p > 1/t ≥ (1/p1) − (s/n) > 0 by inequality (A.7) and the hypothesis s < n/p1. Sobolev
embedding and the fact that u is supported on BR(0) then imply

||u||Lt(Rn) ≲ ||u||F s,p1
q (Rn) (A.9)

and we conclude from Hölder’s inequality

||uv||Lp(Rn) ≲ ||u||Lt(Rn)||v||Lp2 (Rn) ≲ ||u||F s,p1
q (Rn)||v||F s,p2

q (Rn).

As in the proof of Lemma A.1 the high-frequency term is split into three terms using the Littlewood-Paley
trichotomy, Proposition 3.11(6); see equation (A.6). For the low-high contributions we use Proposition 3.11
parts (4) and (3) together with the Hardy-Littlewood maximal inequality to obtain∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∑

k≥10

|2skPk((P≤k−4u)(P̃kv))|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

|2sk(P≤k−4u)(P̃kv)|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣|Mu|

∑
k≥10

|2skP̃kv|q


1/q
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Rn)

≲ ||Mu||Lt(Rn)||v||F s,p2
q (Rn)

≲ ||u||Lt(Rn)||v||F s,p2
q (Rn)

where t is again defined as in (A.8). From inequality (A.9) we conclude that the low-high interactions are
controlled by ||u||F s,p1

q (Rn)||v||F s,p2
q (Rn).

The estimate for the high-low contributions proceeds identically to that for the low-high contributions with
the minor change that in equation (A.8) we replace p2 with p1.
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Turning now to the high-high contributions we define t as in equation in (A.8) and apply Proposition 3.11
parts (4) and (3) to obtain∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣∣∣∣∣2skPk

 ∑
k′≥k+4

(Pk′u)(P̃k′v)


∣∣∣∣∣∣∣∣
q

1/q∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
Lp(Rn)

≲

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣|Mu|

∑
k≥10

∣∣∣∣∣∣∣∣2sk

 ∑
k′≥k+4

(P̃k′v


∣∣∣∣∣∣∣∣
q

1/q∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
Lp(Rn)

≲ ||Mu||Lt(Rn)

∑
a≥4

2−sa

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k≥10

∣∣∣∣2s(k+a)
(
P̃k+av

)∣∣∣∣q
1/q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp2 (Rn)

≲ ||u||Lt(Rn)||v||F s,p2
q (Rn)

∑
a≥4

2−sa.

Since s > 0 the sum is finite, and we have already seen that ||u||Lt(Rn) ≲ ||u||F s,p1
q (Rn). So the high-high terms

are also controlled by ||u||F s,p1
q (Rn)||v||F s,p2

q (Rn) as needed.

Having established the technical core of the theory, it remains for us to build a conveniently accessible
interface in the form of Theorem 3.5. We now turn to a sequence of results that prove the theorem by cases
based on the sign of min(s1, s2), and for brevity we establish the following standing hypothesis.

Assumption A.3. Suppose

• Ω ⊆ Rn is a bounded C∞ domain,

• s1, s2, s ∈ R,

• 1 < p1, p2, p <∞,

• 1 < q1, q2, q <∞.

Moreover, define
1
r1
=

1
p1

− s
n
,

1
r2
=

1
p2

− s
n
, and

1
r
=

1
p
− s

n
.

Note, in particular, that Assumption A.3 supposes that Ω has a smooth boundary. This hypothesis is made
for convenience, and the proof of Theorem 3.5 follows for general bounded domains from the smooth case
using a straightforward extension argument based on the quotient space definition of the relevant spaces.

The following result is mostly a translation of Lemmas A.1 and A.2 into the hypotheses of Theorem 3.5.

Proposition A.4. Assume the multiplication hypothesis A.3 and that s1 = s2 = s > 0 and q1 = q2 = q.
Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map F s,p1

q (Ω) × F s,p2
q (Ω) →

F s,p
q (Ω) so long as

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.10)

1
r1
+

1
r2

≤ 1
r

(A.11)

with the final inequality strict if min(1/r1, 1/r2) = 0.
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Proof. Using an elementary extension and cutoff function argument, it suffices to show

||uv||F s,p
q (Rn) ≲ ||u||F s,p1

q (Rn)||v||F s,p2
q (Rn) (A.12)

whenever u ∈ Hs,p1 (Rn) and v ∈ Hs,p2 (Rn) are supported in BR(0) for some R > 0.

Suppose min(1/r1, 1/r2) , 0. Without loss of generality, we can assume 1/r1 = min(1/r1, 1/r2). Suppose
1/r1 < 0. Since 1/r1 ≤ 1/r2 ≤ 1/r it follows that 1/p1 ≤ 1/p2 ≤ 1/p and Lemma A.1 together with
Proposition 3.1 implies

||uv||F s,p
q (Rn) ≲ ||uv||F s,p2

q (Rn) ≲ ||u||F s,p1
q (Rn)||v||Hs,p2

q (Rn).

Next, assume 1/r1 > 0. Since 1/r1 + 1/r2 ≤ 1/r, inequality (A.7) holds and the result follows from Lemma
A.2.

Finally, consider the threshold case 1/r1 = 0, so min(1/r1, 1/r2) = 0. We have therefore also assumed
1/r1 + 1/r2 < 1/r and can lower p1 and p2 slightly to p̂1 and p̂2 so that

1/r̂1 + 1/r̂2 < 1/r (A.13)

remains true. Notice that min(1/r̂1, 1/r̂2) > 0, and hence inequality (A.13) also implies max(1/r̂1, 1/r̂2) <
1/r. We have therefore already established continuity of multiplication F s,p̂1

q (Ω) × F s,p̂2
q (Ω) → F s,p

q (Ω) and
the result follows from the continuous embedding F s,p1

q (Ω) × F s,p2
q (Ω) ↪→ F s,p̂1

q (Ω) × F s, p̂2
q (Ω).

Using Sobolev embedding we can now relax the requirement s1 = s2 = s and q1 = q2 = q, noting that a fine
parameter restriction arises if s = si for some i.

Proposition A.5. Assume the multiplication hypothesis A.3 and that s1, s2, s > 0. Multiplication is continu-
ous F s1,p1

q1 (Ω) × F s2,p2
q2 (Ω) → F s,p

q (Ω) so long as

s ≤ min(s1, s2) (A.14)

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.15)

1
r1
+

1
r2

≤ 1
r

(A.16)

with the following caveats:

• Inequality (A.16) is strict if min(1/r1, 1/r2) = 0.

• If si = s for some i then q ≥ qi.

Proof. First, suppose min(1/r1, 1/r2) > 0. Define t1, t2 by

1
ti
− s

n
=

1
ri
=

1
pi

− si

n
.
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Since si ≥ s ≥ 0,

0 <
1
ri

≤ 1
ti
≤ 1

pi
< 1

so by Sobolev embedding (Proposition 3.1) we have

F s1,p1
q1 (Ω) × F s2,p2

q2 (Ω) ↪→ F s,t1
q (Ω) × F s,t2

q (Ω).

Note that this is the point where we used the caveat qi ≤ q if si = s. Because the value of ri is preserved
in the transition from pi to ti, the hypotheses of Proposition A.4 are satisfied and we have continuity of
multiplication F s,t1

q (Ω) × F s,t2
q (Ω) → F s,p

q (Ω).

Now suppose min(1/r1, 1/r2) < 0; without loss of generality we can assume 1/r1 ≤ 1/r2 and therefore
1/r1 < 0. Using the hypotheses s ≤ s2, 1/r ≥ 1/r2 and qi ≤ q if s = s2 we know from Sobolev embedding
that F s2,p2

q2 (Ω) ↪→ F s,p
q (Ω). Hence it suffices to prove that multiplication is continuous

F s1,p1
q1 (Ω) × F s,p

q (Ω) → F s,p
q (Ω).

Proposition A.4 implies multiplication is continuous

F s,t
q (Ω) × F s,p

q (Ω) → F s,p
q (Ω)

if t ∈ (1,∞) satisfies
1
t
− s

n
≤ 1

p
− s

n
1
t
− s

n
< 0.

(A.17)

Hence we need only show that F s1,p1
q1 (Ω) embeds into F s,t

q (Ω) for some t satisfying conditions (A.17).

There are two cases depending on the value of

1
t̂
=

1
p1

− s1

n
+

s
n
.

If t̂ > 0 we take t = t̂ and observe that since s1 ≥ s, t > 1. Sobolev embedding (using the hypothesis
q1 ≤ q if s1 = s) implies F s1,p1

q1 (Ω) ↪→ F s,t
q (Ω). Inequalities (A.17) follow from the the observations

1/t − s/n = 1/p1 − s1/n < 0 and

1
t
− s

n
=

1
p1

− s1

n
=

1
r1

≤ 1
r
=

1
p
− s

n
.

Suppose instead t̂ ≤ 0. Now we simply choose any t > 1 satisfying conditions (A.17). Sobolev embedding
F s1,p1

q1 (Ω) ↪→ F s,t
q (Ω) now follows from the inequality t̂ ≤ 0 (noting that this can only happen if s1 > s and

hence the fine parameter plays no role).

The proposition is now proved except in the marginal case min(1/r1, 1/r2) = 0. In this case we have assumed
1/r1 + 1/r2 < 1/r and consequently 1/ri < 1/r, i = 1, 2. Just as in Proposition A.4 we can lower p1 and p2
slightly while maintaining these strict inequalities, and the result follows from our previous work.

We now extend Proposition A.5 to the case s ≤ 0 while still assuming min(s1, s2) > 0. The proof relies on
the embeddings
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• L1(Ω) ↪→ F s,p
q (Ω) if s < 0 and 1/p∗ + s/n < 0

• La(Ω) ↪→ F s,p
q (Ω) for any a > 1 if s < 0 and 1/p∗ + s/n = 0

which are proved by extending functions on Ω by zero to all of Rn and applying duality on Rn, Proposition
3.20, along with Sobolev embedding on Rn.

Proposition A.6. Assume the multiplication hypothesis A.3 and that s1, s2 > 0 and s ≤ 0. Multiplication of
C∞(Ω) functions extends to a continuous bilinear map F s1,p1

q1 (Ω) × F s2,p2
q2 (Ω) → F s,p

q (Ω) so long as

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.18)

1
r1
+

1
r2

≤ 1
r

(A.19)

1
r1
+

1
r2

≤ 1 (A.20)

with the following caveat:

• Inequality (A.19) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.

Proof. First, suppose 1/r < 1. Choose 1/t ∈ (0, 1) and σ > 0 such that σ < min(s1, s2) and such that
(1/t) − (σ/n) = 1/r. This is possible because of the strict inequality 1/r < 1. Proposition A.5 and Sobolev
embedding then ensure the continuity of multiplication

F s1,p1
q1 (Ω) × F s2,p2

q2 (Ω) → Fσ,t
q (Ω) ↪→ F s,p

q (Ω).

Now suppose 1/r > 1. Since 1/p∗ + s/n = 1 − 1/r < 0, from the comments before the start of the
proposition it suffices to show show that product embeds continuously in L1(Ω), and the hard case occurs
when min(1/r1, 1/r2) > 0. But then Sobolev embedding implies F si,pi

qi (Ω) ↪→ Lri
(Ω). Since 1/r1 + 1/r2 ≤

1/r < 1, the result follows from Hölder’s inequality.

Finally, suppose 1/r = 1. Now Sobolev embedding implies F−s,p∗

q∗ (Ω) ↪→ Lt(Ω) for all t < ∞. So it
suffices to show that the product embeds continuously in La(Ω) for some a > 1 and again the hard case
occurs when 1/r1, 1/r2 > 0. Since 1 − 1/r = 0, min(1/r1, 1/r2, 1 − 1/r) = 0 and we have hence assumed
1/r1 + 1/r2 < 1/r = 1. Arguing as in the case 1/r < 1, the product lies in La(Ω) with 1/a = 1/r1 + 1/r2. The
proof is complete, noting that the assumption 1/r1 + 1/r2 < 1 implies a > 1 as required.

The previous two propositions establish Theorem 3.5 if min(s1, s2) > 0. The case min(s1, s2) < 0 follows
from a duality argument.

Proposition A.7. Assume the multiplication hypothesis A.3 and that min(s1, s2) < 0. Multiplication of
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C∞(Ω) functions extends to a continuous bilinear map F s1,p1
q1 (Ω) × F s2,p2

q2 (Ω) → F s,p
q (Ω) so long as

s1 + s2 ≥ 0 (A.21)
s ≤ min(s1, s2) (A.22)

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.23)

1
r1
+

1
r2

≤ 1
r

(A.24)

1
r1
+

1
r2

≤ 1 (A.25)

with the following caveats:

• Inequality (A.24) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.

• If s = si for some i, then qi ≤ q.

• If s1 + s2 = 0 then 1
q1
+ 1

q2
≥ 1.

Proof. Without loss of generality we can assume s1 < 0, in which case s2 > 0. Note moreover that s < 0
since s ≤ s1.

We first show continuity of multiplication

F s2,p2
q2 (Ω) × F−s,p∗

q∗ (Ω) → F−s1,p∗1
q∗1

(Ω).

Since s2,−s,−s1 > 0 we need only verify the conditions of Proposition A.5. These read

−s1 ≤ s2

−s1 ≤ −s
1
p2

− s2

n
≤ 1

p∗
1
+

s1

n
1
p∗
+

s
n
≤ 1

p∗
1
+

s1

n
1
p2

− s2

n
+

1
p∗ − −s

n
≤ 1

p∗
1
− −s1

n

with the final inequality strict if min( 1
p2
− s2

n ,
1

p∗ − −s
n ) = 0 and additionally

q∗ ≤ q∗1 if −s = −s1,

q2 ≤ q∗1 if s2 = −s1.
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These conditions can be rewritten

0 ≤ s1 + s2

s ≤ s1 = min(s1, s2)
1
r2

≤ 1 − 1
r

1 − 1
r
≤ 1 − 1

r1

1
r2
+ 1 − 1

r
≤ 1 − 1

r1
.

with the final inequality strict if min(1/r2, 1 − 1/r) = 0 and additionally

q ≥ q1 if s = s1,

1
q1
+

1
q2

≥ 1 if s1 + s2 = 0.

Note that since 1/r1 > 0, min(1/r2, 1 − 1/r) = 0 if and only if min(1/r1, 1/r2, 1 − 1/r) = 0. Hence we have
assumed all of these conditions.

The result now follows from a duality argument. Suppose ui ∈ F si,pi
qi (Ω), i = 1, 2. We define an element

z ∈ F s,p
q (Ω) as follows. Let ũi be an extension to Rn that has support in some large ball BR(0) independent of

the functions ui, such that ||ũi||F si ,pi
qi (Rn) ≲ ||ui||F si ,pi

qi (Ω). Given w ∈ F−s,p∗

q∗ (Rn), the product ũ2w is an element

of F−s1,p∗1
q∗1

(B2R(0)) by the argument above, and because of the support of ũ2 in BR(0), it extends continuously

by zero to an element of F−s1,p∗1
q∗1

(Rn). Using duality pairing on Rn we define f (w) = ⟨ũ2w, ũ1⟩ and one
readily verifies the estimate

| f (w)| ≲ ||u1||F s1 ,p1
q1 (Ω)||u2||F s2 ,p2

q2 (Ω)||w||F−s,p∗
q∗ (Rn) (A.26)

and hence f determines an element of F s,p
q (Rn). Let z be its restriction to Ω. A routine computation shows

that z is independent of the choice of extensions, depends bilinearly (and via (A.26) continuously) on the
factors ui, and that if u1 and u2 are smooth, then z is simply the product u1u2.

It remains to establish Theorem 3.5 when min(s1, s2) = 0.

Proposition A.8. Assume the multiplication hypothesis A.3 that min(s1, s2) = 0. Multiplication is continu-
ous F s1,p1

q1 (Ω) × F s2,p2
q2 (Ω) → F s,p

q (Ω) so long as

max
(

1
r1
,

1
r2

)
≤ 1

r
(A.27)

1
r1
+

1
r2

≤ 1
r

(A.28)

with the following caveats:

• Inequality (A.28) is strict if min(1/r1, 1/r2, 1 − 1/r) = 0.
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• If si = s for some i then q ≥ qi.

• If s1 + s2 = 0 then 1
q1
+ 1

q2
≥ 1.

• If s1 = s2 = s = 0 then q1, q2 ≤ 2 and q ≥ 2.

Proof. Without loss of generality we can assume s1 ≥ s2 = 0.

Suppose first that s1 > 0 and s < 0. By a duality argument analogous to the one at the end of Proposition
A.7 it suffices to show that multiplication is continuous F s1,p1

q1 (Ω)× F−s,p∗

q∗ (Ω) → F0,p∗2
q∗2

(Ω). Proposition A.6
ensures this is possible so long as

1
r1

≤ 1
p∗2
,

1
p∗
+

s
n
≤ 1

p∗2
,

1
r1
+

1
p∗
+

s
n
,

1
r1
+

1
p∗
+

s
n
≤ 1

p∗
2

with the final inequality strict if min(1/r1, 1/p∗ + s/n, 1 − 1/p∗2 ) = 0. But these are equivalent to

1
r1
+

1
r2

≤ 1,
1
r2

≤ 1
r
,

1
r1

≤ 1
r
,

1
r1
+

1
r2

≤ 1
r

with the final inequality strict if min(1/r1, 1 − 1/r, 1/r2) = 0, which were all assumed.

Now consider the case s1 > 0 but s = 0. Pick ϵ > 0 so that ϵ < s1 and so that

1
t1

:=
1
r2
+
ϵ

n
< 1

1
t2

:=
1
r2

− ϵ

n
> 0

1
τ1

:=
1
r
+
ϵ

n
< 1

1
τ2

:=
1
r
− ϵ

n
> 0

This collection of inequalities can be satisfied because 1/r2 = 1/p2 ∈ (0, 1) and because 0 < 1/r2 ≤ 1/r =
1/p < 1. An easy computation shows that Proposition A.5 ensures continuity of multiplication

F s1,p1
q1 (Ω) × Fϵ,t1

q2
(Ω) → Fϵ,τ1

q (Ω);

note that this uses the hypothesis q ≥ q2 which we have assumed since s2 = s = 0. Similarly, Proposition
A.7 ensures continuity of multiplication

F s1,p1
q1 (Ω) × F−ϵ,t2

q2
(Ω) → F−ϵ,τ2

q (Ω).

The result now follows from interpolation, noting that 1
2 ( 1

t1
+ 1

t2
) = 1

r2
= 1

p2
and 1

2 ( 1
τ1
+ 1

τ2
) = 1

r =
1
p .

Finally suppose s1 = 0 and s < 0. By duality it suffices to prove multiplication is continuous

F0,p1
q1 (Ω) × F−s,p∗

q∗ (Ω) → F0,p∗2
q∗2

(Ω).

This follows from the case just considered, noting that we pick up the requirement, q1 ≤ q∗2 , which is
equivalent to 1/q1 + 1/q2 ≥ 1, which we have assumed since s1 + s2 = 0.

All that remains is the case s1 = s2 = s = 0. We have the obvious consequence of Hölder’s inequality:

F0,p1
q1 (Ω) × F0,p2

q2 (Ω) ↪→ Lp1 (Ω) × Lp2 (Ω) → Lp(Ω) ↪→ F0,p
q (Ω).

if q1, q2 ≤ 2, q ≥ 2, and 1/p1 + 1/p2 ≤ 1/p. It is perhaps surprising that this cannot be improved ([ST95]
Corollary 4.3.1(ii)).
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B Multiplication in Besov spaces

We prove the following multiplication theorem for Besov spaces following a strategy similar to that of
Appendix A.

Theorem 5.4. Let Ω be a bounded open subset of Rn. Suppose 1 < p1, p2, p, q1, q2, q <∞ and s1, s2, s ∈ R.
Let r1, r2 and r be defined by

1
r1
=

1
p1

− s1

n
,

1
r2
=

1
p2

− s2

n
, and

1
r
=

1
p
− s

n
.

Pointwise multiplication of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1
q1 (Ω) × Bs2,p2

q2 (Ω) →
Bs,p

q (Ω) so long as

min(s1, s2) ≥ s (B.1)
s1 + s2 ≥ 0 (B.2)

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.3)

1
r1
+

1
r2

≤ 1 (B.4)

1
r1
+

1
r2

≤ 1
r

(B.5)

with the following caveats:

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 or 1/r1 + 1/r2 = 1 then 1/q1 + 1/q2 ≥ 1.

• If equality holds in (B.5) then

◦ min(1/r1, 1/r2, 1 − 1/r) , 0.
◦ If min(s1, s2) ≤ 0 then 1/q1 + 1/q2 ≥ 1 and 1/q ≤ 1/r.
◦ If si has the same sign as min(s1, s2) for some i then 1/q ≤ 1/qi.
◦ If si has the same sign as max(s1, s2) for some i then 1/ri ≤ 1/qi.
◦ If s = 0 then 1/q ≤ 1/qi and 1/ri ≤ 1/qi for both i = 1, 2.

• If s1 = s2 = s = 0 then
1
q
≤ min

(
1
2
,

1
r

)
and max

(
1
2
,

1
ri

)
≤ 1

qi
for both i = 1, 2.

The large number of new caveats in the edge cases compared to those of Triebel-Lizorkin multiplication is
a consequence of two phenomena related to Besov space embedding on a bounded domain Ω. First, recall
from Proposition 5.1 that if 1

p1
− s1

n ≤ 1
p2
− s2

n and s1 ≥ s2 then

Bs1,p1
q1 (Ω) ↪→ Bs2,p2

q2 (Ω)

just as for Triebel-Lizorkin embedding, except the marginal case 1
p1

− s1
n =

1
p2

− s2
n requires additionally

q1 ≤ q2. Second, we require embeddings of Besov spaces into Lebesgue spaces Lp(Ω), which are less
straightforward than the Triebel-Lizorkin setting because Lebesgue spaces are not generically Besov spaces.
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Proposition B.1. Let Ω be an open set in Rn. Suppose 1 < p, q, r <∞ and s > 0.

1. If
1
p
− s

n
=

1
r

and if
1
q
≥ 1

r
then Bs,p

q (Ω) ↪→ Lr(Ω).

2. If q ≤ 2 and q ≤ p then B0,p
q (Ω) ↪→ Lp(Ω).

3. If q ≥ 2 and q ≥ p then Lp(Ω) ↪→ B0,p
q (Ω).

If Ω = Rn then part 1 follows from [Fr86] Theorem 1 and the remaining parts are a consequence of [Tr10]
Proposition 2.3.2/2. The same facts remain true for arbitrary open sets by the usual extension/restriction
argument.

We now proceed with the sequence of results that prove Theorem 5.4. The following two lemmas are analogs
of Lemmas A.1 and A.2 and are the technical foundation of the remainder of the appendix.

Lemma B.2. Suppose 1 < p ≤ p1 < ∞, 1 < q < ∞ and s > n/p1. If u ∈ Bs,p1
q (Rn) and v ∈ Bs,p

q (Rn) are
both supported in BR(0) for some R > 0 then uv ∈ Bs,p

q (Rn) and

||uv||Bs,p
q
≲ ||u||Bs,p1

q
||v||Bs,p

q
.

The implicit constant depends on s, p1, p, q and R but is independent of u and v.

Proof. By an obvious modification of Proposition 3.11(5)

||uv||Bs,p
q
≲ ∥uv∥Lp(Rn) +

∑
k≥10

2sqk∥Pk(uv)∥q
Lp(Rn)


1
q

and we follow the pattern of Lemma A.1 to bound the right-hand side of this inequality.

Since s > n/p1, the low frequency part admits the bound

∥uv∥Lp(Rn) ≲ ∥u∥L∞(Rn)∥v∥Lp(Rn) ≲ ∥u∥Bs,p1
q (Rn)∥v∥Bs,p

q (Rn).

For the high-frequency part we define P̃k = Pk−3≤·≤k+3 and observe that the Littlewood-Paley trichotomy of
Theorem 3.11(6) implies

Pk(uv) = Pk


(P≤k−4u)(P̃kv)︸            ︷︷            ︸

low-high

+ (P̃ku)(P≤k+5v)︸           ︷︷           ︸
high-low

+
∑

k′≥k+4

(Pk′u)(P̃k′v)︸                ︷︷                ︸
high-high


.

For the low-high term, we use Proposition 3.11 parts (4) and (3) along with the Hardy-Littlewood maximal
inequality to compute

∥Pk

(
(P≤k−4u)(P̃kv)

)
∥Lp(Rn) ≲ ∥(P≤k−4u)(P̃kv)∥Lp(Rn) ≤ ∥P≤k−4u∥L∞(Rn)∥P̃kv∥Lp(Rn)

≲ ∥Mu∥L∞(Rn)∥P̃kv∥Lp(Rn)

≲ ∥u∥L∞(Rn)∥P̃kv∥Lp(Rn)

≲ ∥u∥Bs,p1
q (Rn)∥P̃kv∥Lp(Rn)
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where M is, as usual, the maximal operator. Summing over k, we get the desired bound∑
k≥10

2sqk∥Pk

(
(P≤k+5u)(P̃kv)

)
∥q

Lp(Rn) ≲ ∥u∥q
Bs,p1

q (Rn)

∑
k≥10

2sqk∥P̃kv∥q
Lp(Rn) ≲ ∥u∥q

Bs,p1
q (Rn)

∥v∥q
Bs,p

q (Rn)
.

Similarly, for the high-low term, we have

∥Pk

(
(P̃ku)(P≤k+5v)

)
∥Lp(Rn) ≲ ∥(P̃ku)(P≤k+5v)∥Lp(Rn) ≤ ∥P̃ku∥Lp1 (Rn)∥P≤k+5v∥Lt(Rn)

≲ ∥P̃ku∥Lp1 (Rn)∥Mv∥Lt(Rn)

≲ ∥P̃ku∥Lp1 (Rn)∥v∥Lt(Rn)

where t > 1 is defined by
1
p1
+

1
t
=

1
p
.

Then summing over k gives∑
k≥10

2sqk∥Pk

(
(P̃ku)(P≤k+5v

)
∥q

Lp(Rn) ≲ ∥v∥q
Lt(Rn)

∑
k≥10

2sqk∥P̃ku∥q
Lp1 (Rn) ≲ ∥v∥q

Lt(Rn)∥u∥q
Bs,p1

q (Rn)
. (B.6)

Using the fact that v has support on a ball of fixed radius we control ∥v∥Lt(Rn). If s > n/p

∥v∥Lt(Rn) ≲ ∥v∥L∞(Rn) ≲ ∥v∥Bs,p1
q (Rn),

and otherwise, since
1
t
=

1
p
− 1

p1
>

1
p
− s

n
≥ 0,

Proposition B.1 along with Sobolev embedding for functions of bounded support to lower p and suitably
adjust q implies

∥v∥Lt(Rn) ≲ ∥v∥Bs,p
q (Rn).

In either case find that the left-hand side of inequality (B.6) is bounded by ||u||q
Bs,p1

q (Rn)
||v||q

Bs,p
q (Rn)

Finally, turning to the high-high term, we start with∥∥∥∥∥∥∥∥Pk

∑
k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
Lp(Rn)

≲

∥∥∥∥∥∥∥∥
∑

k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
Lp(Rn)

≤
∑

k′≥k+4

∥Pk′u∥L∞(Rn)∥P̃k′v∥Lp(Rn)

≲
∑

k′≥k+4

∥Mu∥L∞(Rn)∥P̃k′v∥Lp(Rn)

≲ ∥u∥Bs,p1
q (Rn)

∑
k′≥k+4

∥P̃k′v∥Lp(Rn).

Now sum over k to get

∑
k≥10

2sqk

∥∥∥∥∥∥∥∥Pk

∑
k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
q

Lp(Rn)

≲ ∥u∥q
Bs,p1

q (Rn)

∑
k≥10

 ∑
k′≥k+4

2sk∥P̃k′v∥Lp(Rn)


q

.
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and observe that the desired estimate holds if we can show

∑
k≥10

 ∑
k′≥k+4

2sk∥P̃k′v∥Lp(Rn)


q

≲ ||v||q
Bs,p

q (Rn)
. (B.7)

However, setting bk = 2sk∥P̃kv∥Lp(Rn) for k ≥ 1 we have

∑
k≥10

 ∑
k′≥k+4

2sk∥P̃k′v∥Lp(Rn)


q

=
∑
k≥10

∑
a≥4

2−sa2s(k+a)∥P̃k+av∥Lp(Rn)


q

=
∑
k≥10

∑
a≥4

2−sabk+a


q

.

Since
∑

a≥4 2−sa is finite we can apply Jensen’s inequality to conclude

∑
k≥10

∑
a≥4

2−sabk+a


q

≲
∑
k≥10

∑
a≥4

2−sabq
k+a =

∑
a≥4

∑
k≥10

2−sabq
k+a ≤ ||b||q

ℓq

∑
a≥4

2−sa.

This final sum is finite and ||b||ℓq ≲ ||v||Bs,p2
q (Rn), which leads to inequality (B.7).

Lemma B.3. Suppose 1 < p < p2 ≤ p1 <∞, 1 < q1, q2 <∞ and 0 < s < n/p1. Suppose moreover that

1
p
≥ 1

p1
+

1
p2

− s
n
, (B.8)

and if (B.8) is an equality assume additionally

1
q1

≥ 1
p1

− s
n
, and

1
q2

≥ 1
p2

− s
n
. (B.9)

If u ∈ Bs,p1
q1 (Rn) and v ∈ Bs,p2

q2 (Rn) are both supported in BR(0) for some R > 0 then uv ∈ Bs,p
q (Rn) with

q = max{q1, q2}, and
||uv||Bs,p

q
≲ ||u||Bs,p1

q1
||v||Bs,p2

q2
.

The implicit constant depends on s, p1, p2, p, q1, q2 and R but is independent of u and v.

Proof. We follow the familiar pattern. For convenience, recall the bound

||uv||Bs,p
q (Rn) ≲ ∥uv∥Lp(Rn) +

∑
k≥10

2sqk∥Pk(uv)∥q
Lp(Rn)


1
q

,

and the Littlewood-Paley trichotomy

Pk(uv) = Pk


(P≤k−4u)(P̃kv)︸            ︷︷            ︸

low-high

+ (P̃ku)(P≤k+5v)︸           ︷︷           ︸
high-low

+
∑

k′≥k+4

(Pk′u)(P̃k′v)︸                ︷︷                ︸
high-high



63



where P̃k = Pk−3≤·≤k+3. For the low frequency part, Hölder’s inequality followed by Sobolev embedding
(using the bounded support of u) and Proposition B.1 yields

∥uv∥Lp(Rn) ≲ ∥u∥Lt1 (Rn)∥v∥Lp2 (Rn) ≲ ∥u∥Bs,p1
q1 (Rn)∥v∥Bs,p2

q (Rn),

where t1 ∈ (1,∞) is defined by
1
t1
=

1
p
− 1

p2
≥ 1

p1
− s

n
,

with the inequality strict if (B.8) is strict. If (B.8) is an equality, then we need q1 ≤ t1, since the embedding
Bs,p1

q1 (Rn) ↪→ Lt1 (Rn) becomes borderline.

For the low-high term, applying now-familiar facts from Proposition 3.11 we have

∥Pk

(
(P≤k−4u)(P̃kv)

)
∥Lp(Rn) ≲ ∥(P≤k−4u)(P̃kv)∥Lp(Rn) ≤ ∥P≤k−4u∥Lt1 (Rn)∥P̃kv∥Lp2 (Rn)

≲ ∥Mu∥Lt1 (Rn)∥P̃kv∥Lp2 (Rn)

≲ ∥u∥Lt1 (Rn)∥P̃kv∥Lp2 (Rn)

≲ ∥u∥Bs,p1
q1 (Rn)∥P̃kv∥Lp2 (Rn),

and summing over k gives∑
k≥10

2sqk∥Pk(P≤k+5u)(P̃kv)∥q
Lp(Rn) ≲ ∥u∥q

Bs,p1
q1 (Rn)

∑
k≥0

2sqk∥P̃kv∥q
Lp2 (Rn) ≲ ∥u∥q

Bs,p1
q1 (Rn)

∥v∥q
Bs,p2

q (Rn)
.

Similarly, for the high-low term, we have

∥Pk

(
(P̃ku)(P≤k+5v)

)
∥Lp(Rn) ≲ ∥(P̃ku)(P≤k+5v)∥Lp(Rn) ≤ ∥P̃ku∥Lp1 (Rn)∥P≤k+5v∥Lt2 (Rn)

≲ ∥P̃ku∥Lp1 (Rn)∥Mv∥Lt2 (Rn)

≲ ∥P̃ku∥Lp1 (Rn)∥v∥Lt2 (Rn)

≲ ∥P̃ku∥Lp1 (Rn)∥v∥Bs,p2
q2 (Rn),

where t2 ∈ (1,∞) is defined by
1
t2
=

1
p
− 1

p1
≥ 1

p2
− s

n
,

with the inequality strict if (B.8) is strict. If (B.8) is an equality, then we need q2 ≤ t2, since the embedding
Bs,p2

q2 (Rn) ↪→ Lt2 (Rn) again becomes borderline. Summing over k yields∑
k≥10

2sqk∥Pk

(
(P̃ku)(P≤k+5v)

)
∥q

Lp(Rn) ≲ ∥v∥q
Bs,p2

r2 (Rn)

∑
k≥10

2sqk∥P̃ku∥q
Lp1 (Rn) ≲ ∥v∥q

Bs,p2
r2 (Rn)

∥u∥q
Bs,p1

q (Rn)
.

Finally, turning to the high-high term, start with∥∥∥∥∥∥∥∥Pk

∑
k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
Lp(Rn)

≲

∥∥∥∥∥∥∥∥
∑

k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
Lp(Rn)

≤
∑

k′≥k+4

∥Pk′u∥Lt1 (Rn)∥P̃k′v∥Lp2 (Rn)

≲
∑

k′≥k+4

∥Mu∥Lt1 (Rn)∥P̃k′v∥Lp2 (Rn)

≲ ∥u∥Bs,p1
q1 (Rn)

∑
k′≥k+4

∥P̃k′v∥Lp2 (Rn),
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and sum over k to get

∑
k≥10

2sqk

∥∥∥∥∥∥∥∥Pk

∑
k′≥k+4

(Pk′u)(P̃k′v)

∥∥∥∥∥∥∥∥
q

Lp(Rn)

≲ ∥u∥q
Bs,p1

q1 (Rn)

∑
k≥10

2sqk

 ∑
k′≥k+4

∥P̃k′v∥Lp2 (Rn)


q

. (B.10)

Moreover, the same argument as at the end of Lemma B.2 shows

∑
k≥10

2sqk

 ∑
k′≥k+4

∥P̃k′v∥Lp2 (Rn)


q

≲ ||v||Bs,p2
q (Rn)

and it follows that the left-hand side of inequality (B.10) is controlled by ||u||q
Bs,p1

q (Rn)
||v||q

Bs,p2
q (Rn)

.

At this point we have shown
∥uv∥Bs,p

q (Rn) ≲ ∥u∥Bs,p1
q v∥v∥Bs,p2

q (Rn)

which, combined with the embeddings Bs,p1
q1 (Rn) ↪→ Bs,p1

q (Rn) and Bs,p2
q2 (Rn) ↪→ Bs,p2

q (Rn), establishes the
proof.

The following result consolidates the previous two lemmas and applies to bounded smooth domainsΩ rather
than Rn.

Proposition B.4. Assume the multiplication hypothesis A.3 and that s1 = s2 = s > 0. Pointwise multi-
plication of C∞(Ω) functions extends to a continuous bilinear map Bs,p1

q1 (Ω) × Bs,p2
q2 (Ω) → Bs,p

q (Ω) so long
as

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.11)

1
r1
+

1
r2

≤ 1
r

(B.12)

min
(

1
q1
,

1
q2

)
≥ 1

q
(B.13)

with the following caveats:

• Inequality (B.12) is strict if min(1/r1, 1/r2) = 0.

• If (B.12) is an equality, then 1/r1 ≤ 1/q1 and 1/r2 ≤ 1/q2.

Proof. Using the argument at the start of Proposition A.4 it suffices to show

||uv||Bs,p
q (Rn) ≲ ||u||Bs1 ,p1

q1 (Rn)||v||Bs2 ,p2
q2 (Rn) (B.14)

whenever u ∈ Bs1,p1
q (Rn) and v ∈ Bs2,p2

q (Rn) are supported in some ball of radius R large enough to contain
Ω. Since the conditions are symmetric with respect to the indices 1 and 2, without loss of generality, assume
that p2 ≤ p1. We split the proof into 3 cases.
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First, consider the case s > n/p1, that is, 1/r1 < 0. Thus (B.11) becomes p ≤ p2. Inequality (B.14) then
follows from Lemma B.2 , the fact that ∥v∥Bs2 ,p

q (Rn) ≲ ∥v∥Bs2 ,p1
q (Rn) with implicit constant depending on R, and

the embeddings Bs,pi
qi (Rn) ↪→ Bs,pi

q (Rn) for i = 1, 2.

Now suppose that 0 < s < n/p1, that is, 1/r1 > 0. In this case, (B.12) becomes

1
p
≥ 1

p1
+

1
p2

− s
n
,

and we have assumed additionally that if this is an equality then qi ≤ ri for i = 1, 2. These are exactly the
hypotheses of Lemma B.3 and estimate (B.14) follows.

Finally, we look at the case s = n/p1, that is, 1/r1 = 0. Then min(1/r1, 1/r2) = 0 since 1/r2 ≥ 1/r1 and we
have therefore assumed (B.12) is strict. Hence we can pick η ∈ (1, p1) such that

1
p
>

1
η
+

1
p2

− s
n
.

as well. Since s < n/η, estimate (B.14) now follows from Lemma B.3 and the continuous embedding
Bs,p1

q1 (Rn) ↪→ Bs,η
q1 (Rn).

The restriction s = s1 = s2 of the previous result can easily be relaxed with the help of Sobolev embeddings.

Proposition B.5. Assume the multiplication hypothesis A.3 and that min(s1, s2, s) > 0. Pointwise multipli-
cation of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bs,p

q (Ω) so long
as

min(s1, s2) ≥ s (B.15)

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.16)

1
r1
+

1
r2

≤ 1
r

(B.17)

with the following caveats:

• Inequality (B.17) is strict if min(1/r1, 1/r2) = 0.

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If 1/r1 + 1/r2 = 1/r then 1/ri ≤ 1/qi for i = 1, 2 and 1/q ≤ min(1/q1, 1/q2).

Proof. The proof follows the outline of Proposition A.5, with some extra care with respect to the fine pa-
rameter.

Case: min(1/r1, 1/r2) > 0.
Suppose first that 1/r1 + 1/r2 < 1/r. Since each 1/ri > 0 we have max(1/r1, 1/r2) < 1/r as well. For
any si > s we can then lower si slightly while preserving these strict inequalities (B.16)–(B.17) to set qi

to any desired value. Hence, without loss of generality, if si > s we can assume qi ≤ q. Otherwise, if
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si = s we have assumed qi ≤ q. Following the technique of the corresponding case of Proposition A.5
we then embed Bsi,pi

qi (Ω) ↪→ Bs,ti
qi where 1/ti − s/n = 1/ri and apply Proposition (B.5) to obtain continuous

multiplication Bs,t1
q1 (Ω) × Bs,t2

q2 (Ω) ↪→ Bs,p
q (Ω), noting that inequalities (B.11)–(B.13) all hold and that the

caveats are irrelevant.

If instead 1/r1 + 1/r2 = 1/r the same technique applies, except we cannot adjust any qi and must assume
qi ≤ q and qi ≤ ri in advance, as we have done.

Case: min(1/r1, 1/r2) = 0.
We have assumed that inequality (B.17) is strict. Since each 1/ri > 0 we also know that inequality (B.16)
is also strict. Hence we can lower each pi while leaving si fixed and maintain these strict inequalities. The
result now follows from the case min(1/r1, 1/r2) > 0.

Case: min(1/r1, 1/r2) < 0.
Without loss of generality we can assume 1/r1 ≤ 1/r2 and hence 1/r1 < 0. Since s2 ≥ s and 1/r2 ≤ 1/r
and since we have additionally assumed that q2 ≤ q if either s = s2 or r = r2 we know Bs2,p2

q2 (Ω) ↪→ Bs,p
q (Ω).

Hence we need only demonstrate continuity of multiplication Bs1,p1
q1 (Ω) × Bs,p

q (Ω) → Bs,p
q (Ω). Proposition

B.4 implies multiplication Bs,t
q ×Bs,p

q (Ω) → Bs,p
q (Ω) is continuous so long as t ≥ p and 1/t− s/n < 0. Hence

we are done if we can show that Bs1,p1
q1 (Ω) embeds into some Bs,t

q (Ω) satisfying these two conditions. The
proof now follows the corresponding case of Proposition A.5 except we must now assume (as we have done)
that q1 ≤ q if r1 = r in addition to assuming q1 ≤ q if s1 = s in order for the requisite Sobolev embeddings
to be valid.

What remains is the case where one or more of the indices s1, s2 and s is nonpositive. The following 3
propositions then explore the full range of the parameters s1, s2 and s, and correspond to the cases where
min(s1, s2) is negative, positive, and zero. The main tool we employ is duality.

Proposition B.6. Assume the multiplication hypothesis A.3 and that min(s1, s2) < 0. Pointwise multipli-
cation of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bs,p

q (Ω) so long
as

min(s1, s2) ≥ s (B.18)
s1 + s2 ≥ 0 (B.19)

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.20)

1
r1
+

1
r2

≤ 1 (B.21)

1
r1
+

1
r2

≤ 1
r

(B.22)

with the following caveats:

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 or 1/r1 + 1/r2 = 1 then 1/q1 + 1/q2 ≥ 1.

• If 1/r1 + 1/r2 = 1/r then:
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◦ min(1/r1, 1/r2, 1 − 1/r) , 0.

◦ 1/q1 + 1/q2 ≥ 1 and 1/q ≤ 1/r.

◦ If si < 0 for some i then 1/q ≤ 1/qi.

◦ If si > 0 for some i then 1/ri ≤ 1/qi.

Proof. Without loss of generality, assume that s1 > 0 and s2 < 0. Following the duality technique of
Proposition A.7, continuity of multiplication Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bs,p

q (Ω) follows from continuity of

multiplication Bs1,p1
q1 (Ω) × Bs∗2 ,p

∗
2

q∗2
(Ω) → Bs∗,p∗

q∗ (Ω), with

s∗2 = −s,
1
p∗2
= 1 − 1

p
,

1
q∗

2
= 1 − 1

q
, s∗ = −s2,

1
p∗ = 1 − 1

p2
,

1
q∗
= 1 − 1

q2
,

and hence the problem falls under Proposition B.5. Note that

1
r∗2
= 1 − 1

r
, and

1
r∗
= 1 − 1

r2
.

For clarity, let us display here what Proposition B.5 becomes when we write the conditions in terms of the
un-starred parameters: multiplication Bs1,p1

q1 (Ω) × Bs∗2 ,p
∗
2

q∗2
(Ω) → Bs∗,p∗

q∗ (Ω) is continuous so long as

−s2 ≤ min(s1,−s) (B.23)

max
(

1
r1
, 1 − 1

r

)
≤ 1 − 1

r2
(B.24)

1
r1
+ 1 − 1

r
≤ 1 − 1

r2
(B.25)

with the following caveats:

• Inequality (B.25) is strict if min(1/r1, 1 − 1/r) = 0.

• If −s2 = s1 or 1 − 1/r2 = 1/r1 then 1 − 1/q2 ≤ 1/q1.

• If −s2 = −s or 1 − 1/r2 = 1 − 1/r then 1 − 1/q2 ≤ 1 − 1/q.

• If 1/r1 + 1 − 1/r = 1 − 1/r2 then q1 ≤ r1, 1 − 1/q ≥ 1 − 1/r, and 1 − 1/q2 ≤ min(1/q1, 1 − 1/q).

Noting that min(1/r1, 1/r2, 1−1/r) = 0 if and only if min(1/r1, 1−1/r) = 0, all these conditions are implied
by the hypotheses of the proposition.

Now we treat the case min(s1, s2) > 0.

Proposition B.7. Assume the multiplication hypothesis A.3 and that min(s1, s2) > 0. Pointwise multipli-
cation of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bs,p

q (Ω) so long
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as

min(s1, s2) ≥ s (B.26)

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.27)

1
r1
+

1
r2

≤ 1 (B.28)

1
r1
+

1
r2

≤ 1
r

(B.29)

with the following caveats:

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If 1/r1 + 1/r2 = 1 then 1/q1 + 1/q2 ≥ 1.

• If 1/r1 + 1/r2 = 1/r then:

◦ min(1/r1, 1/r2, 1 − 1/r) , 0.

◦ 1/q ≤ 1/qi and 1/ri ≤ 1/qi for i = 1, 2.

Proof. Suppose s > 0. Then 1/r < 1, so min(1/r1, 1/r2, 1 − 1/r) = 0 if and only if min(1/r1, 1/r2) = 0.
Using this observation it is easy to see that the hypotheses of the current result imply the hypotheses of
Proposition B.5 and the desired continuity of multiplication when s > 0 follows.

We split the remaining case s ≤ 0 into the following 4 subcases.

• If 1/r < 1, then let 0 < σ < min(s1, s2) be small enough so that σ/n + 1/r < 1 and define η ∈ by
1/η−σ/n = 1/r. Observe that 0 < 1/η < 1 since 1/r and σ are both positive and since σ is sufficiently
small. Using the fact that min(1/r1, 1/r2) = 0 if and only if min(1/r1, 1/r2, 1− 1/r) = 0 when 1/r < 1
one then verifies that the hypotheses of Proposition B.5 are met to ensure multiplication is continuous
Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bσ,ηq (Ω). The result then follows from the embedding Bσ,ηq (Ω) ↪→ Bs,p

q (Ω).

• If 1/r = 1, we observe that inequality (B.29) is strict. Indeed, if min(1/r1, 1/r2) ≥ 0 then min(1/r1, 1/r2, 1−
1/r) = 0 and this holds by hypothesis, and if min(1/r1, 1/r2) < 0 it is an easy consequence of inequal-
ities (B.27) and (B.29) and the fact that 1/r = 1. Moreover each 1/ri < 1/pi < 1 = 1/r. Hence we can
pick r′ with 0 < 1/r′ < 1 such that 1/ri < 1/r′ for i = 1, 2 and such that 1/r1 + 1/r2 < 1/r′. Now pick
0 < σ < min(s1, s2) such that σ is small enough so that η defined by 1/η = 1/r′ + σ/n lies in (0, 1).
The proof now proceeds as in the previous subcase, verifying that the hypotheses of Proposition B.5
are met to get continuity of Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bσ,ηq (Ω) ↪→ Bs,p

q (Ω). Note that this verification
benefits from the observation 1/r1 + 1/r2 < 1/r′ strictly.

• If 1/r > 1 and 1/r1 + 1/r2 < 1 we can again pick r′ > 1 with 1/ri < 1/r′ < 1 for i = 1, 2 and with
1/r1 + 1/r1 < 1/r′ < 1. The proof now proceeds exactly as in the previous subcase.

• If 1/r > 1 and 1/r1 + 1/r2 = 1, then we necessarily have the strict inequality s < 0. Without loss of
generality we can assume 1/r1 ≤ 1/r2, and choose σ such that 0 > σ > max(s,−s1) and such that
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1/η := 1/r2 + σ/n > 0. Observe 1/η < 1 as well. One now verifies that the hypotheses of Proposition
B.6 are met to obtain continuity of multiplication Bs1,p1

q1 (Ω)×Bσ,ηq2 (Ω) → Bs,p
q (Ω), and indeed the check

of its caveats is straightforward because we know 1/r1 + 1/r2 < 1/r.

The proof is complete.

Finally, we have the case min(s1, s2) = 0.

Proposition B.8. Assume the multiplication hypothesis A.3 and that min(s1, s2) = 0. Pointwise multipli-
cation of C∞(Ω) functions extends to a continuous bilinear map Bs1,p1

q1 (Ω) × Bs2,p2
q2 (Ω) → Bs,p

q (Ω) so long
as

s ≤ 0 (B.30)

max
(

1
r1
,

1
r2

)
≤ 1

r
(B.31)

1
r1
+

1
r2

≤ 1 (B.32)

1
r1
+

1
r2

≤ 1
r

(B.33)

with the following caveats:

• If s = si or 1/r = 1/ri for some i then 1/q ≤ 1/qi.

• If s1 + s2 = 0 or 1/r1 + 1/r2 = 1 then 1/q1 + 1/q2 ≥ 1.

• If equality holds in (B.33) then

◦ min(1/r1, 1/r2, 1 − 1/r) , 0.

◦ 1/q1 + 1/q2 ≥ 1 and 1/q ≤ 1/r.

◦ If si = 0 for some i then 1/q ≤ 1/qi.

◦ If si has the same sign as max(s1, s2) for some i then 1/ri ≤ 1/qi.

◦ If s = 0 then 1/q ≤ 1/qi and 1/ri ≤ 1/qi for both i = 1, 2.

• If s1 = s2 = s = 0 then
1
q
≤ min

(
1
2
,

1
r

)
and max

(
1
2
,

1
ri

)
≤ 1

qi
for both i = 1, 2.

Proof. First, consider the case s1 > s2 = 0 > s. Pick σ such that 0 > σ > max(s,−s1) and such that σ is
close enough to zero such that 1/η := 1/r2 + σ/n > 0. This is possible since 1/r2 = 1/p2 > 0. Observe that
1/η < 1 as well since 1/r2 = 1/p2 < 1 and since σ < 0. By Sobolev embedding, Bs2,p2

q2 (Ω) ↪→ Bσ,ηq2 (Ω). One
now verifies that the hypotheses of Proposition B.6 are met to imply continuity of multiplication Bs1,p1

q1 (Ω)×
Bσ,ηq2 (Ω) → Bs,p

q (Ω). The only interesting point in the verification is the fact that if (B.33) is an equality
then we have assumed 1/r1 ≤ 1/q1 and 1/q ≤ 1/qi, which are fine parameter requirements needed to use
Proposition B.6 with s1 > 0 and σ < 0.
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Next suppose that s1 > s2 = s = 0. Let 0 < σ < s1 be small enough so that η, θ, η2 and θ2 defined by

1
η2

− σ

n
=

1
θ2
+
σ

n
=

1
r2
,

1
η
− σ

n
=

1
θ
+
σ

n
=

1
r

all lie in (1,∞). This is possible since 1/r = 1/p ∈ (1,∞) and similarly for 1/r2. A computation verifies
that multiplication is continuous Bs1,p1

q1 (Ω) × Bσ,η2
q2 (Ω) → Bσ,ηq (Ω) due to Proposition B.7, and Bs1,p1

q1 (Ω) ×
B−σ,θ2

q2 (Ω) → B−σ,θ
q (Ω) due to Proposition B.6. Note that Proposition B.7 requires 1/ri ≤ 1/qi and 1/q ≤ qi

for i = 1, 2 if (B.33) is an equality and that we have assumed this since s = 0. At this point, continuity of
Bs1,p1

q1 (Ω) × B0,p2
q2 (Ω) → B0,p

q (Ω) is guaranteed by complex interpolation.

The next case we consider is s1 = s2 = 0 > s, which follows from the preceding case by the duality
argument of Proposition A.7. Namely, continuity of B0,p1

q1 (Ω) × B0,p2
q2 (Ω) → Bs,p

q (Ω) is implied by continuity

of B−s,p∗

q∗ (Ω) × B0,p2
q2 (Ω) → B0,p∗1

q∗1
(Ω), with

1
p∗1
= 1 − 1

p
,

1
q∗1
= 1 − 1

q
,

1
p∗
= 1 − 1

p1
,

1
q∗
= 1 − 1

q1
.

A laborious but straightforward computation with these new parameters verifies that the interpolation tech-
nique of the previous case again applies. One finds again that 1/ri ≤ 1/qi and 1/q ≤ qi for i = 1, 2 are all
required if (B.33) is an equality, and these are assumed since s = 0.

Finally, suppose that s1 = s2 = s = 0. We have assumed max(1/ri, 2) ≤ 1/qi for i = 1, 2 and hence
Proposition B.1 implies B0,pi

qi (Ω) ↪→ Lri (Ω) = Lpi (Ω). We have also assumed 1/q ≤ min(1/r, 1/2) and hence
Lp(Ω) = Lr(Ω) ↪→ B0,p

q (Ω). Since 1/p1 + 1/p2 = 1/r1 + 1/r2 ≤ 1/r = 1/p the continuous multiplication is
a consequence of Hölder’s inequality.

A routine verification shows that the hypotheses of Theorem 5.4 imply the hypotheses of Propositions B.6
B.7 and B.8 in each of these special cases, which proves Theorem 5.4 in the event thatΩ is a bounded smooth
domain. As discussed following the statement of Assumption A.3, an extension/restriction argument then
proves the result for an arbitrary bounded domain.
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