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ABSTRACT. We consider a general family of regularized Navier-Stokes and Magneto-
hydrodynamics (MHD) models on n-dimensional smooth compact Riemannian mani-
folds with or without boundary, with n > 2. This family captures most of the specific
regularized models that have been proposed and analyzed in the literature, including
the Navier-Stokes equations, the Navier-Stokes-a model, the Leray-o model, the Mod-
ified Leray-a model, the Simplified Bardina model, the Navier-Stokes-Voight model,
the Navier-Stokes-a-like models, and certain MHD models, in addition to representing
a larger 3-parameter family of models not previously analyzed. This family of models
has become particularly important in the development of mathematical and computa-
tional models of turbulence. We give a unified analysis of the entire three-parameter
family of models using only abstract mapping properties of the principal dissipation and
smoothing operators, and then use assumptions about the specific form of the parameter-
izations, leading to specific models, only when necessary to obtain the sharpest results.
We first establish existence and regularity results, and under appropriate assumptions
show uniqueness and stability. We then establish some results for singular perturba-
tions, which as special cases include the inviscid limit of viscous models and the & — 0
limit in o models. Next we show existence of a global attractor for the general model,
and then give estimates for the dimension of the global attractor and the number of de-
grees of freedom in terms of a generalized Grashof number. We then establish some
results on determining operators for the two distinct subfamilies of dissipative and non-
dissipative models. We finish by deriving some new length-scale estimates in terms of
the Reynolds number, which allows for recasting the Grashof number-based results into
analogous statements involving the Reynolds number. In addition to recovering most
of the existing results on existence, regularity, uniqueness, stability, attractor existence
and dimension, and determining operators for the well-known specific members of this
family of regularized Navier-Stokes and MHD models, the framework we develop also
makes possible a number of new results for all models in the general family, including
some new results for several of the well-studied models. Analyzing the more abstract
generalized model allows for a simpler analysis that helps bring out the core common
structure of the various regularized Navier-Stokes and magnetohydrodynamics models,
and also helps clarify the common features of many of the existing and new results.
To make the paper reasonably self-contained, we include supporting material on spaces
involving time, Sobolev spaces, and Gronwall-type inequalities.
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1. INTRODUCTION

The mathematical theory for global existence and regularity of solutions to the three-
dimensional Navier-Stokes equations (3D NSE) is considered one of the most challeng-
ing unsolved mathematical problems of our time [16]. It is also well-known that direct
numerical simulation of NSE for many physical applications with high Reynolds number
flows is intractable even using state-of-the-art numerical methods on the most advanced
supercomputers available. Over the last three decades, researchers have developed tur-
bulence models as an attempt to side-step this simulation barrier; the aim of turbulence
models is to capture the large, energetic eddies without having to compute the smallest
dynamically relevant eddies, by instead modeling the effects of small eddies in terms of
the large scales in both NSE and magnetohydrodynamics (MHD) flows.

In 1998, the globally well-posed 3D Navier-Stokes-a (NS-«) equations (also known as
the viscous Camassa-Holm equations and Lagrangian averaged Navier-Stokes-a model)
was proposed as a sub-grid scale turbulence model [8, 9, 10, 19, 20, 34, 51, 56] (see
also [65] for n-dimensional viscous Camassa-Holm equations in the whole space). The
inviscid and unforced version of 3D NS-« was introduced in [34] based on Hamilton’s
variational principle subject to the incompressibility constraint div « = 0 (see also [52]).
By adding the correct viscous term and the forcing f in an ad hoc fashion, the authors
in [8, 9, 10] and [20] obtain the NS-« system. In references [8, 9, 10] it was found
that the analytical steady state solutions for the 3D NS-a model compared well with
averaged experimental data from turbulent flows in channels and pipes for a wide range
of large Reynolds numbers. It was this fact which led [8, 9, 10] to suggest that the NS-«
model be used as a closure model for the Reynolds-averaged equations. Since then, it
has been found that there is in fact a whole family of globally well-posed ‘a’- models
which yield similarly successful comparisons with empirical data; among these are the
Clark-a model [4], the Leray-a model [12], the modified Leray-a model [38], and the
simplified Bardina model [5, 46].
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In addition to the early success of the a-models mentioned above, the validity of the
original a-model (namely, the NS-a model) as a sub-grid scale turbulence model was
also tested numerically in [11, 56]. In the numerical simulation of the 3D NS-a model,
the authors of [11, 27, 28, 56] showed that the large scales of motion bigger than « (the
length scale associated with the width of the filter which regularizes the velocity field)
in a turbulent flow are captured (see also [49, 50] for the 2D case and [7] for the rate of
convergence of the 2D a-models to NSE). For scales of motion smaller than the length
scale «, the energy spectra decays faster in comparison to that of NSE. This numerical
observation has been justified analytically in [19]. In direct numerical simulation, the fast
decay of the energy spectra for scales of motion smaller than the supplied filter length
represents reduced grid requirements in simulating a flow. The numerical study of [11]
gives the same results. The same results hold as well in the study of the Leray-a model
in [12, 27].

The NS-« turbulence model has also been implemented in a primitive equation ocean
model (see [32, 33, 60]). Their simulations with the NS-« in an idealized channel domain
was shown to produce statistics which resembles doubling of resolution. For other ap-
plications of « regularization techniques, see [1] for application to the quasi-geostrophic
equations, [45] for application to Birkhoff-Rott approximation dynamics of vortex sheets
of the 2D Euler equations, and [48, 54, 55] for applications to incompressible magneto-
hydrodynamics equations. In [6], an a-regularized nonlinear Schrodinger equation was
proposed for the purpose of a numerical regularization that is hoped to shed some light
on the profile of the blow-up solutions to the nonlinear Schrodinger equations. Also,
in [2], the authors extend the derivation of the inviscid version of NS-« (called Euler-c,
also known as Lagrangian averaged Euler-«) to barotropic compressible flows.

Perhaps the newest addition to the family of « turbulence model is the Navier-Stokes-
Voight (NSV) equations proposed in [S], which turn out to also model the dynamics of
Kelvin-Voight viscoelastic incompressible fluids as introduced in [58, 59]. The statistical
properties of 3D NSV have been studied in [47]. The long-term asymptotic behavior of
solutions is studied in [42, 43]. In [18], the NSV was used in the context of image in-
painting. The numerical study of NSV in [18] suggests that the NSV, in comparison with
NSE, can provide a more efficient numerical process when automating the inpainting
procedure for certain classes of images. It is worthwhile to note that the inviscid NSV
coincide with the inviscid simplified Bardina model which is shown in [5] to be globally
well-posed. This new regularization technique for Euler equations prevents the risk of
damping too much energy in the small scales which could lead to unrealistic numerical
results.

As a representative of the more general model considered in this paper (described in
detail in Section 2), we consider first the following somewhat simpler constrained initial
value problem on an 3-dimensional flat torus T?:

o+ Au+ (Mu - V)(Nu) + xV(Mu)" - (Nu) + Vp = f(z),
V-u=0, (1.1)
u(0) = o,
where A, M, and N are bounded linear operators having certain mapping properties, and
where  is either 1 or 0. As in prior work on regularized models of the Navier-Stokes,
and Euler equations, we employ a single real parameter ¢ to control the strength of the
dissipation operator A. We then introduce two parameters which control the degree of

smoothing in the operators M and N, namely ¢, and 65, respectively, when xy = 0, and
Ay and 6y, respectively, when x = 1. Some examples of operators A, M, and N which
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satisfy the mapping assumptions we will need in this paper are
A= (=AY, M=U-’A)"" N=(I-a*A)", (1.2)

for fixed positive real number « and for specific choices of the real parameters 6, 6, and
f,. However, we emphasize that the abstract mapping assumptions we employ are more
general, and as a result do not require any specific form of the parameterizations of A,
M, and N; this abstraction allows (1.1) to recover most of the existing regularization
models that have been previously studied, as well as to represent a much larger three-
parameter family of models that have not been explicitly studied in detail. As a result, the
system in (1.1) includes the Navier-Stokes equations and the various previously studied
« turbulence models as special cases, namely, the Navier-Stokes - & model [8, 9, 10, 19,
20, 34, 56], Leray - « model [12], modified Leray - « model (ML - «) [38], simplified
Bardina model (SBM) [5], Navier-Stokes-Voight (NSV) model [42, 43, 58, 59], and the
Navier-Stokes - « - like (NS - o - like) models [57]. For clarity, some of the specific well-
known regularization models recovered by (1.1) for particular choices of the operators
A, M, N and y are listed in Table 1.

TABLE 1. Some special cases of the model (1.1) with @ > 0, and with S = (I —
aA)tand Sp, = [I + (—aA)?]~L

Model | NSE | Leray-a | ML-«« | SBM | NSV | NS-a | NS-a-like

A [—vA] —vA | —vA | vA| —vAS| —vA | v(-A)
M I S I S S S So,
N I I S S S I I
X 0 0 0 0 0 1 1

Our main goal in this paper is to develop well-posedness and long-time dynamics
results for the entire three-parameter family of models, and then subsequently recover
the existing results of this type for the specific regularization models that have been
previously studied. Along these lines, we first establish a number of results for the entire
three-parameter family, including results on existence, regularity, uniqueness, stability,
linear and nonlinear perturbations (with the inviscid and o« — 0 limits as special cases),
existence and finite dimensionality of global attractors, and bounds on the number of
determining degrees of freedom. Elaborating on the latter a bit more, for § > 0, we
derived a lower bound for the number of degrees of freedom m given by m > G"/?,
where G is the Grashof number and n is the spatial dimension. A lower bound for the
nondissipative case is also established. These results give necessary and/or sufficient
conditions on the ranges of the three parameters for dissipation and smoothing in order
to obtain each result, and we indicate where appropriate which particular regularization
models are covered in the allowable parameter ranges for each result. In the final section
of the paper, we develop some tools for relating the Grashof number-based results to
analogous statements involving the Reynolds number. Analyzing a generalized model
based on abstract mapping properties of the principal operators A, M, and N allows
for a simpler analysis that helps bring out the core common structure of the various
regularized NSE (as well as regularized magnetohydrodynamics) models, and also helps
clarify the common features of many of the existing and new results.

In [57], a two-parameter family of models was studied, corresponding to a subset of
those studied here, which we will call here the NS-«-like models. In order to describe this
subset of models, let ¢ and 65 be two nonnegative parameters, and consider the following
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system on T?:

o+ (—=A)u + (Mu - V)u+ V(Mu)' -u+Vp = f,

V-u=0, 13
V- (Mu) =0, (13)
u(0) = wo,

where M = (I + (—a?A)%)~!. This family of NS-a-like model equations interpolates
between incompressible hyper-dissipative equations and the NS-a models when varying
the two nonnegative parameters ¢ and #,. This is a special case of (1.1) with §; = 0
and y = 1, with the degree of dissipation controlled by the parameter # and the degree
of nonlinearity controlled by only one parameter 5. In this particular case, the NSE are
obtained when 6 = 1 and 6, = 0, while the NS-a model is obtained when 6 = 05 = 1.
In [57], sufficient conditions on the relationship between # and 6, are established to
guarantee global well-posedness and global regularity of solutions. Our results here can
be viewed as generalizing the global well-posedness and regularity results in [57] (see
also [65]) to a larger three-parameter family using a more abstract framework that does
not impose a specific form for the parameterizations, and then also establishing a num-
ber of additional new results for the larger three-parameter family, including results on
stability, linear and nonlinear perturbations, existence and dimension of global attractors,
and on determining operator bounds.

As a subset of the results mentioned above, we list some of the new results that we have
obtained for the family of @ models as a special case of the more generalized equation
(1.1). As far as we know, these results have not been previously established in the liter-
ature. The global existence and uniqueness of solutions for the inviscid o sub-grid scale
turbulence models has been established only for the SBM [5]. Here, as a consequence
of a more general result, we have established the global existence of a weak solution to
the inviscid Leray-a-model of turbulence. In [20], the convergence of weak solutions of
the NS-a to a weak solution of the NSE as the parameter «—( was established. Here we
have established this convergence result as well for the NS-a-like equations. In addition,
we have established for the NS-a-like equations, the existence and finite dimensionality
of its global attractor, and determining operator bounds. In the case of Leray-a, ML-a,
and SBM, the results on determining operator bounds also appear to be new.

It is important to note that the general framework here allows for the development of
results for certain (regularized or un-regularized) magnetohydrodynamics (MHD) mod-
els. The basic MHD system has the form

ou—vAu+ (u-V)u— (h-V)h =Vr —sVI|h]?,
Oh —nAh+ (u-V)h — (h-V)u =0, (1.4)
V-h=V-u=0,
where the unknowns are the velocity field u, the magnetic field A, and the pressure T,
and where v > 0 and 7 > 0 denote the constant kinematic viscosity and constant mag-

netic diffusivity, respectively. Our global well-posedness results include for example a
particular regularized MHD model

du—vAu+ (Mu-V)u— (Mh-V)h =Vr — 1V|h|?,
Oth —nAh + (Mu-V)h — (Mh - V)u =0,

supplemented with several divergence-free and boundary conditions, where M = (I —
a?A)7!. Note that the system (1.5) is different from the 3D Leray-a-MHD models

(1.5)
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proposed in [48], where global well-posedness result is still open as in the case of the
original MHD equations. It is also different in nature from the MHD models proposed
in [63, 64]. For the 3D Leray-a-MHD model proposed in [48] the magnetic field A is not
regularized. Another regularized model whose global well-posedness result is covered
here is the following modified version of the MHD-a model proposed in [48],

du —vAu+ (Mu-V)u+V(Mu)" -u— (Mh-V)h = Vr —1V|h?
Oth —nAh+ (Mu-V)h — (Mh-V)u =0,

supplemented with several divergence-free and boundary conditions. Again, the above
system is different from the original version of the MHD-« system proposed in [48],
which does not have a regularization on the magnetic field h. For the original MHD-«
system, global well-posedness is established in [48]. Here we would like to stress that
our current framework is best suited to MHD models where the velocity field u and the
magnetic field h are treated on an equal footing as far as the regularization is concerned,
so we cannot obtain sharpest results in our framework for the systems like the ones
proposed in [48]. However, our framework requires only minor modification to include
these models; the function spaces become product spaces, and the principal dissipation
and smoothing operators become block operators on these product spaces, typically with
block diagonal form. It is worthwhile to note here that filtering the magnetic field, as is
done in [54, 55], can be interpreted as introducing hyperviscosity for the filtered magnetic
field. This observation was first introduced in [48], and smoothing the magnetic field was
thought to yield unnecessary extra dissipation added to the system.

Since the o models of turbulence were intended as a basis for regularizing numerical
schemes for simulating turbulence, it is important to verify whether the ad hoc smoothed
equations inherit some of the original properties of the 3D MHD equations. In particular,
one would like to see if the ideal (v = ) = 0) quadratic invariants of the smoothed MHD
system can be identified with the ideal invariants of the original 3D MHD system under
suitable boundary conditions. There are three ideal quadratic invariants in 3D MHD
(e.g. under rectangular periodic boundary conditions or in the whole space) namely, the
energy £ = % [, |u(z)]?® + |h(x )|2 dr, the cross helicity h. = 3 [, u( ) dz,
and the magnetic helicity hy, = 3 fQ ) dz, where a(x ) is the Vector potentlal
so that h(x) = V x a(x). In the case of the 3D MHD e equations in [48], the three
corresponding ideal invariants are the energy £ = % [, u( (z) + |h(z)]?* dz
(which reduce, as a — 0, to the conserved energy of the 3D MHD equatrons) the
cross helicity h? = 3 fQ ) dz, and the magnetic helicity h$;, = 1 [, af
h (x) dx. For our system in (l 5) the correspondrng 1deal 1nvar1ants are the energy Ea =
: Jo, lu(@) > + |h(2)|? dz, and the cross helicity A = L [, u( ) dx. Currently, we
are unable to identify a conserved quantity in the ideal version of (l 5 ) which correspond
to the magnetic helicity in the 3D MHD system. Similar problems arise in the 3D MHD-
Leray-a equations introduced in [48]. When both the magnetic field and the velocity
ﬁeld are ﬁltered as it is done in [54], the corresponding ideal quadratic invariants are

=1 [ ul (z)+h(z)-Mh(z) dx, the cross helicity h? = 5 [, u(z)-Mh(z) dz,
and the magnetrc helrcrty Ky =3 Jo Ma(z) - Mh(z) dz.

The remainder of the paper is structured as follows. In §2, we establish our notation
and give some basic preliminary results for the operators appearing in the general reg-
ularized model. In §3, we build some well-posedness results for the general model; in
particular, we establish existence results (§3.1), regularity results (§3.3), and uniqueness
and stability results (§3.2). In §4 we establish some results for singular perturbations,
which as special cases include the inviscid limit of viscous models and the « — 0

(1.6)
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limit in o models; this involves a separate analysis of the linear (§4.1) and nonlinear
(§4.2) terms. These well-posedness and perturbation results are based on energy meth-
ods. In §5, we show existence of a global attractor for the general model by dissipation
arguments (§5.1), and then by employing the classical approach from [62], give esti-
mates for the dimension of the global attractor (§5.2). In §6, we establish some results
on determining operators for the two distinct subfamilies of dissipative (§6.1) and non-
dissipative (§6.2) models, with the help of certain generalizations of the techniques used
e.g., in [21, 41, 37, 43]. Since the results in §6 are (naturally) given in terms of the
generalized Grashof number, we finish in §7 by developing some new results on length-
scale estimates in terms of the Reynolds number, which allows for relating the Grashof
number-based results in the paper to analogous statements involving the Reynolds num-
ber.

To make the paper reasonably self-contained, in Appendix A we develop some sup-
porting material on Gronwall-type inequalities (Appendix A.l), spaces involving time
(Appendix A.2), and Sobolev spaces (Appendix A.3).

2. NOTATION AND PRELIMINARY MATERIAL

Let 2 be an n-dimensional smooth compact manifold with or without boundary and
equipped with a volume form, and let £ — €2 be a vector bundle over €2 equipped
with a Riemannian metric. With C*°(E) denoting the space of smooth sections of F, let
VY C C*°(F) be alinear subspace, let A : V—) be a linear operator, and let B : VxV—V
be a bilinear map. At this point V is conceived to be an arbitrary linear subspace of
C*(FE); however, later on we will impose restrictions on V implicitly through various
conditions on certain operators such as A. Assuming that the initial data vy € V, and
forcing term f € C'°(0,7;V) with T' > 0, consider the following equation

Owu + Au+ B(u,u) = f,

w(0) = o 2.1)

on the time interval [0, 7']. Bearing in mind the model (1.1), we are mainly interested in
bilinear maps of the form

B(v,w) = B(Mv, Nw), (2.2)
where M and NV are linear operators in )V that are in some sense regularizing and are
relatively flexible, and B is a bilinear map fixing the underlying nonlinear structure of
the equation. In the following, let P : C°°(E)—) be the L?-orthogonal projector onto

V.

Example 2.1. a) When QQ is a closed Riemannian manifold, and E = T) the tangent
bundle, an example of V is Vyer C {u € C®(TQ) : divu = 0}, a subspace of the
divergence-free functions. The space of divergence free periodic functions with vanishing
mean on a torus T" is a special case of this example. In this case, one typically has
A= (=AY, M= (—-a?A)" and N = (I — a>A)~"%.

b) When ) is a compact Riemannian manifold with boundary, and again E = TX) the
tangent bundle, a typical example of V is Vhom = {u € C5°(TQ) : divu = 0} the space
of compactly supported divergence-free functions. In this case, we keep the operators
A= (=PA)?, M = (I-a?PA)~™%, and N = (I —a*>PA)~%, in mind as the operators
that one would typically consider.

c) In either of the above two examples, one can consider as V the product spaces
Voer X Vper and Viom X Vhom, Which are encountered, e.g., in magnetohydrodynamics
models, cf. Example 2.2 below. For the operators A, M, and N, we would have the
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corresponding block operators on the product space ) for the above two examples, acting
diagonally.

Example 2.2. a) In a) or b) of the Example 2.1 above, the bilinear map B can be taken
to be

Bi(v,w) = P[(v- V)w], (2.3)

which corresponds to the models with x = 0 as discussed in §1.
b) Again in a) or b) of Example 2.1 above, B can be taken to be

By(v,w) = Pl(w - V)v + (Vw")v], (2.4)

which corresponds to the models with x = 1 as discussed in §1.
c) An example of B that cannot be written in the form (2.2) is the bilinear map for the
Clark-a model, which is

B.(v,w) = By(Nv,w) + By(w, Nv) — B;(Nv, Nw) — aB, (V! Nv, V;Nw),

where N = (I — o*PA)™', and where the Einstein summation convention is assumed.
Note that for this bilinear map, one only has (B.(v,v), Nv) = 0 for any v € Vye or
U € Vhom, in contrast to the examples By and By which are well-known to have stronger
antisymmetry properties, cf. Proposition 2.5(a).

d) The MHD system (1.4) has the bilinear map

B:a(%w) = (Bl<vl7w1) - B1(U2,w2),B1(U1,w2) - BI(U27w1)) ) (2.5)

where v = (v1, v2) and w = (wy, we) are elements of either Vper X Vper 0F Viom X Vhom.
The bilinear map for (1.5) is a special case of Bs(v,w) = Bs(Mv, Nw), with M and
N having the form M = diag(My, My) and N = 1. Another special case of Bs is the
bilinear form for the Leray-a-MHD model proposed in [48], where M and N have the
form M = diag(M;,I) and N = 1.

e) The MHD-« model (1.6) has the bilinear map of the form

B4(v,w) = (Bz(vl,wl) - B1(U2,w2),Bl(U1>w2) - 31(027’101)) . (2.6)

The bilinear map for (1.6) is a special case of By(v,w) = By(Mv, Nw), with M and
N having the form M = diag(M,, M) and N = I. Another special case of By is the
bilinear form for the MHD-a model proposed in [48)], where M and N have the form
M = diag(M;,1I) and N = I.

f) More generally, one can consider the bilinear maps of the form

B5(U,w) = Bi,j,k(v,w) = (Bi(vlawl) - Bj(U2,w2),Bk(U17w2) - Bj(UQ;wl)) )
where i, j, k € {1,2}. This class includes the above examples d) and e).

To refer to the above examples later on, let us introduce the shorthand notation:

Bi(v,w) = B;(Mv, Nw), i=1,...,5. 2.7

As usual, we will study equation (2.1) by extending it to function spaces that have
weaker differentiability properties. To this end, we interpret the equation (2.1) in distri-
bution sense, and need to continuously extend A and B to appropriate smoothness spaces.
Namely, we employ the spaces VV* = closys), which will informally be called Sobolev
spaces in the following. The pair of spaces V* and V' ~° are equipped with the duality
pairing (-, -), that is, the continuous extension of the L>-inner product on V. More-
over, we assume that there is a self-adjoint positive operator A such that A* : V* — V9
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is an isometry for any s € R. For arbitrary real s, assume that A, M, and N can be
continuously extended so that

A:Vesys=2 M VEsSVEt2h and N VSVt (2.8)

are bounded operators. We will assume ¢ > 0; however, there will not be any a priori
sign restriction on #; and #;. We remark that s in (2.8) is assumed to be arbitrary for
the purposes of the discussion in this section, and that it is of course sufficient to assume
(2.8) for a limited range of s for most of the results in this paper.

Remark 2.3. Note that in this framework the best value for 0 is 81 = 0 for both the
Leray-a-MHD model and the MHD-o model as proposed in [48], since those models
have M = (M, I), cf. Example 2.2 d) and e). It is possible to refine our analysis by
considering spaces such as V° x V" instead of V° x V?.

We assume that A and NV are both self-adjoint, and coercive in the sense that for 3 € R,
(Av, A*Pv) > callvllfss — Callvll3, v e Vith (2.9)

with c4 = c4(f) > 0, and Cy = C4(F) > 0, and that
(Nv,v) > en|v]|g,, veVT® (2.10)

with cy > 0. We also assume that (2.9) is valid for 3 = —6, with A?? replaced by
N. Note that if § = 0, (2.9) is strictly speaking not coercivity and follows from the
boundedness of A, and note also that (2.10) implies the invertibility of N. For clarity, we
list in Table 2 the corresponding values of the parameters and bilinear maps discussed
above for special cases listed in Table 1.

TABLE 2. Values of the parameters 6, 6; and 65, and the particular form of the bilinear
map B for some special cases of the model (2.1). (The bilinear maps B; and By are as
in (2.3)—-(2.4), (2.7).) Each of the NSE models has a corresponding MHD analogue.

Model | NSE | Leray-a | ML-a | SBM | NSV | NS-a | NS-a-like
6 1 1 1 1 0 1 0
01 0 1 0 1 1 0 0
02 0 0 1 1 1 1 02
B By B B B B By By

We denote the trilinear form b(u, v, w) = (B(u, v),w), and similarly the forms b, b;,
and b;, 2 = 1,...,5, following Example 2.2 and (2.7). We consider the following weak
formulation of the equation (2.1): Find v € L{ (0, 7T; V*) for some s such that

loc

/0 (—(u(t), (1)) + (Au(t), w(t)) + blu(t), u(t), w(t)) — (f(t),w(t)) )dt =0

u(0) = uyp,
@2.11)

for any w € C§°(0,T; V). Here the dot over a variable denotes the time derivative.

The left hand side of the first equation in (2.11) is well defined if u € L*(0,T;V?®),
f e LY0,T;V¥),and b : V° x V* x V7—R is bounded for some s, s,y € R. The
second equation makes sense if u € C(0,e;V*) for some ¢ > 0 and 5 € R. However,
the following lemma shows that the latter condition is implied by the first equation.
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Lemma 2.4. Let X C L*(0,T;V?®) be the set of functions that satisfy the first equation
in(2.11). Let f € L*(0,T; V=), and letb : V* x V* x V¥=5=R be bounded. Then
we have X C C(0,T;V*7%),

Proof. If u € X, we have i € L'(0,T;V*"?%); and so [61, Lemma 3.1.1] implies that
ue C(0,T; V%), O

In concluding the preliminary material in this section, we state the following result on
the tri_linear forms b;,1 =1, ..., §, which are the main concrete examples for the trilinear
form b. Recall that b(u, v, w) = b(Mu, Nv,w).

Proposition 2.5. a) The trilinear forms b;, i = 1,...,5, are antisymmetric in their sec-
ond and third variables:
bi(w,v,v) =0, w,veY, i=1,...,5, (2.12)

where V is one of the appropriate spaces in Example 2.1.
b) The trilinear form by : V' x V2 x V73 —R is bounded provided that

o1+ 02 + 03 > 2 (2.13)
and that for some k € {0, 1},
O'2+O'321, 01+032]€, 0'1—|—0'221—k. (214)

If the above three conditions are satisfied, and if o; is a non-positive integer for some
i € {1,2,3}, then the inequality in (2.13) can be replaced by the non-strict version of
the inequality. The non-strict inequality is also allowed if for some k € {0,1},

01 ZO, UQZk, 0'32 1—k. (215)

c) The trilinear form by : Vo' x Vo2 x V7 =R is bounded provided that (2.13) holds
and in addition that

0'2+O'320, O'1+O'321, 0'1+O'22 1. (216)

If the above three conditions are satisfied, and if o; is a non-positive integer for some
i € {1,2,3}, then the inequality in (2.13) can be replaced by the non-strict version of
the inequality. The non-strict inequality is also allowed if

o >1, o3>0, o3>0. 2.17)

d) The trilinear form bs : Vo' x Vo2 x V3R is bounded under the same conditions
on o1, 09, and o3 that are given in b).

e) The trilinear forms by, bs - VU x V72 x V3R are bounded provided that (2.13)
holds and in addition that

0-2‘1'_0-32 ]_, 0'1—|—O'3217 O'1+0'22 1. (218)

If the above three conditions are satisfied, and if o; is a non-positive integer for some
i € {1,2,3}, then the inequality in (2.13) can be replaced by the non-strict version of
the inequality. The non-strict inequality is also allowed if for some k € {0, 1},

01 Z 17 09 Z k‘, 03 Z 1—k. (219)

Proof. The antisymmetricity of by, and by is well known, and the boundedness of B; is
immediate from Lemma A.3. The antisymmetricity of b5 (which a fortiori implies that
of b3 and b4) can be seen from

Bs(wa Uﬂj) = Bz'(wbvhvl) - Bj(w% U27U1) + bk(wla V2, U2) - Bj(w27 U1, UQ),
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where 7, j, k € {1,2}. Part b) is proven by applying Lemma A.3 to each of the following
two representations

bi(u, v, w) = <uivivk,wk> = <uivk, Viwk>.
Part ¢) is proven by applying Lemma A.3 to
bo(u, v, w) = <UiViuk + 'V, wk> = <viviuk + VF(ul;) — v, V¥*u;, wk>
= <vivz~uk — v;VFu,, wk> :

To complete the proof, d) and e) follow from parts b) and c). ]

3. WELL-POSEDNESS RESULTS

Similar to the Leray theory of NSE, we begin the development of a solution theory for
the general 3-parameter family of regularized Navier-Stokes and MHD models with clear
energy estimates that will be used to establish existence and regularity results, and un-
der appropriate assumptions show uniqueness and stability. To reinforce which existing
results we recover in this general unified analysis, we give the corresponding simplified
results that have been established previously in the literature for the special cases listed
in Table 1, at the end of the proof of every theorem.

3.1. Existence. In this subsection, we establish sufficient conditions for the existence of
weak solutions to the problem (2.11). By a weak solution, we mean a solution satisfying
w € L*0,T; V%) and v« € L*(0,T; V") for some v € R.

Theorem 3.1. a) Let the following conditions hold.

i) b: V7 x V2 x VY-SR is bounded for some o; € [—05,0 — 05), i = 1,2, and
v € [0 + 05, 00) N (B2, 00);
ii) b(v,v, Nv) = 0 forany v € V97%;
iii) b: Vo x V2 x VI—=R is bounded for some 6; < 0 — 65,1 = 1,2, and 5 > ~;
iv) ug € V=%, and f € L*(0,T;V=7%), T > 0.
Then, there exists a solution u € L>(0,T;V=2) N L*(0,T; V%) to (2.11) satisfying

. 20 .
m1n{2,m , if >0

Le LP(0,T:V), p=
e LA ) {2,1']‘9:0.

b) With some 3 > —0y, let the following conditions hold.
D) b: V8 x VP x VI=PR is bounded;
i) ug € VP, and f € L*(0,T; V=949, T > 0.
iii) b : V7 x V2 x VI—=R is bounded for some 0 < 0 + 3, and v > 0 — [3;
Then, there exist T*(ug) = T*(||uol|g) > 0 and a local solution v € L>(0,T*;VF) N
L%(0,T*; V) to the equation (2.11).

Remark 3.2. a) Let 0 + 6, > % Then from Proposition 2.5 the trilinear forms by and b
fulfill the hypotheses of a) for —y < 0 — 05 — 1 with —y < min{26 + 26, — ”T*Q, 0—0,+
201,60+ 05 — 1}. Note that in particular this gives the global existence of a weak solution
for the inviscid Leray-a model. As far as we know this result has not been reported
previously.

b)L€t9+291 2k,9+292 2 1,6> "TH—9—2(91+92),andﬁ2 %—91—92,
for some k € {0,1}. Then the trilinear forms by and bs satisfy the hypothesis of b).
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Remark 3.3. a) Let 0 + 6, > % Then the trilinear form by fulfills the hypotheses of a)
for =y < 0 — 0y — 1 with —y < min{20 + 26, — %“,9—92—1—291 — 1,0+ 6,}.

b) The trilinear form b, satisfies the hypothesis of b) for 3 > "2 — 0 — 2(0; + 05) with
6> %—Ql—egprovidedﬁ—l—%l > 1and 0 + 205 > 0.

Remark 3.4. a) Let 0 + 0, > % Then the trilinear forms by and bs fulfill the hypotheses
of a) for —y < 0 — 0y — 1 with —y < min{260 + 26, — %”,6—924—%1 —1,04+05—1}.

b)Let 0 +201 > 1,0+20, > 1, > "2 — 0 —2(0; 4 05), and > 5 — 6, — 0s.
Then the trilinear forms by and bz satisfy the hypothesis of b).

Proof of Theorem 3.1. Let {V,, : m € N} C V%% be a sequence of finite dimensional

subspaces of V%% such that

(1) V,, C Vg forallm e N;
(2) UpenVin is dense in V0%
(3) For m € N, with W,,, = NV,, C V%% the projector P,, : V%2V, defined
by
(Prv, W) = (U, W) Wy € Wi, v €V
is uniformly bounded as a map V' 7'—V 77,

Such a sequence can be constructed e.g., by using the eigenfunctions of the isometry
A0 Y1002 102
Consider the problem of finding wu,,, € C* (0,T;V,,) such that for all w,, € W,,
(U Win) + (All, W) + bWy Uy Win) = (f, W),
(U (0), wm) = (uo, Win).

3.1)

Upon choosing a basis for V/,,, the above becomes an initial value problem for a system
of ODE’s, and moreover since N is invertible by (2.10), the standard ODE theory gives
a unique local-in-time solution. Furthermore, this solution is global if its norm is finite
at any finite time instance.

The second equality in (3.1) gives

e [[um(0)[129, < (wm(0), Num(0)) = (u(0), Nty (0)) < [[u(0)]| -6, [| Nt (0)]]6s
so that

N _q..
et (0)] o, s-ﬂ—gg%ﬁéuu«nu%. (3.2)

Now in the first equality of (3.1), taking w,,, = Nu,,, and using the condition ii) on b, we
get

d
— (U, Ntyyy) + 2(Atp, Nty) = 2{frn, Ntty,)

dt (3.3)

< e fI2g—g, + ElINIZ 6,00, lumllf s,
for any € > 0. Since by choosing £ > 0 small enough we can ensure
_2<Aum7 Num> + €||N||2_02;92”Um”3_92 5 ”u’m”z—ez’

by Gronwall’s inequality we have

t
mmwwﬁs<mmmw%+lnﬂxﬁ)¥ﬂ (3.4)
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for some C' € R. For any fixed T > 0, this gives u,, € L>(0,T;V ~2) with uniformly
(in m) bounded norm. Moreover, integrating (3.3), and taking into account (3.4), we
infer

/ (At Nuw) < 90(t), ¢ € [0, 00), (3.5)
0

where 1 : [0,00)—(0, c0) is a continuous function. If § > 0, by the coerciveness of
A, the above bound implies u,, € L*(0,T; V9~%) with uniformly bounded norm. So in
any case, u,, is uniformly bounded in L>°(0, T’; V =%2) N L?(0, T; V?~%2), and passing to
a subsequence, there exists u € L>(0, T; V~=2) N L%(0, T; V?~%) such that

Uy, — u weak-star in L>°(0,T; V%), 3.6)
Uy, — u weakly in L2(0, T; V9~%). .

For passing to the limit m—o0 in (3.1) we shall need a strong convergence result,
which is obtained by a compactness argument. We proceed by deriving a bound on
Um = %m Note that (3.1) can be written as

— dt
(3.7)
um(0) = Ppru(0).

Therefore
[t~ < Cllumllo-o, + [| P Bt )| + ([P fll - =2 Ty + L2+ I5. - (3.8)
By the boundedness of B, we have
Iy S MJumlloy tmllo, - 3.9)

If & = 0, then the norms in the right hand side are the V=% _norm which is uniformly
bounded. If § > 0, since

et < Mot | g0 1 157 o= U’;ez, i=12, (3.10)
by the uniform boundedness of wu,, in L>(V~%) we have
Iy S N2 1525 < Noamn 1325, (3.11)
Hence, with A := A\; + \y = MUTM if 6 > 0, and with A = 1if 6 = 0, we get
[t [70 vy S Nt yo-azy + 1t 7on yo-opy + 110y —o-0z- (3.12)

The first term on the right-hand side is bounded uniformly when p < 2. The second term
is bounded if pA < 2, thatis p < 2/\. We conclude that 1, is uniformly bounded in
LP (0,75 V=07%), with p = min{2,2/A}.
By employing Theorem A.2, we can now improve (3.6) as follows. There exists u €
C(0,T;V=9=%2) N L>(0,T;V=9) N L?(0, T; V?~%) such that
Uy, — u weak-star in L>°(0,T; V%),
U, — u weakly in L2(0, T; V970), (3.13)
Uy, — u strongly in L*(0,T; V?*) for any s < 6 — 0.

Now we will show that this limit » indeed satisfies the equation (2.11). To this end, let
w € C*°(0,T;V) be an arbitrary function with w(7T") = 0, and let w,,, € C*(0,T;W,,)
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be such that w,,(T) = 0 and w,,—w in C*(0, T; V7). We have
- /0 (U (1), U () )t + /0 (A, (t), Wy, (2))dt + /0 D (1), U (), Wi (T))dE

:(um(O),wm(0)>+/0 (f(t), wy(t))dt. (3.14)

We would like to show that each term in the above equation converges to the correspond-
ing term in

—/0 (u(t),w(t))dt+/0 (Au(t),w(t)>dt+/0 b(u(t), u(t), w(t))dt

= (g, w(0)) + / ), w(B)dt, (3.15)

which would imply that « satisfies (2.11). Here we show this only for the nonlinear term.
We have

T
/ 16(t (1), U (), Wi () — b(u(t), u(t), w(t))|dt < L, + I, + I, (3.16)
0
where the terms /,,, I1,,, and 1], are defined below. Firstly, it holds that

Im:/o Bt (1), 1 (£), w0 () — w(E)]

T 3.17)
5/0 [t (8) |3 [0 (8) [, 0 (8) — w0 (8)]|5dt (

< Nl 2 veny [[tm || L2v ooy | wm — w||l o).

thus, we get lim,,, ., I,,, = 0 since a fortiori 5; < 6 — 65,1 = 1, 2. For II,, we have

1, = /0 bt (£) — w(t), um(t), w(t))|dt

T
(3.18)
5/ [[wm () = w(t) oy [|tm ()]0 | () ||0+0,dt
0
<l — ull 2oy |wml L2 voz) |l ey,
so lim,, o, II,,, = 0 since 71 < 6 — 65 and 75 < 0 — 0. Similarly, we have
T
I, = | |b(u(t), wn(t) — u(t), w(t))|dt
| te) (0 = ute) ) 510

S lullzven lum = ull 2o [wllews),
so lim,,,_.o 111, = 0 since 51 < 6 — 6y and g9 < 0 — 05.

For the proof of b), we choose the nested subspaces {V,, : m € N} C V*# and
W,, = A*%V,, c V% in (3.1). Then substituting w,, = A?*’u,,(0) in the second
equality in (3.1) gives

[um (0} 5 S lluolls.
Now in the first equality of (3.1), taking w,, = A??u,,, and using the boundedness of b,
we get

etz S 11F 1150 + lluml5 + 3,
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and thus
lum(@)lls S (T = )71,
for some 7™ > (. The rest of the proof proceeds similarly to that of a). U

For clarity, the corresponding conditions and results of Theorem 3.1 above are listed
in Table 3 below for the special standard model cases of the general three-parameter
regularized model listed in Table 1. For the NS-a-like case in the table, the allowed
values for (3 are 5 > g — 0 — 20, with 3 > % — 65 provided 6§ > 1 and 6 + 26, > 0.

TABLE 3. Existence results for some special cases of the model (1.1). The table gives
values of (a,b) and (v, p) for our recovered existence results for the standard models,
giving existence of a solution u € L> (V)N L%(V?), with & € LP(V~7). (In the NSV
case, € > 0, and in the NS-a-like case, v > max{—02 — 1/2,05 + 1/2,n/2}.) The last
row indicates the local existence of solutions u € L>°(V#) N L2(VA+9). The result for
each NSE model has a corresponding MHD analogue.

Model | NSE [Leray-a [ ML-a [ SBM [ NSV [ NS-o | NS-a-like
Existence
ab | 0,1 | 0,1 -L,0 | L0 | -L,-1 | -1,0 | =62, —0— 6
vo | L3 1,2 2,2 2,2 |1+&2| 2,2 7,2
Lol |B>3] >0 |f>—5|B>-1|>-1|0>—3 g

3.2. Uniqueness and stability. Now we shall provide sufficient conditions for unique-
ness and continuous dependence of on initial data for weak solutions of the general three-
parameter family of regularized models.

Theorem 3.5. Let 3 > —0,, and let uy,us € L>®(0,T;VP) N L*0,T;VP*Y) be two
solutions of (2.11) with initial conditions u,(0), us(0) € V7, respectively.

a) Let b : Vo1 x V9792 x Vo2 R be bounded for some o1 < 0 — 0y and o5 < 0 + 0,
with o1 + 09 < 0. Moreover, let b(v, w, Nw) = 0 for any v € V7 and w € V2. Then
we have

[ur (t) = ua (@)l -0, < ¢(1)[[ur(0) = u2(0)[|-g,, € [0, 77, (3.20)

where ¢ € C([0,T)) and ¢(0) = 1.
b)Letb: VP x VP x V=B SR be bounded. Then we have

[ur (t) = uz(t)]lp < G(t)[lua (0) = u2(0)]s, ¢ €10,7], (3.21)
where ¢ € C([0,T]) and ¢(0) = 1.

Remark 3.6. The trilinear forms by and bs satisfy the hypotheses of a) provided 6 + 6, >
%, 04+20, >k, 0+605 > %, 20 + 2601 + 05 > ”T“, and 30 + 201 + 20, > 2 —k, for some
k € {0,1}. The forms by and b satisfy the hypothesis of b) for 3 > "2 —2(6, +6,) — 0
with 3 > % — (61 + 05) provided 20, + 0 > 1 and 20, + 6 > k, for some k € {0,1}.

Remark 3.7. The trilinear form by satisfies the hypotheses of a) for 0 +26, > 1, 0+6, >
%, 0+ 6y >0, 20 + 260, + 0, > ”T“, and 30 + 201 + 205 > 1. The trilinear form by
satisfies the hypothesis of b) for 3 > "TJ“Q —2(61+6y) — O with 5 > % — (01 +02) provided

Remark 3.8. The trilinear forms by and b5 satisfy the hypotheses of a) provided 6 + 0, >
504200 >1,0+0,> 1,20+ 20, + 0, > L2, and 30 + 20, + 205 > 2. The forms by
and bs satisfy the hypothesis of b) for 3 > ”T*Q —2(0, +6y) — O with p > % — (6 + 65)
provided 205 + 6 > 1 and 20, + 0 > 1.
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Proof of Theorem 3.5. Let v = u; — us. Then subtracting the equations for u; and uy, we
have

(0, w) + (Av,w) + b(v, uy, w) + b(ug, v, w) = 0. (3.22)

Taking w = Nwv, we infer

[l

ol +clvlls_s, < Cllvlolullo-ou10llo, 20,

—A1—A AL+X
< CllollZgy = l1oll25,> 1 llo—o.

where \; = ‘”TT@? and \; = "QTT@? By applying Young’s inequality we get

—lvliZy, < CllvllZ, llwllf—s,.
dt
Now Gronwall’s inequality gives
t
lo()]1Ze, < 0(0)[12, eXp/O Cllurff—o,- (3.23)
The part b) is proven similarly, taking, e.g. w = (I — A)Pv. d

To clarify these results in the case of specific models, the corresponding conditions
and results of Theorem 3.5 above are listed in the Table 4 below for the special case
models listed in Table 1.

TABLE 4. Uniqueness results for some special cases of the model (1.1). The table
gives values of 3 for our recovered uniqueness results for the standard models, where
ug € VP and where v € L>(VA) N L2(VP+9). (In the NS-a-like case, the requirement
on (3 is that 8 > max{—60s,1/2 — 65,5/2 — 6 — 205 }). The result for each NSE model
has a corresponding MHD analogue.

Model | NSE | Leray-« ML-« SBM NSV NS-a NS-a-like

Uniqueness ﬁ>% B>0 ﬁ>—% 8>-1|38>-1 ﬁ>—% J6]
or(=-1 or=-1

3.3. Regularity. In this subsection, we develop a regularity result on weak solutions for
the general family of regularized models.

Theorem 3.9. Let u € L*(0,T;V?%) be a solution to (2.11), and with some 3 > —0s,

let the following conditions hold.

i) b: Ve x Ve x V9P =R is bounded, where o = min{(3,6 — 0,};
ii) b(v,w, Nw) = 0 for any v,w € V;
iii) u(0) € V®, and f € L*(0,T;VP7).

Then we have

u € L0, T;VP) N L*(0,T; VA0, (3.24)

Remark 3.10. Ler 40 +46, +20, >n+2,20+20, > 1—k, 0+20, > 1, 30 +46, > 1,
0+ 20, > {, and 30 + 20, + 205 > 2 — (, for some k, ¢ € {0,1}. Let

Then the trilinear forms b, and bz satisfy the hypotheses of the above theorem.
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Remark 3.11. Let 40 + 40, + 2605 >n+ 2, 0 + 205, > 0, and 0 + 260, > 1. Let
B e (M2 —2(0,46,)—0,30+20, — F2)N[5 —

2 91—92,m1n{29+92,29—92+201—1}]

Then the trilinear form by satisfies the hypotheses of the above theorem.

Remark 3.12. Ler 40 + 401 + 205 > n+ 2, 0 + 205 > 1, and 0 + 20, > 1. Let

G e ("2 —-2(60,+0,)—0,30+26,— "+2)ﬂ[%—61—92,min{2«9+82—1,29—92+2«91—1}].
Then the trilinear forms by and bs satisfy the hypotheses of the above theorem.

Proof of Theorem 3.9. By Theorems 3.1.b) and 3.5.a), there is s > 0 depending on
|u(0)]| 5 such that u € L>=(0, s; V#) N L2(0, s; V). With I = [0, s), we have

<u,A25u> + <Au, AQﬁu> + b(u, u, A*Pu) = <f, A2ﬂu> , a.e. in I. (3.25)

By employing the boundedness of b and the coercivity of A, we infer

d .
Zlulls S U150 + lullsg, el ae inl,

and using Gronwall’s inequality, we conclude

WO % [ 11+ O [ Ol acnl G20

where the integral in the exponent is uniformly bounded since u € L?(0,T;V?7%).
Therefore we have u € L*°(0,7; V?), which transfers to u € L?(0,T; V%) by the
coercivity of A. O

Again for clarity, the corresponding conditions and results of Theorem 3.9 above are
listed in the Table 5 below for the special case models listed in Table 1. For the NS-a-like
case in the table, the allowed values for 3 are § < 20 — 0y — 1 with 5 < 360 — g, provided
that 0 > § and 46 + 20, > 5.

TABLE 5. Regularity results for some special cases of the model (1.1). The table
gives values of /3 for our recovered local and global regularity results for the standard
models, where 1y € V? and where u € L>(V?) N L2(VP+%). (In the NS-a-like case,
see the text for the allowed values of 3.) Again, the result for each NSE model has a
corresponding MHD analogue.

Model | NSE | Leray-a | ML-a | SBM | NSV | NS-a | NS-a-like
Regularity B<1 |B<§|B<2|B<—5|B<0 3

[

4. SINGULAR PERTURBATIONS

In this section, we will consider the situation where the operators A and B in the
general three-parameter family of regularized models represented by problem (2.1) have
values from a convergent (in a certain sense) sequence, and study the limiting behavior
of the corresponding sequence of solutions. As special cases we have inviscid limits in
viscous equations and av—0 limits in the a-models.
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4.1. Perturbations to the linear part. Consider the problem
U+ Au+ B(u,u) = f, 4.1)
and its perturbation
U; + Aju; + B(ug,w;) = f, (1 € N), 4.2)
where A, B, and N (that will appear below) satisfy the assumptions stated in Section 2,

and fori € N, A; : V* — V*2¢ is a bounded linear operator satisfying
1Al g, + l[vll-g, S (A, Nv) +[[v]2y,, v e V™ (4.3)

—6—92
Assuming that both problems (4.1) and (4.2) have the same initial condition wg, and that
A; — A in some topology, we are concerned with the behavior of u; as i — oo. We will
also assume that € > 6.

Theorem 4.1. Assume the above setting, and in addition let the following conditions
hold.
i) b: V7 x V92 x VI—=R is bounded for some o; € [—05,0 — 05), j = 1,2, and
7 € [e + 02,00) N (62, 00);
ii) b(v,v, Nv) =0 foranyv € V;
iii) b: V7 x V7 x VIR is bounded for some 5; < 0 — 05, j = 1,2, and 7 > ~;
iv) ug € V=%, and f € L*(0,T;V~7%), T > 0;
V) A; converge weakly to A as i — oc.
Then, there exists a solution v € L>(0,T;V~92) N L?(0,T; V9=%) to (4.1) such that up
to a subsequence,
u; — u weak-star in L=(0,T; V%),
u; — w weakly in L*(0,T; V77%), (4.4)
u; — u strongly in L*(0,T; V®) for any s < 6 — 0,
as i — oo.
Proof. Firstly, from Theorem 3.1, we know that for 7 € N there exists a solution u; €
L>(0,T;V=%) N L?(0,T; V%) to (4.2). Duality pairing (4.2) with Nu; and using
elementary inequalities, we have

d _
— (ug, Nug) + 2 (Agug, Nug) = 2(f, Nu;) S e[| fl12o_g, + €lluillz—o,- 4.5)

dt
Choosing € > 0 small enough, then using (4.3), by Gronwall’s inequality we have
i ()12, S . (4.6)

Moreover, integrating (4.5), and taking into account (4.6) and (4.3), we infer
”AiuiH;(o?t;vaf@z) + Hui”;(o,t;vﬁ%) < (1), t € [0,00), 4.7)
where ¢ : [0,00)—(0,00) is a continuous function. For any fixed 7" > 0, this gives

u; € L>=(0,T;V~%) N L*0,T; V%) with uniformly (in 7) bounded norms. On the
other hand, we have

lall - < N[ Al + 1B (us, w) | + [ 1l (4.8)
By estimating the second term in the right hand side as in the proof of Theorem 3.1, and
taking into account (4.7), we conclude that 1; is uniformly bounded in L?(0,T;V 7).
By employing Theorem A.2, and passing to a subsequence, we infer the existence of «

satisfying (4.4). Now taking into account the weak convergence of A; to A, the rest of
the proof proceeds similarly to that of Theorem 3.1. U
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For example, setting ¢ = 1, with § = 0 and 6, = 1, and checking all the requirements
i)—v) of Theorem 4.1, the viscous solutions to the SBM converge to the inviscid solution
as the viscosity tends to zero. Recall that the global existence of weak solution to the
inviscid SBM (first established in [5]) is also established in Theorem 3.1. Similarly,
setting ¢ = 0, with §# = 0 and 6y = 1, the viscous solutions to the Leray-o model
converge to the inviscid solution as the viscosity tends to zero. This result gives another
proof of the global existence of a weak solution for the inviscid Leray-a model.

On the other hand, the convergence of viscous solutions of ML-a and NS-« to its
inviscid solutions, respectively, are not covered here since both models fail condition 7)
of Theorem 4.1. Notice that the global existence of weak solution to the inviscid ML-«
and NS-« are not established in Theorem 3.1. Besides the inviscid SBM, there are no
global well-posedness results reported previously in the literature for the other inviscid
a-models.

4.2. Perturbations involving the nonlinear part. Fori € N, let 4; : V¢ — V*7% and
Nj; : V¢ — V*t222 be bounded linear operators, satisfying

[0ll70, S (AN 0, 0) + |v]7,,  ve Vit (4.9)

and
lolls, S{(N; v, 0), veV®, (4.10)

where we also assumed that V; is invertible. In this subsection, we continue with pertur-
bations of (4.1) of the form

W + A + Bi(ui, u;) = f, (i € N), (4.11)

where B; is some bilinear map. Again assuming that both problems (4.1) and (4.11) have
the same initial condition ug, and that A; — A and B; — B in some topology, we are
concerned with the behavior of u; as ¢ — oo. For reference, define the trilinear form
bi(u,v,w) = (B;(u,v),w).

Theorem 4.2. Assume the above setting, and in addition let the following conditions
hold.
i) b;: V7 x V7 x VI—=R is uniformly bounded for some o € [—05,0 + 03 — 2¢,),
and vy € [0 + £2,00) N (2, 00);
ii) b;(v,v, Nyv) =0 foranyv € V;
iii) up € V=, and f € L?>(0,T; V=9=%), T > 0;
iv) A; : V9% — V= is uniformly bounded and converges weakly to A;
v) N7t Vet yst20:=22 g ypiformly bounded;
vi) NZ-_IN V002 V04027222 copyerges strongly to the identity map;
vii) For any v € V9%, B;(v,v) converges weakly to B(v,v).
Then, there exists a solution u € L>(0,T;V =) N L?(0,T; V?7%) to (4.1) such that up
to a subsequence, y; = N~ Nju; satisfies

y; — u weak-star in L(0,T; V),
y; — u weakly in L*(0,T; V=%), (4.12)
y; — u strongly in L*(0,T; V*) for any s <  — 05,

as 1 — 00.
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Proof. Firstly, by Theorem 3.1, we know that for 7« € N there exists a solution u; €
L>(0,T;V==2) N L*(0,T;Ve*2) to (4.11). Pairing (4.11) with v; := N;u,; and using
elementary inequalities, we have

d
7 (N7 v, v0) 4+ 2 (AN o 0) = 2(F,0) Setl|flloze, +ellvilliee,.  (4.13)

Choosing € < 0 small enough, then using (4.9), by Gronwall’s inequality and (4.10) we
have

los(t)5, S e (4.14)

~

Moreover, integrating (4.13), and taking into account (4.14) and (4.9), we infer that for
any fixed T' > 0, v; € L*°(0,T; V%) N L?(0, T; V?*%) with uniformly (in i) bounded
norms. On the other hand, we have

[l < N Aiwil| — + 1 Bius, wa) | + [ 1l - (4.15)

By estimating the right hand side as in the proof of Theorem 3.1, we conclude that 1; is
uniformly bounded in L?(0,T; V"), thus ©; = N;; is uniformly bounded in the same
space. By employing Theorem A.2, and passing to a subsequence, we infer the existence
of v € L>(0,T; V%) N L?(0, T; V9*%) satisfying

v; — v weak-star in L>(0,T; V%),
v; — v weakly in L2(0, T; V71%2), (4.16)
v; — v strongly in L*(0,T; V*) for any s < 6 + 05,

as i — o0o. Define u = N~!'v and y; = N ~'v;, and note that these satisfy (4.12).
Now we will show that this limit v indeed satisfies the equation (4.1). Let w €
C*(0,T;V) be an arbitrary function with w(0) = w(T") = 0. We have

—/0 <Ui(t)aw(t)>dt+/0 (Aiui(t),w(t))dt—i—/o bi(ui(t), ui(t), w(t))dt
- [ ww.war

We claim that each term in the above equation converges to the corresponding term in
T T T
= [ o, aend+ [ Aute)wo)ar+ [ b, ule) w)ar
0 0 0
T
= [ty
0

For the first term, we have

u; —u = N;"Ny; —u= N;"N(y; —u) + (N, *N — I,

)

and taking into account that N; ' : Vs+%2 — V/s+202=2e2 g yniformly bounded, and
that N, !N @ V0=02 — V/0+02=2e2 converges to the identity map in the strong operator
topology, we infer u; — w in L2(0,T; V*+2%27222) for any s < 6 — f,. For the second
term, writing
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and taking into account the uniform boundedness of A;, and the weak convergence A; —
A, prove the claim. Finally, for the third term, we have

Bi(u;,u;) — B(u,u) = Bi(u;,w; — u) + Bi(w; — u,u) + Bi(u,u) — B(u,u),

and using the uniform boundedness of B; and the convergence of B; to B, we complete
the proof. U

For example, setting ¢ = ¢9 = 1, with § = 1 and 0, = 0, and checking all the
requirements i) — vii) of Theorem 4.2, the weak solutions to the NS-ov model converge
to a weak solution of the NSE as the parameter « — (. This result was previously
reported in [20].

5. GLOBAL ATTRACTORS

In this section we establish the existence of a global attractor for the general three-
parameter family of regularized models, and give general requirements for estimating its
dimension. The dimension of the global attractor gives us some measure of the level of
complexity of the dynamics of a given flow.

5.1. Existence of a global attractor. The following theorem establishes the existence
of an absorbing ball in V~%_ Moreover, with additional conditions, it shows not only
the existence of an absorbing ball in a higher smoothness space V?, but also that any
solution with initial condition in V=92 acquires additional smoothness in an infinitesimal
time, in particular implying that the absorbing ball in V=2 is compact.

Theorem 5.1. a) Let u € L°,(0,00; V%) N L2 (0, 00; V%) be a solution to (2.11)

loc loc

with u(0) € V=%, In addition, let the following conditions hold.
(i) (Av, Nv) > cljv||5_y, for any v € V=%, with a constant ¢ > 0.
(ii) Stl>l£) ||f||22(t7t+T;V_9_92) < K, where T'> 0 and K > 0 are constants;

Then for some constant k > 0 and for any T > 0, we have
a2, + Nl 2o s ooy S € lu(0)]2g, + K, >0, (5.1)

where the implicit constant may depend on T".
b) In addition to the above hypotheses in a), for some [3 € |—02,0—05] let the following
conditions be satisfied.
(iii) b: VP x VB x VPP =R is bounded;
@iv) <AU, (I — A)/Bv> > c|\v|]%+9f0rv e Vhto.
v) sup HfH%Q(t,t—l-T;Vﬁ*Q) < Ky

(vi) u € L% (0, 00; VF=9),

loc

Then for any ty > 0 we have
lu@®)1 < (€™ [[u(0)[|2g, + K) exp(e™™[[u(0)[|2y, + K), t = to, (5.2)
where the implicit constant may depend on t,,.

Remark 5.2. The trilinear forms by and bs satisfy condition (iii) provided 20 > ”T” —
201 — 05,20 + 20, > 1 —k, 205+ 0 > 1 and 20, + 0 > k, for some k € {0, 1}.
The trilinear form b, satisfies condition (iii) provided 20 > %”—201—92, 20+260, > 1,
The trilinear forms by and bs satisfy condition (iii) provided 20 > "2 — 20, — 0,

2
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Remark 5.3. All the special cases listed in Table 1 (except NSE) satisfy condition (iii). In
the case of NS-a-like model, condition (iii) is satisfied provided 60 > 1 and 0y > "TJ“Q —2.

Proof of Theorem 5.1. We have

d
7w Nu) +2(Au, Nu) = 2(f, Nu) < &7 fl29-g, + £ N2 g0, lll5-s,.

for any € > (. By using (i) and by choosing € > 0 sufficiently small, we get

d

%HuH%oQ +cllullz_g, SN fIZ0-s,- (5.3)
and since V9% < V=% we have

HuH%Q + Ellull2g, S 1117 0—0,- (5.4)

with some constant k£ > 0. ThlS gives

lu(®)[12g, < e [[u(0)]1%,, +/ DN F ()2 p—p,d
0

S e M)y, + K,
and by integrating (5.3) and using (5.5), we have

t+T" t+T'
—k
/ lal2 g, < ()], + / 11200 < e M u()2g, + K, (5:6)
t t

proving a).
Now we shall prove b). As in the proof of Theorem 3.9, we get u € L?(0,T; VF+9),
Taking w = A?w in (2.11), and using (iv) and the boundedness of b, we have

(5.5)

d
el + Fllels S 1 1G5-0 + lello—g, 1ull3, (5.7)
with some constant &’ > 0, implying

lu()11 < e exp(lfull 72, yo-0.) ()11

' —k(t—7) 2 2 (5-8)

+ [ €M expulf g am SOl

Integrating this over s € [t — ty,t] we have
t
tollu()II5 < exp(llell 72 gy gvo- 92))/ lu(s)l5ds
t—to
t
+toexp(lulagpomm) [ 1B
t—to
< (€ [lu(0)]2g, + K + K) exp(e™||u(0)]2,, + K),

where we have used (5.6) and (v). This completes the proof. Ul

For example, in the case of ML-a model, conditions i) — vi) of Theorem 5.1 are
satisfied with 3 = 0.

In this next corollary, we combine the results in Theorem 3.1, Theorem 3.5 and Theo-
rem 5.1 to show the existence of a global attractor.

Corollary 5.4. Let the following conditions hold.
i) b: Vo x VO=% x Vor R is bounded for some o1 < 0 — 0y and 09 < 0 + 0,
with o1+ 09 < 0;
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ii) b(w,v, Nv) = 0 for any v, w € V?~%;

iii) b: Vo x Vo2 x VI—R is bounded for some 6; < 0 — 0, 1 = 1,2, and 7 € R.
In addition, assume that the hypotheses (i) and (iii-v) of Theorem 5.1 are satisfied. Then,
there exists a compact attractor A € V=% for the equation (2.11) which attracts the
bounded sets of V=% Moreover, A is connected and it is the maximal bounded attractor

inV—o,

Proof. We recall that by Theorem 3.1, there exists a solution v € L2 (0,00; V%) N
L2 (0, 00; V=% to (2.11) with any given initial data u(0) € V' ~%. By Theorem 3.5 this
solution is unique and depends continuously on the initial data, so we have a continuous
semigroup S(t) : V=% — V=% ¢ > (. Now, by Theorem 5.1 there is a ball B in V¢~
which is absorbing in V=%, meaning that for any bounded set U C V%2 there exists t;
such that S(t)U C B forall t > t,. Therefore for any bounded set U C V %2 there exists
to such that U;>¢, S(¢)U is relatively compact in V%2, Finally, applying [62, Theorem
I.1.1.] we have that the set A = Ny >oU;>55(t) B is a compact attractor for .S, and the rest
of the result is immediate. U

All the special cases listed in Table 1 (except NSE) satisfy the conditions of Corol-
lary 5.4. Again, in the case of NS-a-like model, the conditions of the corollary are
satisfied provided 6 > 1 and 65 > 22 — 2.

5.2. Estimates on the dimension of the global attractor. Next we give a result which
can be used to develop estimates on the dimension of the global attractor. To obtain
bounds on the dimension of global attractors, we require conditions that will guarantee
that any m-dimensional volume element in the phase space shrinks as the flow evolves.
The general notion is that if this is the case, then the attractor can have no m-dimensional
subsets and hence its dimension must be less than or equal to m. If one can find such
an m < oo, then we say that the asymptotic dynamics is determined by finite number of
degrees of freedom.

Theorem 5.5. Let 0 > 0. Let the equation (2.11) admit the semigroup S(t) : V=% —
V=t >0, and let X C V=% be a bounded set such that S(t)X = X fort > 0. Let
the following conditions hold:
i) b: Vo x V9% x Vor R is bounded for some o1 < 0 — 0y and o5 < 0 + 0,
with o1 + o9 < 26;
i) b(w, v, Nv) = 0 for any v,w € V9=%;
iii) For some 3 > —0y and p € [1, x|,

1 t
€ := sup limsup Z/ S (7 )uol[fdr < o0; (5.9)
0

ugeX t—oo

iv) For some m € N, a € [0,1), ¢ € [1,p], and C > 0, and for any collection
{¢; € VOI=021m  satisfying (¢s, Nop) = O, i,k =1,...,m,

m m

> b(ei, S(t)ug, Noy) < a Y (Agy, Noi)+C||Stuoly,  uo € X, > 0; (5.10)

i=1 i=1

v) For any collection {¢;} as above,

(1—a Z Ag;, No;) > Ce??, (5.11)

i=1
Then we have dy(X) < m.
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Proof. Given ug € X, the linearization of (2.11) around the solution u(t) = S(t)uo,
t>0,is

U+ AU+ B(u,U)+B(U,u) =0, U0)=Uy,e V",

There exists a unique solution to the above equation, and we will denote U (t) = L(t, ug)U,.
One can show that for any fixed ¢t > 0, L(t,-) : V=% — V=% is uniformly bounded on
X, 1.e.,

sup ||L(t’u0)||—92;—92 < Q.

ug€X
Moreover one can prove that for any fixed ¢ > 0,

150 = S — Lt §)(n — )l -a,

sup — 0 ase—0,
(emeD- 17— &ll-o,

where D. = {({,n) : &,n € X, || —nl||-p, < €}. Introducing the notation
T(t,up)U = AU + B(u,U) + B(U,u),

where u(t) = S(t)ug is understood, we have

m

S (Tt )6 N6 = 3 (A, Now) + 3 bor, 0, N6,
i=1 i=1 =1

> (1—a) Z (Api, Ngi) — Cllul|3,
i=1
implying that

inf lim inf% (T(t,up)pi, Noi) > (1 — «) Z (Adi, Nos)

up€eX t—oo - -
i=1 =1

q

: 1 »

— C sup (hmsup ZHqu>
ugeX t—o0

> 0.

Now we apply [62, Theorem V.3.3] (see also pp. 291 therein) to complete the proof.
O

Remark 5.6. Theorem 5.5 can be used to recover estimates on the dimension of the
global attractor for the generalized model, through the application of techniques previ-
ously used in the literature for the special cases listed in Table 1, this is a somewhat long
calculation that we do not include here.

6. DETERMINING OPERATORS

The notion of determining modes for the Navier-Stokes and MHD equations was
first introduced in [22] as an attempt to identify and estimate the number of degrees
of freedom in turbulent flows (cf. [15] for a thorough discussion of the role of deter-
mining sets in turbulence theory). This concept later led to the notion of Inertial Mani-
folds [23]. An estimate of the number of determining modes was given in [21, 41]; the
concepts of determining nodes and determining volumes were introduced and estimated
in [24, 25, 26, 39, 41]. See also [40, 13, 14]. In [37, 36], a more general concept known as
a determining operator was introduced, and the special case of determining functionals
was explicitly given.
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Following [37, 36, 35], we now define more precisely the concepts of determining
operators and determining functionals for weak solutions of (2.11). In the following two
definitions, we consider an operator R,,, : V=% — H,  where H, C H® is a finite
dimensional subspace with some o < —6s.

Definition 6.1. Let f, g € L*(0, 00; V=7%) be any two forcing functions satisfying
lim |7(6) — g(t)l| o5, = 0. 6.1)

and let u,v € L*(0, oo; VG_(’?) be corresponding solutions to (2.11). Then R,, is called
an asymptotic determining operator for weak solutions of (2.11) if

Jim || B fu(t) = v(t)]l-0, = 0. 62

implies that
Jim [fu(t) = v(t)]|-0, = 0. ©3)

Definition 6.2. With K C V=% let u(t),v(t) € K, t € R, be solutions to (2.11). Then
R,, is called a determining operator on the set K for weak solutions of (2.11) if

Ryu(t) = Ryv(t), t e R, (6.4)
implies that u = v.

Given a basis {¢; }", for the finite-dimensional space H,,, and a set of bounded linear
functionals {/;}7, C V%79 we can construct the operator

Ryu =Y Li(u)é;. (6.5)
=1

The assumption (6.2) is then implied by:
tlim [Li(u(t) —v(t))|=0, i=1,...,m (6.6)

so that we can ask equivalently whether the set {/;}!", forms a set of determining func-
tionals. The analysis of whether R,, or {/;}", are determining can be reduced to an
analysis of the approximation properties of R,,. Note that in this construction, the ba-
sis {¢;}™, need not span a subspace of the solution space V=% or even of H~%, so
that the functions ¢; need not be divergence-free or be in H %, for example. Note that
Definitions 6.1 and 6.2 encompasses each of the notions of determining modes, nodes,
volumes, and functionals, by making particular choices for the sets of functions {¢; }!",
and {l;}™ .

Here we extend the results of [37, 36, 35] to the generalized Navier-Stokes model
(2.1). In particular, we will show that if {H,,, C H* : m € N} is a family of finite
dimensional subspaces, and if a family of operators R,, : V?~% — H,,, m € N, satisfies
an approximation inequality of the form

lu = Rypulla < &(m)|ullo-o, (6.7)

for a function £ : (0, 00) — (0, 00) with lim,,, .. £(m) = 0, then the operator R, is a
determining operator in the sense of Definitions 6.1 and 6.2, provided m is large enough.

If H,, both contains all polynomials of degree less than [# — 6,], and is spanned by
compactly supported functions such that the diameter of the supports is uniformly pro-
portional to m /", we typically have £(m) ~ m~=%-2)/" provided that R,, realizes
a near-best approximation of any u € V=% from the subspaces H,, in the H“-norm. In
particular, standard finite element and wavelet subspaces of sufficiently high polynomial
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degree satisfy these conditions. Then R,, may be chosen to be interpolation or quasi-
interpolation operators, cf.[35, 37]. For example, the piecewise constants with local av-
eraging and piecewise linears with e.g. the Scott-Zhang quasi-interpolators as in [35, 37]
correspond to the determining volumes and determining nodes, respectively.
Determining modes can be understood as follows. Let A : V=% — 1 be a bound-
edly invertible operator with the eigenvalues 0 < Ay < Ay < ..., such that \; — oo
as j — oo. Let {w;} C V?~% be the corresponding set of eigenfunctions, orthonormal
in V<. Then, with H,, := span{wy, ..., w,} and R,, the VV*-orthogonal projector onto
H,,, it is easy to see that ||u — R,ulla < Nt wllg—g, for any u € V9% meaning that
E(m) ~ )\;ll in this case. In particular, when A is a power of the Stokes operator, i.e,
when A = (—PA)=0272)/2 we have \,, ~ m@~=02=*)/"_and so &(m) ~ m~0—02=)/n,
which coincides with the behavior of £ for the case in the previous paragraph.
Bounds on the number of determining degrees of freedom are usually phrased in terms
of a generalized Grashof number, which can be defined in the current context as
G= lign sup || f(¢)]|y-o-o6 - (6.8)
The definition in (6.8) generalizes the definition of Grashof number in the literature. For
example, if the forcing term in NSE is given by f with dimensions mass X length x
time 2, then the nondimensional forcing f that appears in (2.1) can be defined in terms
of f by
2
=250 (©9)
pv
where p is the density of dimensions mass per unit n-volume, v is the kinematic viscosity
with dimensions length? x time~! and L is the system size. In this case one can see that
given a time independent forcing for NSE, the Grashof number is defined as

L27n/2

G = [ (6.10)

pv?
It is known that if G is small enough, then the NSE possess a unique, globally stable,
steady state solution [61]. As the Grashof number increases, the steady state goes through
a sequence of bifurcations leading to a more complex dynamics of the flow. Hence, it is
natural to use the Grashof number G to estimate the number of degrees of freedom of the
solutions of the NSE as well as other turbulence models.

6.1. Dissipative systems. In this subsection, we consider equations with § > (. Note
that Theorem 5.1 provides with examples where the conditions iii) of the following the-
orem is satisfied (with § = 6 — 65 and p = 2).

Theorem 6.3. (a) Let 0 > 0, and let u,v € L>(0,00; V=) N L%(0, 00; V%) be two
weak solutions of (2.1) with the forcing functions f,g € L*(0,00; V=97%), respectively.
Let R, : V9% — H, C H™ %, m € N, be a family of operators satisfying the
approximation property (6.7) with o« = —6,. In addition, with 3 > 6 — 60, let the
following conditions be fulfilled.

i) b: Vo x VB x Vo2 =R is bounded for some o1 < 0 — 0y and o9 < 0 + 0y with

o1+ 09 < 0;
i) b(w,z, N2) = 0 forallw € V°' and z € V?;
t+T
i) € := %I;fo hﬂiﬁlp T [u(T)|[fdr < oo withp = 970?70_2,

iv) lim [|f() = g(t)[|-9-0, = O;
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V) tlim | R [u(t) — v(t)]||—g, = O for some m satisfying
—0Q
4C 4(p — 1)[|b]|?
o A DR,

2
ca p2cy

£(m)~% >
Then we have
lim [Ju(t) — v()]|, = 0.

(b) Assume all of the above hypotheses with the time interval [0, 00) replaced by R,
and the conditions iii)-v) are replaced by that f = g, € 1= sup,cg ||u(7)[[; < oo with
p as above, and that R, u(t) = R,v(t) for all t € R with m as above. Then we have
u = .

Proof. Let w = u — v. Subtracting the equations (2.1) for v and v yields

%+Aw+B(u,u)—B(v,v):f—g. (6.11)
Pairing this with Nw, and by using condition ii), we get
1
2jt(w Nw) 4+ (Aw, Nw) = (f — g, Nw) — b(w, u, Nw) (6.12)

Using Young’s inequality, one can estimate the right hand side of equation (6.12) as
follows:

d 1
Sl +2 (Aw, Ny <SUS = g1 0o, + SINIE gy 10l

(6.13)
+ lol[lfwllo [l llwllo, 205,
where we denote ||w]|% := (w, Nw). We estimate the last term as follows:
[olloy el pll10lloz—20, < w250 =2 ]3|l . (6.14)
where \; = ‘“Tf% and \y = ”Tf(’?. Using Young’s inequality, we get
(A1+A2) (2=A1—A
[wll[lullllw]]o, 20, < H [ H 15,7
Note that (A\; + X\a)g = (2 — A\ — )\Q)p = 2. Let us now choose § = grms— and
DHD
€= gI(I:gi\ , then it follows, taking into account the coercivity of A that
Sl + callolo-a, — 2Callwle, < 517 = o100, + 2
7 N+ callw||Zg_y, Aw_92_5 9ll=9-0, Wi —g, U

To bound the second term on the left from below, we employ the approximation assump-
tion on R,,, which yields

d c _ b
ol + (S = 200 - Pl ) poi,
p (6.15)

1 _
< —||f—9||2—9—92 +&(m) 2||me||2_92.
This is of the form
EHwHQ_eQ +zf|w]?y, <v,

with obvious definition of x and y.
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Lemma A.1 can now be applied. Recall both || f — g||_9_9, — 0 and ||R,,w]||_s, — 0
as t — oo by assumptions iv) and v). So taking into account iii) we have

t+T +T
lim yt(r)dr =0, lim sup/ z(7)dT < 00.
¢

t—oo [y t—o0

It remains to verify that for some 7" > 0,

t+T
lim inf/ x(7)dr > 0.
t

t—o00

This means we must verify the following inequality for some 7" > 0:

., 40, 2||b|| 1/”
L s li Pdr. 6.16
§m)™> cA p€CA ey ¢ llizdr (10
Therefore, if
4C 2(|b
Em)2> —24 4 | He, (6.17)

cA  peca
implying that (6.16) holds for some 7" > 0, then by Lemma A.1, it follows that
T [[u(t) — v(t)]| g, = Jim o(t)]| s, = 0.
This completes the proof of (a).
For (b), the right hand of (6.15) vanishes, implying

d
Tl + kllwllZy, <0,
with some k£ > 0. The Gronwall inequality gives

lw(®)]12, < e uw(s)|2,,,

for any ¢ > s, and now sending s — —oo we get the conclusion w(t) = 0. O

Remark 6.4. The trilinear forms by, and bz satisfy the hypothesis of a) provided = 30 4
20, + 05 > ”+2 , 0+ 60y > 1 u 5+ 200 >k, and 0 + 0, > 1ok k , for some k € {0, 1}.

The trzlznear form by satlsﬁes the hypothesis of a) provzded 30 1260, + 20, > ”T“
0+0,>0,%+20,>1 and 0+ 6, > 1.

The trzllnear forms by and bs, satisfy the hypothesis of a) provided =; 30120, +6, > ”+2
0+ 6y > 1 9—1—291 >1,and 0 + 6; > 1

Remark 6.5. From (5.1), we have € ~ || f||3,_4_s, =~ G* with [3 = 0and p = 2. Then
condition v) of Theorem 6.3 is equivalent to the condition £(m)~? > cG?. Assuming that
£(m) ~ m~9=%279/" and putting o = —0,, we have £(m) ~ m~%". Hence m > G™/°.
6.2. Nondissipative systems. In this subsection, we consider non-dissipative systems,
which are represented in our generalized model when 6 = 0.

Theorem 6.6. (a) Let u,v € L>(0, o0; V*GQ) be two solutions of (2.11) with the forcing
functions f, g € L*(0, 00; V%), respectively, and with 0 = 0 and

(Av, Nv) > callv|?,, ve VT

For some o < —0y, let R, : V™% — H, C H® m € N, be a family of operators
satisfying the approximation property (6.7). In addition, with 3 > —0,, let the following
conditions be fulfilled.

i) b: VY x VP x V%2R is bounded;

i) b(w,z, N2) =0 forallw € V®and z € V?;
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iii) € := limsup ||u(t)]| g < oo;
t—o00
i) Jim (16 - 9(0)]-0, = 0;
CA

v) tlim | R [u(t) — v(t)]||la = O for some m satisfying £(m) < W

Then we have
lim Ju(t) — o(t)]| -5, = 0.

(b) Assume all of the above hypotheses with the time interval [0, 00) replaced by R,
and the conditions iii)-v) are replaced by that f = g, € := sup,cg ||u(7)||s < oo, and
that R,u(t) = Ry,v(t) for all t € R with m as above. Then we have u = v.

Proof. We start as in the proof of Theorem 6.3, but instead of (6.13) we get the following.
d 1
Tl +2{Aw, Nw) < Z|1f = gl12q, + 01N 20,0, w]20, + [blllwllallullsllw]| s,

Let us now choose § =
that

W then it follows, taking into account the coercivity of A
02;02

el + callwly, < 5||f gllZe, + ol llwlallullsllwl -e.-

To bound the last term from above, we employ the approximation assumption on R,,,
which yields

Tl + (ea = Em)[bllulls) llw]Z,
(6.18)

< gllf — 9124, + | Bmwlla bl || sllwl]] -,
This is of the form
@HwHQ_eQ +zfwl?y, <y+yllwl s,

and an application of Lemma A.1 completes the proof of (a). Part (b) is proven following
the same argument as in the proof of Theorem 6.3(b). U

Remark 6.7. Note that in the case of the NSV we need —% < a < —1in order to satisfy
Theorem 6.6 i) and the condition o < —1. Choosing a = —5 we get m 2, GS. This is
consistent with the calculations in [43].

w

Remark 6.8. The trilinear forms b, and bs satisfy the hypothesis i) of Theorem 6.6 pro-
vided 3 + 201 + 20, > "2, 3+ 305 > 1, 20, > k, and 20, + 3 + 0, > 1 — k, for
some k € {0, 1}. Also, we need that o« > ”*2 — 201 — B — 30y, o > k — 201 — 05, and
a>1—k—20, — 3 — 20, for some k € {0,1}.

Remark 6.9. The trilinear form by satisfies the hypothesis i) of Theorem 6.6 provided
B+ 20, + 205 > ”+2 , B+30, >0, 20, > 1, and 20, + 3 + 6, > 1. Also, we need that
C(>n+2 2(91 ﬁ 392,0&21—291—02,(17161@21—291—ﬁ—202.

Remark 6.10. The trilinear forms by and b5 satisfy the hypothesis i) of Theorem 6.6
provided 3 + 20, + 205 > ”+2 , B+ 30, > 1,20, > 1, and 20, + 3 + 6, > 1. Also, we
need that o > ”*2 — 20, — B 305, o >1—20, — 0y, and o > 1 — 20, — 3 — 20,.

Remark 6.11. From (5.1) ¢ ~ || f||y-e. ~ G. Then condition v) of Theorem 6.3 is
equivalent to the condition £(m)~' < cG. Assuming that £€(m) ~ m~0=%2=/" and
putting 0 = 0, we have £(m) ~ m®27)/" Hence m > G—/(%2%%) where o < —0,.
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7. LENGTH-SCALE ESTIMATES IN TERMS OF THE REYNOLDS NUMBER

In the previous section, we established estimates on the number of degrees of free-
dom in terms of the generalized Grashof number G, a dimensionless parameter which
measures the relative magnitude of forcing to the viscosity v. A complementary scheme
was introduced by Doering and Foias in [17], to recast all the estimates in terms of the
Reynolds number Re. The Reynolds number measures the effect of nonlinearity in the
fluid response, and in the current setting it allows us to measure the effects of modifying
the nonlinearity. It is important to recognize that in the engineering and physics com-
munities, the Reynolds number is used more frequently than the Grashof number, as is
viewed as more directly physically meaningful. Therefore, in this section we will derive
a lower bound on the Kolmogorov dissipation length-scale in terms of the Reynolds num-
ber, which will help provide some tools for relating the Grashof number-based results of
the previous section (and elsewhere in the literature) to analogous statements involving
the Reynolds number.

To set some notation, we briefly review the ideas discussed in [17, 29] and then apply
the analogous procedure to our more general problem. Given the velocity field u for
the Navier-Stokes equations taken on an n-dimensional periodic domain [0, L]" with
divergence free condition, the Reynolds number Re of the flow is defined as

Ul

Re=—, where U?= L "[l3, (7.1)
v
where the overline denotes the long-time average
1 t
g = limsup n / g(7) dr, (7.2)
t—o00 0

and [ is characterized by the following “narrow-band type” assumption on f

V" fllo = 7" fllo- (7.3)
Recall the standard definition of Grashof number in n dimensions in terms of the “root
mean square” of the force
l3frms

9
2

G:

where frms = L_n/2||f||0 (74)

Doering and Foias showed recently in [17] that in the limit G — oo, the solutions of the
n-dimensional Navier-Stokes equations satisfy

G < Re* + Re. (7.5)

The above estimate gives a way to transform any estimate given in terms of G into an
analogous estimate given in terms of Re. However, as the following example from [29,
30] shows, this procedure does not always give sharp estimates. Consider the problem of
bounding the Kolmogorov dissipation length-scale for the Navier-Stokes equations from
below. The Kolmogorov dissipation length-scale in terms of the energy dissipation rate
€ 1s given by

la= (V3/e)Y4, where e=vL"|Val? <G> (7.6)
Then, using (7.5) we have the following bound
1-1;" < Re. (1.7)

In the three-dimensional case, one can obtain an estimate for the number of degrees of
freedom in turbulent flows by dividing a typical length-scale of the flow by [, and taking
the third power. Thus, (7.7) gives an upper bound of Re? to the number of degrees of
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freedom in turbulent flows which is not sharp compared to the generally accepted Re®/*.

The authors of [17, 29] obtained the bound of Re”/* by time-averaging the Leray’s energy
inequality and using (7.5).

In comparing estimates for the Navier-Stokes equations given in terms of the Reynolds
number (and other quantities) to similar estimates for regularized equations, there is a ba-
sic issue of identifying precisely what the Reynolds number is for the regularized equa-
tions. Here we will extend the approach followed in [29, 30], and identify the Navier-
Stokes velocity field as @ = Nu (or w = Mw if M is more smoothing than V), where w is
the regularized velocity field, and define the Reynolds number and the energy dissipation
rate € in terms of u. We have then

[allo = [INullo ~ [[ull-20,, or [laflo = [Mullo = [Jull-20,,

and similarly, | V|l = ||u||1-20, or ||V@l|lo = ||u||1_2¢,- In other words, the approach
of [29, 30] naturally extends to our more general setting here, giving definitions of Re
and ¢ that satisfy

Re* = U? = |ull?,,, and = [lull®_, with 0 = max{6;,6-}.

The constants in the definitions are irrelevant as far as the asymptotic behavior of the
bounds are concerned. In the following theorem we derive a bound on a mean square
Sobolev norm of « in terms of a similar norm with a lower Sobolev order. This will
make possible the corollary following the theorem, which gives length-scale estimates in
terms of the Reynolds number for the general setting in this paper. This makes it possible
to relate the bounds of §6 giving in terms of the Grashof number to analogous bounds
given in terms of the Reynolds number.

Theorem 7.1. Let u € L>(0,00; V=) N L2 (0, 00; V¥=%) be a solution to (2.1), and

loc

let o < 3 < 0 — 6. Let the following conditions hold:

1) b:V* x V*x VYI—=R is bounded for some ~;

i) b(v,v, Nv) =0 forv € V00
i) (Av, Nv) > c||v||5_g, for any v € V=%, with a constant ¢ > 0;
iv) The forcing term f is independent of t, and satisfies

1f1ls < C () fllo,

for any s, with constants C(s) depending on s.

Then we have

e (=]
[y < Tl + (TulZ) ™

Proof. Pairing (2.1) with Nu, and by using ii), we get
1d

(Au, Nu) = (f, Nu) — o7 (u, Nu) .

Then integrating in time gives

t t
[ o, S [ Wl e+ el ey (78)

In terms of long time averages, from the above one can derive

ullf-a, S I1f 11200/ NullZ S (110U,

where U? = ||u||2, and we have used iv) in the last step.
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Now we will bound || f||o in terms of u. To this end, let us pair (2.1) with f, and write

() = (A )+ 0, ) + 5 1)

Recalling that f is independent of ¢, and integrating in ¢, we have

t t
mﬂ%s/ﬁwmwm%a+/nmmum+wmmmweﬂmm, (1.9)
0 0
which implies
1l S U+ 2.
Now plugging (7.9) into (7.8), we have

t t 1 t t
Jvatio, s [l ([ o+ [z com) vow, o
0 0 0 0

giving
Finally, we write the interpolation inequality

< 1=A A ith \ = ﬁ_—&

fulls < a2l s, with A = 52
and calculate its long time average to establish the proof. U
Now we apply the above result to the situation where o« = —26; and § = 1 — 26,, and

the trilinear form b is given by by with 6, = 6,.

Corollary 7.2. Let the conditions ii), iii) and iv) of the previous theorem be satisfied, and
let b = by with 0, = 0,. Then we have

1 S -
e S U4+ U oo, where = |ull?_5,, and U* = |u?,,.

In terms of the Kolmogorov length-scale and the Reynolds number, this is
170 < Ret (2rom) 4 Red

Remark 7.3. a) For the simplified Bardina model, our result is consistent with that
of [30], where the authors derive

171 < ReP/S.

b) For the hyper-viscous Navier-Stokes equation and the Navier-Stokes-Voight model,
we have the estimates

;' < R4, and 17" < R,

respectively, that appear to be new.

8. SUMMARY

In this article we considered a general three-parameter family of regularized Navier-
Stokes and MHD models on n-dimensional smooth compact Riemannian manifolds,
with n > 2; this family captures most of the specific regularized models that have been
proposed and analyzed in the literature. Well-studied members of this family include
the Navier-Stokes equations, the Navier-Stokes-a model, the Leray-a model, the Modi-
fied Leray-a model, the Simplified Bardina model, the Navier-Stokes-Voight model, the
Navier-Stokes-a-like models, and several MHD models; the general model also captures
a number of additional models that have not been specifically identified or analyzed in
the literature. We gave a unified analysis of this entire family of models using essentially
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only abstract mapping properties of the principal dissipation and smoothing operators,
and then used assumptions about the specific form of the parameterizations, leading to
specific models, only when necessary to obtain the sharpest results. In §2, we established
our notation and gave some basic preliminary results for the operators appearing in the
general regularized model. In §3, we built some well-posedness results for the general
model; this included existence results (§3.1), regularity results (§3.3), and uniqueness
and stability results (§3.2). In §4 we established some results for singular perturbations,
which as special cases include the inviscid limit of viscous models and the o — 0 limitin
a models; this involved a separate analysis of the linear (§4.1) and nonlinear (§4.2) terms.
In §5, we showed existence of a global attractor for the general model (§5.1), and then
gave estimates for the dimension of the global attractor (§5.2). In §6 we established some
results on determining operators for the two distinct subfamilies of dissipative (§6.1) and
non-dissipative (§6.2) models. In §7, we established length-scale estimates for the gen-
eralized model; this makes it possible to recast our estimates for the number of freedom
of turbulent flows given in §6 in terms of the Reynolds number.

To make the paper reasonably self-contained, in Appendix A we also included some
supporting material on Gronwall-type inequalities (Appendix A.1), spaces involving time
(Appendix A.2), and Sobolev spaces (Appendix A.3). In addition to establishing a num-
ber of technical results for all models in this general three-parameter family, the frame-
work we developed can recover most of the existing existence, regularity, uniqueness,
stability, attractor existence and dimension, and determining operator results for the well-
known specific members of this family of regularized Navier-Stokes and MHD models.
Analyzing the more abstract generalized model allows for a simpler analysis that helps
bring out the common structure of the various models, and also helps clarify the core
common features of many of the new and existing results. More general MHD models
can be analyzed using the framework with only minor modifications as outlined in the
text.

In ongoing work, we are extending the unified analysis presented here to establish
partial regularity results for the three-parameter generalized model, in the spirit of [3].
In [44], it was found that for the hyper-dissipative model, there exists a solution for
which the Hausdorff dimension of the singular set at the first time of blow-up is at most
5 — 46. We would like to extend this result for our generalized equation to see the
interplay between the nonlinearity, which is controlled by two parameters #; and 6, and
the dissipative term, which is controlled by the parameter 6 in the model equations.

In [31] the notion of suitable weak solutions for NSE was defined. The definition in-
troduces two parameters: a discretization scale h and a large eddy scale . We also plan
to extend this unified analysis to find the interplay between the nonlinear term and dissi-
pative term that will satisfy the proposed list of mathematical criteria when establishing
a reasonable definition of large eddy simulation (LES) models. In [31], the authors men-
tioned some technical or fundamental difficulties when establishing the convergence of
the discrete approximations of the NS-a model to suitable weak solutions of the NSE.
We would like to use the unified analysis to see under what conditions we can recover
the relationship between the regularizing and discretization parameters that will allow
the model equation to be a suitable approximation to NSE.
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APPENDIX A. SOME KEY TECHNICAL TOOLS AND SOME SUPPORTING RESULTS

A.1. A Gronwall type inequality. The following is a slight generalization of the Gronwall-
type inequality appeared in [21] and [39].

Lemma A.1. Let T > 0 be fixed, and let z, y, and z be locally integrable and real-valued
functions on (0, 00), satisfying

t+T T t+T
li{n inf/ z(r)dr >0, lim sup/ z (7)dr < o0, tlim yt(r)dr =0,
— Jt t—oo  Jt o Jt

where x= = max{—=z,0} and y© = max{y,0}. If £ is an absolutely continuous non-
negative function on (0, 00), and & satisfies the following differential inequality

'+l <y+yff,  ae on(0,00),
for some constant p € (0, 1], then lim;_,, £(t) = 0.

A.2. Spaces involving time. Let us recall the following well known result. A proof can
be found in [61].

Theorem A.2. Let X — Y — Z be reflexive Banach spaces, with X — Y compact.
Let p,q > 1 be constants, and define

d
Y =Y(0.T5p,q: X, Z) = {v € L"(0,T:X) : = € L(0,T: Z)}.
Then we have Y — C(0,T; Z) and the embedding Y — LP(0,T;Y") is compact.

A.3. Multiplication in Sobolev spaces. With s € R, let H° be the standard Sobolev
space on an n-dimensional compact Riemannian manifold M. We state here a well
known result on pointwise multiplication of functions in Sobolev spaces.

Lemma A.3. Let s, sy, and sy be real numbers satisfying
51+ 89 20, 8; = 8, and S1+ 82 — 8> 3,

where the strictness of the last two inequalities can be interchanged if s € Ny. Then, the
pointwise multiplication of functions extends uniquely to a continuous bilinear map

H*®© H*? — H°.

Proof. A proof is given in [66] (see also [53]) for the case s > 0, and by using a duality
argument one can easily extend the proof to negative values of s. U
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