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Abstract. This is the last in a series of three papers on nonparametric density estima-
tion for randomly perturbed elliptic problems. In the previous papers [3, 4] an efficient
algorithm for propagation of uncertainty into a quantity of interest computed from nu-
merical solutions of an elliptic partial differential equation was presented, analyzed, and
applied to different problems in e.g. oil reservoir simulation. In this paper we focus on
convergence, complexity, and generalizations. The convergence result is a new and crucial
contribution. The proof is based on the assumption that the underlying domain decom-
position algorithm converges geometrically. The main ideas of the proof can be applied
to a large class of domain decomposition algorithms.

1. Introduction

The practical application of differential equations to model physical phenomena presents
both mathematical challenges, e.g., the need to compute approximate solutions to difficult
problems, and statistical challenges, e.g., the need to incorporate experimental data and
model uncertainty. A prototypical example is accounting for the effects of uncertainty in
input parameters on the values of a quantity of interest computed from numerical solutions
of an elliptic partial differential equation. In particular, we consider the problem of com-
puting statistical information about a quantity of interest Q(U) of the solution U ∈ H1

0(Ω)
of,

(1.1)

{
−∇ · A∇U = f, in Ω,

U = 0, on ∂Ω,

where f ∈ L2(Ω) is a given deterministic function, Ω is a polygon domain with boundary
∂Ω and A(x) is a stochastic function that varies randomly according to a given probability
structure. The problem (1.1) is interpreted to hold almost surely (a.s.) i.e. with proba-
bility 1. Under suitable assumptions, e.g. A is uniformly bounded and uniformly coercive
and has piecewise smooth dependence on its inputs (a.s.) with continuous and bounded
covariance functions, Q(U) is a random variable. We may describe its stochastic properties
by computing its cumulative probability distribution.

The standard Monte Carlo, i.e. nonparametric density estimation, approach to this
problem involves choosing sample values for A, computing the corresponding solutions
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U along with the corresponding quantity of interest values Q(U), and then computing
statistics from the collection of values {Q(U)}. This is generally expensive due to the
cost of computing numerical solutions of (1.1) while the accuracy of the results is affected
by both the use of a finite number of samples and the numerical error of each computed
sample. The latter error typically varies to a significant extent as the parameter values
vary.

In the first two papers of this series of three papers, we attacked these issues. First, we
construct an efficient numerical method for approximating the cumulative density function
for the output distribution. The method is efficient in the sense that the number of
stiffness matrices that are inverted, which is the primary cost of solving (1.1), is fixed
independent of the number of samples used to compute the distribution. An interesting
way to interpret this method is that it reorders the standard approach of “statistics on the
outside and solves on the inside”. Second, we derive an a posteriori error estimate for the
computed probability distribution that accounts for all sources of discretization errors and
sample uncertainties. We may interpret this as a complete uncertainty quantification for
the problem (1.1). Third, we devise a general adaptive algorithm based on the estimate
which provides the means to balance computational effort to control various sources of
error and uncertainty in order to achieve a desired accuracy.

The main goal of this final paper is the derivation of a priori error bounds that guar-
antee the convergence of the method under weak assumptions on the underlying domain
decomposition algorithm on which it is based. In addition, we extend the method to
cover a more general type of random perturbation and a wider range of underlying domain
decomposition solvers.

The paper is organized as follows. In section 2, we present modeling assumptions, the
computational method, improvements, and an a posteriori error estimate. In section 3, we
state the main results including convergence and a priori error bounds of the method. In
section 4, we make some further observations about the method. Finally, in section 5 we
present the proofs of the statements in section 3.

2. Modeling assumption and the computational method

Let {An ∈ L∞(Ω)}Nn=1 be a collection of sample values of the stochastic function A. For
each sample n, the weak form of (1.1) reads: Compute Un ∈ H1

0(Ω) solving

(2.1) (An∇Un,∇v) = (f, v), for all v ∈ H1
0(Ω), ,

where f ∈ L2(Ω) and (·, ·) denotes the L2(Ω) scalar product. Standard results imply that
(2.1) has a unique solution for each n = 1, . . . ,N .

2.1. A modeling assumption. We assume that the stochastic diffusion coefficient can
be written

A = a+ A,

where the uniformly coercive, bounded deterministic function a may have multiscale be-
havior and |A(x)| ≤ δa(x) for some 0 < δ < 1. Given a choice of δ, this insures that
a+ A ≥ α > 0 for all x ∈ Ω for some α > 0.
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We now make the modeling assumption that A is a piecewise constant function with
random coefficients. We let {Ωd, d = 1, · · · ,D}, be a decomposition of Ω into a finite set
of non-overlapping polygonal subdomains with ∪Ωd = Ω. We denote the boundaries ∂Ωd

and outward normals nd. We let χΩd
denote the characteristic function for the set Ωd. We

assume that

(2.2) A(x) =
D∑
d=1

Ad χΩd
(x), x ∈ Ω,

where
(
Ad
)

is a vector of real numbers.
This assumption is reasonable in context of a common experimental situation in which

the coefficients Ad are measured at specific points in the domain Ω. In this context, it
is natural to assume that the values Ad are random as a way of describing experimental
error. Improving the model requires both taking more measurements Ad corresponding to
a finer partition of Ω and decreasing the variation in the measured values.

2.2. Notation. We let Ω denote the piecewise polygonal computational domain with
boundary ∂Ω in two or three spatial dimensions. For an arbitrary domain ω ⊂ Ω we
denote the interior L2(ω) norm and the boundary L2(∂ω) norm by ‖ ‖L2(ω) and ‖ ‖L2(∂ω),
respectively. We let Hs(ω) denote the standard Sobolev space of smoothness s with stan-
dard norm ‖ · ‖Hs(Ω), for s ≥ 0. In particular, H1

0(Ω) denotes the space of functions in
H1(Ω) with vanishing trace. See [1] for an extensive discussion on these function spaces.

We assume that any random vector X is associated with a probability space (Λ,B, P )
in the usual way. We let {Xn, n = 1, · · · ,N} denote a collection of samples. We assume
it is understood how to draw these samples. Let An = a + An be a particular sample of
the diffusion coefficient with corresponding solution Un. On Ωd, we denote a finite set of
samples by {An,d, n = 1, · · · ,N}. We let F (x) denote the cumulative distribution function
associated with the random variable.

For a function An on Ω, An,d means An restricted to Ωd. For d = 1, · · · ,D, d′ denotes
the set of indices in {1, 2, · · · ,D} \ {d} for which the corresponding domains Ωd′ share a
common boundary with Ωd. We let (·, ·)d denote the L2(Ωd) scalar product, 〈·, ·〉d denote
the L2(∂Ωd) scalar product where discontinuous functions are evaluated from the Ωd side,

and 〈·, ·〉d∩d̃ denote the L2(∂Ωd∩∂Ωd̃) scalar product for d̃ ∈ d′, here discontinuous functions
should be evaluated from the Ωd̃ side.

We use the finite element method to compute numerical solutions. Let Th = {τ} be
a quasiuniform partition into elements that ∪τ = Ω. We assume that the finite element
discretization Th is obtained by refinement of {Ωd}. This is natural when the diffusion
coefficient a and the data vary on a scale finer than the partition {Ωd}. Associated to
Th, we define the discrete finite element space Vh consisting of continuous, piecewise linear
functions on T satisfying Dirichlet boundary conditions, with mesh size function hτ =
diam(τ) for x ∈ τ . Since we assume quasi uniform mesh we let h = mean({hτ}). We equip
each subdomain with a local finite element space Vh,d by restricting Vh to domain Ωd. We
let md = dim(Vh,d). We further let Hd = diam(Ωd) and assume that the domains are of
similar size, i.e. we let H = mean({Hd}) be the typical domain size.
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2.3. Motivation. Monte-Carlo simulation involving a large number of samples is very
expensive in particular when each sample is costly to compute. Traditionally, one solves
the differential equation inside a loop over random samples. Since the relative size of the
statistical error and the numerical error is unknown a priori a very big sample size and very
fine mesh size is needed to guarantee an accurate solution. It is clear that this procedure
is very costly, approximately,

N solves of linear systems with
D∑
d=1

md unknowns

are needed. The method described in Algorithm 1 resolves these problems. First the
sample loop is moved inside the differential equation solver. The goal is to do as little
work inside the sample loop as possible. In particular we do not want to solve any linear
systems of equations in the sample loop so all linear systems are solved outside the sample
loop. Second, we derive a posteriori error estimates for the cumulative distribution function
of a quantity of interest and give an adaptive algorithm for choosing all critical method
parameters automatically guaranteeing both that the statistical error and the numerical
error are appropriately small. This means that we can get an optimal mesh and sample
size in order to reach a prescribed tolerance.

2.4. The computational method. We apply Lions’ non-overlapping domain decompo-
sition algorithm to (1.1). The method is iterative, so for a function U involved in the

iteration, Ui denotes the value at the ith iteration. We let
{
Un,d

0 , d = 1, · · · ,D
}

and{
Gn,d

0 , d = 1, · · · ,D
}

denote a set of initial guesses for solutions in the subdomains. Given
the initial conditions, for each i ≥ 1, we solve the D problems

(2.3)


−∇ · An∇Un,d

i = f, x ∈ Ωd,

Un,d
i = 0, x ∈ ∂Ωd ∩ ∂Ω,

Gn,d
i = 2λUn,d̃

i−1 −G
n,d̃
i−1 x ∈ ∂Ωd ∩ ∂Ωd̃, d̃ ∈ d′,

λUn,d
i + nd · An∇Un,d

i = Gn,d
i x ∈ ∂Ωd,

where λ ∈ R and nd is the outward unit normal associated with the boundary ∂Ωd. In the
convergence analysis we will give restrictions on λ, it turns out that the optimal choice is
λ ∼ h−1/2H−1/2. The formulation is equivalent to the formulation in [3] and [4] since,

(2.4) Gn,d
i = 2λUn,d̃

i−1 −G
n,d̃
i−1 = λUn,d̃

i−1 − nd̃ · A
n∇Un,d̃

i−1.

In practice, we compute I iterations. Note that the subgrid problems can be solved inde-
pendently.

For each i ≥ 1, we compute Un,d
i ∈ Vh,d, d = 1, · · · ,D, solving

(An∇Un,d
i ,∇v)d + λ

〈
Un,d
i , v

〉
d

= (f, v)d +
〈
Gn,d
i , v

〉
d
, all v ∈ Vh,d,(2.5)

Gn,d
i = 2λUn,d̃

i−1 −G
n,d̃
i−1, x ∈ ∂Ωd ∩ ∂Ωd̃, d̃ ∈ d′.(2.6)

It is convenient to use the matrix form of (2.5-2.6) when discribing the method. We let{
ϕdm,m = 1, · · · ,md

}
be the finite element basis functions for the space Vh,d, d = 1, · · · ,D.
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We let ~Un,d
i denote the vector of basis coefficients of Un,d

i with respect to {ϕdm}. On each
domain Ωd,

(ka,d + kn,d)~Un,d
i = ~bd(f) +~bn,d

(
Gn,d
i

)
,

where

(ka,d)lk = (a∇ϕdl ,∇ϕdk)d + λ〈ϕdl , ϕdk〉d,
(kn,d)lk = (An,d∇ϕdl ,∇ϕdk)d,

(~bd)k = (f, ϕdk)d,

(~bn,d)k =
〈
Gn,d
i , ϕdk

〉
d
,

for 1 ≤ l, k ≤ md.
Next we use that An,d is constant on each Ωd. Consequently, the matrix kn,d has coeffi-

cients

(kn,d)lk = (An,d∇ϕdl ,∇ϕdk)d = An,d(∇ϕdl ,∇ϕdk)d = An,d(kd)lk,

where kd is the standard stiffness matrix with coefficients (kd)lk = (∇ϕdl ,∇ϕdk)d. In Lemma
3.3 we prove that the Neumann series expansion for the inverse of a perturbation of the
identity matrix is valid here,

(
ka,d + An,dkd

)−1
=
∞∑
p=0

(−An,d)p
(
(ka,d)−1kd

)p
(ka,d)−1.

We compute only P terms in the Neumann expansion to generate the approximation,

(2.7) ~Un,d
P,i =

P−1∑
p=0

(
(−An,d)p((ka,d)−1kd)p

)
(ka,d)−1

(
~bd(f) +~bn,d(Gn,d

i )
)
.

Note that ~bn,d is nonzero only at boundary nodes and that ~bd(f) is independent of n. If
Wh,d denotes the set of vectors determined by the finite element basis functions associated

with the boundary nodes on Ωd, then ~bn,d is in the span of Wh,d. We let Un,d
P,I denote the

finite element functions determined by ~Un,d
P,I for n = 1, · · · ,N and d = 1, · · · ,D. We let

Un
P,I denote the finite element function which is equal to Un,d

P,I on Ωd.
We summarize as an Algorithm given in Alg. 1. Note that the number of linear systems

that have to be solved in Alg. 1 is independent of N .

Remark 2.1 If the quasi-uniform assumption on Vh and the partition {Ωd}Dd=1 is dropped,
the numbers h and H will no longer be representative for the mesh size everywhere. This
also means that λ ∼ h−1/2H−1/2 needs to vary in the domain Ω. In this case we simply
include λ inside the integrals and treat it as a function of space. We have made this sim-
plification in order to make the presentation clearer.
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Algorithm 1 Monte-Carlo Domain Decomposition Finite Element Method

for d = 1, · · · , D (number of domains) do
for p = 1, · · · ,P (number of terms) do

Compute ~y pd =
(
(ka,d)−1kd

)p
(ka,d)−1~bd(f)

Compute ypd =
(
(ka,d)−1kd

)p
(ka,d)−1Wh,d

end for
end for
for i = 1, · · · , I (number of iterations) do

for d = 1, · · · , D (number of domains) do
for p = 1, · · · ,P (number of terms) do

for n = 1, · · · ,N (number of samples) do

Compute ~Un,d
P,i =

∑P−1
p=0 (−An,d)p

(
yp~bn,d(Gn,d

i ) + ~y pd
)

end for
end for

end for
end for

2.5. Computational cost. Since the aim of the technique is to reduce the amount of work
needed to compute the samples of the solution, it is important to analyze how efficient the
method is. A critical part of the method is the construction of ypd in Algorithm 1. Even
though this construction is independent of number of samples it still appears to involve
computing inverses of local matrices which is very expensive. Other critical parts of the
method is how much work we need to do within each loop over samples and how much
storage the method requires.

We start with the computations done outside the sample loop. We want to avoid com-
puting the inverse of ka,d since this is expensive and produces a full matrix. On the other
hand, we want to exploit the fact that we have the same operator acting on N right hand
sides, where N is a very large number compared to the degrees of freedom in Vh,d. From
papers [3, 4] we see that the error in the cumulative distribution function is typically of

order h2 + 1/
√
N for errors in quantities of interest, i.e. in two spatial dimensions we

e.g. get,

(2.8) N ∼ h−4 ∼ h−2

D∑
d=1

md.

As indicated in Algorithm 1, we solve as many linear systems as there are boundary nodes
in order to get hold of ypd. If we continue with the two dimensional case, the number of

right hand sides Wh,d is proportional to m
1/2
d . This means that the number of systems of

equations needed to be solved in order to get {ypd}
P−1
p=0 is proportional to P · m1/2

d . The
dimension of each problem is md and the number of domains is D. The total amount of



NONPARAMETRIC DENSITY ESTIMATION FOR RANDOMLY PERTURBED PROBLEMS 7

work is proportional to

D∑
d=1

(
P ·m1/2

d solves of linear systems with md unknowns
)
.

It will be clear that this amount of work is small compared to the work within the sample
loop if the number in light of equation (2.8).

Inside the sample loop, we again focus on the y p
d part since it clearly more expensive then

the ~ypd component of the computation. We note that we only need to compute ~Un,d
P,i at the

boundary in order to update G. The work in the matrix-matrix multiplication ypd(G
n,d
i ),

where only boundary terms are computed, is md · N since Gn,d
i depends on n. The total

amount of work in the sample loop is then,

I · N · P ·
D∑
d=1

md,

Note that the number of linear systems of equations needed to solve now is independent of
the number of samples N . Still it is clear that the amount of work in the sample loop is
much greater then the work needed to pre-compute the solutions to the linear systems of
equations on each subdomain. As long as the size of the local problems md is fairly small,
not solving linear systems in the sample loop, leads to a very fast way computational
method.

The storage needed for the algorithm during the computation is mainly the value of Gn,d
i

at the boundary. Then the desired output quantity is evaluated in the last iteration. This
means that the storage needed is proportional to the storage needed when using domain
decomposition without truncated Neumann series for the original problem, with multiple
diffusion coefficients. Storage is an important factor when N becomes large. It is therefore
crucial to only evaluate quantities of interest of the solution in the end. The entire solution
may be difficult to store.

2.6. Natural extensions of the method. Here we consider two natural extensions of
the method, overlapping domain decomposition methods and piecewise polynomial per-
turbation. It turn out that these two extensions lead to very similar modifications of the
proposed method.

2.6.1. Overlapping domain decomposition algorithm. There are various non-overlapping
and overlapping domain decomposition algorithms, see [9, 10]. In the original derivation
of the method, we used Lions’ non-overlapping algorithm. The main reason for this is
that if the random perturbation is piecewise constant, the domains can be chosen so that
it is constant on the domains. Here we show that this assumption is not crucial for the
construction of the method. It only gives a very efficient way of implementing it. If we allow
the subdomains Ωd to overlap, we end up with a similar method. If we assume piecewise
constant random perturbation on the coarse mesh, the number of random variables active
on domain Ωd is the same as the number of coarse elements that intersects the domain,
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An,d =
∑M

m=1A
n,d
m χm, if M, is this number of intersected coarse elements and χm is the

indicator function for these elements. The following linear systems of equations arises,

(2.9) ~Un,d
P,i =

P−1∑
p=0

(
M∑
m=1

(−An,dm )(ka,d)−1km,d

)p

(ka,d)−1
(
~bd(f) +~bn,d

(
Gn,d
i

))
,

where km,d is a weighted stiffness matrix with coefficients (km,d)lk = (χm∇ϕdl ,∇ϕdk)d. The

matrix ka,d and vector ~bd(f) +~bn,d
(
Gn,d
i

)
should be interpreted as matrix and vector that

the overlapping domain decomposition algorithm gives for the local solves. Again we only
compute P terms in the Neumann expansion to generate the approximation.

Overlapping methods can lead to faster converges but the extra cost involved with using
equation (2.9) with M > 1 needs to be considered. The convergence proof presented in
Theorem 3.1 can quite easily be generalized to other domain decomposition algorithms.
The assumption of geometric convergence is however crucial.

2.6.2. Piecewise polynomial random perturbation. So far piecewise constant perturbations
have been considered. The constant perturbation is important for the truncated Neumann
series idea since the randomness can be expressed as a multiplication with a single number
on each subdomain. It is possible to extend this idea to piecewise polynomial perturbations
which also makes it possible to consider continuous perturbations that are very useful if a is
continuous. Otherwise there will be an artificial loss of regularity in the problem. It turns
out that allowing piecewise polynomial perturbation leads to very similar complications as
the ones discussed for overlapping domain decomposition above.

Assume that An,d =
∑M

m=1 A
n,d
m φdm, where {φdm}Mm=1 is a basis for polynomials on subdo-

main Ωd. On trianglesM = 3 in order to get linear functions for example. This will effect
the kn,d matrix in the following way,

(kn,d)lk = (An,d∇ϕdl ,∇ϕdk)d =
M∑
m=1

An,dm (φdm∇ϕdl ,∇ϕdk)d =
M∑
m=1

An,dm (km,d)lk,

where km,d is a weighted stiffness matrix with coefficients (km,d)lk = (φdm∇ϕdl ,∇ϕdk)d.
As long as An,d(x) ≤ δa(x) the truncated Neumann series approach can be used. The

proof of Lemma 3.3 can be applied directly. We get,(
ka,d +

M∑
m=1

An,dkdm
)−1

=
∞∑
p=0

(
(ka,d)−1

M∑
m=1

(−An,dm )kdm

)p
(ka,d)−1.

Again we compute only P terms in the Neumann expansion to generate the approximation,

(2.10) ~Un,d
P,i =

P−1∑
p=0

( M∑
m=1

(−An,dm )(ka,d)−1kdm

)p
(ka,d)−1

(
~bd(f) +~bn,d(Gn,d

i )
)
.

The main computational cost is that more linear systems need to be solved and more
matrix-matrix products are needed in the sample loop than in the piecewise constant case.
By expanding the sum, one sees that (MP −1)/(M−1) systems needs to be solved, when
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M > 1. In the piecewise constant case, we have P systems that need to be solved. The
number of products in the sample loop increases in the same way.

2.7. A posteriori error estimate and adaptive computation. In general, it appears
that the stochastic nature of the computed quantity of interest Q(U) is quite complex. In
those circumstances, it is natural to compute the cumulative distribution function F (x) =
P (Q(U) < x). We approximate this using the empirical distribution function F̃N given
N samples of the numerical approximation Q(Ũ) of the quantity of interest. If we further
assume that we have an error bound for each realization |Q(Un) − Q(Ũn)| ≤ En, e.g.
derived using standard duality arguments, see Sec. 5 in [3], we have the following error
estimate presented in Theorem 4.1 in [3].

Theorem 2.1. For any 0 < ε < 1,

|F (x)− F̃N (x)| ≤
(
F (x)(1− F (x))

N ε

)1/2

+ L max
n=1,...,N

En + 2

(
log(ε−1)

2N

)1/2

,

with probability greater then 1− ε, where L is the Lipschitz constant of F .

Given the bound in Theorem 2.1, it is very natural to construct an adaptive algorithm
where the statistical error, depending on N , and the numerical error, depending on E ,
should be of similar size and bounded by some given tolerance. This is accomplished by
iteratively solving the problem, computing the error bound and then increaseN or decrease
E depending on if they meet the stopping criteria.

3. Convergence of numerical method

The domain decomposition technique used in the method was introduced by P. L. Lions
in [6].The convergence properties are well studied, see e.g. [5, 7, 8]. But, we have analyze
the effect of the approximation we make by solving the linear system of equations on each
subdomain using a truncated Neumann series, and in particular, if this destroys the con-
vergence of the domain decomposition algorithm. It suffices to consider one sample of An

since the same approximation technique is use on all samples simultaneously and different
samples have no communication with each other. We therefore drop all superscripts n
in this section and view A = a + A as a single realization of A fulfilling the assumption
|A(x)| ≤ δa(x) for all x ∈ Ω for some given 0 < δ < 1.

To begin, we specify a norm used to measure distances between the reference {Û , Ĝ}
and the approximate solution {Ui, Gi} after i iterations. Note that we also drop the P
subscript to make the presentation clearer. We let

|‖{Û , Ĝ} − {Ui, Gi}|‖2 =
D∑
d=1

‖
√
A∇(Ûd − Ud

i )‖2
L2(Ωd) +

D∑
d=1

‖Ĝd −Gd
i ‖2
L2(∂Ωd).

By reference solution {Û , Ĝ}, we mean the finite element solution of equation (1.1) using
the space Vh. This solution coincides with the converged solution using standard Lions’
non-overlapping domain decomposition algorithm. We now introduce a notation for an
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operator T̂ that performs one iteration in Lions’ domain decomposition algorithm using
exact solution of the linear systems of equation on the subdomains. Let {Ûi+1, Ĝi+1} =

T̂ ({Ûi, Ĝi}). By T̂ i, we denote repeated use of T̂ i.e. {Ûi, Ĝi} = T̂ ({Ûi−1, Ĝi−1}) = · · · =

T̂ i({U0, G0}). For the reference solution, we have the following results.

Lemma 3.1. Since Lions’ domain decomposition algorithm converges, we have for the
reference solution {Û , Ĝ},
(3.1) {Û , Ĝ} = T̂ ({Û , Ĝ}).
Furthermore it holds,

(3.2) ‖
√
A∇Û‖L2(Ω) ≤ Cf,α,Ω,

for a constant Cf,α,Ω = CPF√
α
‖f‖L2(Ω) where CPF is the Poincare-Friedrich constant fulfilling,

‖v‖L2(Ω) ≤ CPF‖∇v‖L2(Ω) for all v ∈ H1
0(Ω).

Proof. See section 5.1. �

We need a crucial assumption on T̂ to prove convergence. We first introduce a set of
functions. Let,

B = {{W,J} : such that J ∈ L2(∪d=1,...,D∂Ωd) and W ∈ H1(∪d=1,...,DΩd) andW |∂Ω = 0}.
Given {W,J} ∈ B, with a particular relation between W and J , namely, let W d ∈ Vh,d,
d = 1, · · · ,D, solve

(A∇W d,∇v)d + λ
〈
W d, v

〉
d

= (f, v)d +
〈
Jd, v

〉
d
, all v ∈ Vh,d,(3.3)

it holds,

(3.4) |‖{Û , Ĝ} − T̂ i({W,J})|‖ ≤ C2L
i|‖{Û , Ĝ} − {W,J}|‖,

where C2 is a given constant and 0 ≤ L < 1, i.e. we assume Geometric convergence, see
Definition 2.2 in [8]. This result is proven for the method we use in [7, 8] under various
assumptions on the partition {Ωd}Dd=1. The optimal choice of the method parameter is
λ ∼ h−1/2H−1/2, see [8].

From [8], we get that L = 1−C1(C0)Nh1/2H−1/2 where C1 > 0 depends on A, C0 ∈ (0, 1),
and N is the winding number of the partition {Ωd}Dd=1. The winding number depends on
the structure of the partition. Roughly speaking each subdomain is associated with a
number measuring the closest path from the current subdomain to the boundary. The
distance is measured in number of subdomains that need to be crossed. Furthermore,
two paths of different subdomains with the same number should never cross. The winding
number is the largest value one gets among the subdomains. It is clear that a large winding
number leads to slow convergence. A more extensive discussion of this can be found in
[7, 8]. In this paper we assume equation (3.4) to hold motivated by [7, 8].

Since we solve the linear systems on the subdomains using a truncated Neumann series,
we get a perturbed solution operator T i.e. {Ui+1, Gi+1} = T ({Ui, Gi}). The goal is to

bound |‖{Û , Ĝ} − {UI , GI}|‖. We start by stating two more Lemmas. The proofs can be
found in Section 5.
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Lemma 3.2. For arbitrary {Wa, Ja}, {Wb, Jb} ∈ B it holds,

|‖T̂ 2({Wa, Ja})− T̂ 2({Wb, Jb})|‖ ≤ Cλ|‖T̂ ({Wa, Ja})− T̂ ({Wb, Jb})|‖,

where Cλ = (1 + 1/(4λ))1/2.

Proof. See section 5.2. �

Lemma 3.3. Let {W,J} ∈ B be an arbitrary initial guess and let {W1, J1} = T ({W,J})
be computed using P terms in the Neumann series. The Neumann series converges as
P → ∞ and it holds,

|‖T ({W,J})− T̂ ({W,J})|‖2 ≤ 2δ2P
D∑
d=1

‖
√
a∇W d

1 ‖2
L2(Ωd),

and furthermore,

|‖T̂ (T̂ ({W,J}))− T̂ (T ({W,J}))|‖2 ≤ λC2
λδ

2P
D∑
d=1

‖
√
a∇W d

1 ‖2
L2(Ωd).

when P is large enough for δP ≤ 1/2.

Proof. See section 5.3. �

We are now ready to present the main theorem. We use the fact that geometric conver-
gence means that there exists a number i0 such that the original method is a contraction
after i0 iterations, i.e. |‖{Û , Ĝ}−T̂ i0({W,J})|‖ ≤ γ|‖{Û , Ĝ}−{W,J}|‖ for some 0 ≤ γ < 1.
The error committed by using truncated Neumann series perturbs this result, but the size
of the perturbation can be bounded in terms of δP using Lemma 3.2 and 3.3.

Theorem 3.1. Let {W,J} ∈ B be an arbitrary initial guess and let {Û , Ĝ} be the reference
solution. For a fixed integer i0 ≥ 1 fulfilling C2L

i0 < 1/4 and P large enough so that
Ci0,λC2Lδ

P < 1/4 it holds,

(3.5) |‖{Û , Ĝ} − {Uki0 , Gki0}|‖ ≤ γk|‖{Û , Ĝ} − {W,J}|‖+ 2Ci0,λCf,α,Ωδ
P ,

where γ < 1/2 and Ci0,λ = 12(λ1/2Cλ + 4)(Ci0
λ − 1)/[(1− δ)(Cλ − 1)] and k is any positive

integer.

Proof. See section 5.4. �

So far, we have compared the approximate solution using the domain decomposition
together with the truncated Neumann series to a direct solve using the finite element
method on the fine mesh using piecewise linear basis functions. If we let {U,G} be the
exact solution to (1.1) and assume we have,

(3.6) |‖{U,G} − {Û , Ĝ}|‖ ≤ Cexh
α,

for some α > 0 and Cex > 0 that depends on A, f , Ω, and an interpolation constant. Given
this a priori estimate we get the following result.
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Corollary 3.1. Let {W,J} ∈ B be an arbitrary initial guess and let {U,G} be the exact
solution to (1.1). Then it holds,

(3.7) lim
k→∞
|‖{U,G} − {Uki0 , Gki0}|‖ ≤ Cexh

α + 2Ci0,λCf,α,Ωδ
P ,

for some fix integer i0 ≥ 1.

Proof. The corollary follows immediately by combining (3.6) and (3.5), using the triangle
inequality, and taking the limit. �

There are various constants in the error analysis. We discuss them in two remarks
below.
Remark 3.1 First of all, since λ ∼ h−1/2H−1/2 the constant Cλ > 1 is directly computable
and very close to 1. This means that

Ci0
λ − 1

Cλ − 1
≈ i0.

The number of iterations i0 needed in order to reduce the error to a quarter in Lions’
method i.e. C2L

i0 < 1/4 is very problem dependent but is in most cases a number of mod-
erate size. The constants C2 and L can be approximated by measuring distance between
iterates in the algorithm. The constants Cf,α,Ω = CPF‖f‖L2(Ω)/

√
α and Ci0,λ are directly

computable. Furthermore, Cex ≈ Cint‖f‖L2(Ω)/
√
α where Cint is an interpolation constant

associated with Vh.

Remark 3.2 We note that in order to equidistribute the error between the two error
contributions in (3.7) the number of terms in the truncated Neumann series should roughly
be chosen so that the following holds,

δP ≈ Cexh
α

2Ci0,λCf,α,Ω
.

All these constants are relatively easy to compute. The restriction on P for which Theorem
3.1 is valid boils down to,

δP ≤ 1

4C2LCi0,λ
,

where C2, L, and i0 depends on the underlying domain decomposition algorithm, and can
be approximated by comparing errors between iterates, and Ci0,λ is directly computable.

4. Coarse grid correction

Non-overlapping domain decomposition algorithms tend to have slow convergence when
the number of subdomains increases. To overcome this issue, coarse grid correction is often
used. Here we briefly describe how coarse grid correction can be used within the proposed
framework.
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Given a previous iterate {Un,d
i , Gn,d

i }Dd=1, the new iterate is computed as a sum of the
old iterate, a coarse grid correction, and a fine grid solution that will be computed using
the same method described above, i.e.

Gn,d
i+1 = 2λUn,d̃

i −G
n,d̃
i ,(4.1)

Un
i+1 = Un

i + Cn
i+1 +

D∑
d=1

F n
i+1,(4.2)

where Cn
i+1 in the coarse space associated with the mesh given by {Ωd}Dd=1 solves,

D∑
d=1

(An∇Cn
i+1∇v)d + λ〈Cn

i+1, v〉d =
D∑
d=1

(f, v)d + 〈Gn
i+1, v〉d − (An∇Un

i ∇v)d + λ〈Un
i , v〉d

(4.3)

=
D∑
d=1

〈Gn
i+1 −Gn

i , v〉d

for all coarse test functions v, and F n,d
i+1 ∈ Vh,d solves,

(4.4) (An∇F n,d
i+1∇v)d + λ〈F n,d

i+1, v〉d = 〈Gn
i+1 −Gn

i , v〉d − (An∇Cn
i+1∇v)d − λ〈Cn

i+1, v〉d
for all v ∈ Vh,d and all d = 1, . . . ,D. For simplicity we have assumed that {Ωd}Dd=1 serves
as a finite element mesh. If this is not the case we just need to divide the subsdomains Ωd

into appropriate elements.
The coarse grid correction equation (4.3) is solved using brute force for each sample,

which is alright since the degrees of freedom is fairly small. The local fine grid problems
(4.4) are then solved using the proposed method with truncated Neumann series. The
storage and computational cost, in each iteration, are similar to solving the original problem
with truncated Neumann series. This procedure will speed up the convergence of the
method when the number of subdomains is large.

5. Proofs of the theoretical results

In this section, we collect the proofs of the three Lemmas and the main Theorem. In
Lemma 3.1 we prove basic results for the converged discrete reference solution. In Lemma
3.2, we prove a version of Lipschitz continuity for the exact map T̂ . Similar results can
be found in e.g. [5]. Lemma 3.3, is an extension of a result presented in [3] to a different
setting. Finally, Theorem 3.5 is the main result of the paper.

5.1. Proof of Lemma 3.1.

Proof. The converged solution solves: find Û ∈ Vh such that, (A∇Û ,∇v) = (f, v) for all v ∈
Vh. We can pick v = Û to get ‖

√
A∇Û‖2

L2(Ω) ≤ ‖f‖L2(Ω)‖Û‖L2(Ω) ≤ CPF√
α
‖f‖L2(Ω)‖

√
A∇Û‖L2(Ω).

The Lemma follows by dividing with ‖
√
A∇Û‖L2(Ω). If ∇Û = 0 it holds trivially. �
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5.2. Proof of Lemma 3.2.

Proof. We let {Ŵj,a, Ĵj,a} = T̂ j({Wa, Ja}) and {Ŵj,b, Ĵj,b} = T̂ j({Wb, Jb}), for j = 1, 2.

Applying equation (2.5) with Un,d
i first equal to Ŵ d

1,a then Ŵ d
1,b and v = Ŵ d

1,a − Ŵ d
1,b for

both equations, and subtraction yields,

(5.1)
D∑
d=1

‖
√
A∇(Ŵ d

1,a−Ŵ d
1,b)‖2

L2(Ωd)+λ‖Ŵ d
1,a−Ŵ d

1,b‖2
L2(∂Ωd) =

D∑
d=1

〈Ĵd1,a−Ĵd1,b, Ŵ d
1,a−Ŵ d

1,b〉d.

Furthermore, we can use equation (2.3) to get,

D∑
d=1

‖Ĵd2,a − Ĵd2,b‖2
L2(∂Ωd) =

D∑
d=1

‖2λ(Ŵ d̃
1,a − Ŵ d̃

1,b)− (Ĵ d̃1,a − Ĵ d̃1,b)‖2
L2(∂Ωd)

(5.2)

=
D∑
d=1

‖Ĵ d̃1,a − Ĵ d̃1,b‖2
L2(∂Ωd) + 4λ2

D∑
d=1

‖Ŵ d̃
1,a − Ŵ d̃

1,b‖2
L2(∂Ωd)(5.3)

− 4λ
D∑
d=1

〈Ĵ d̃1,a − Ĵ d̃1,b, Ŵ d
1,a − Ŵ d

1,b〉d

=
D∑
d=1

‖Ĵ d̃1,a − Ĵ d̃1,b‖2
L2(∂Ωd) − 4λ

D∑
d=1

‖
√
A∇(Ŵ d

1,a − Ŵ d
1,b)‖2

L2(Ωd)

≤
D∑
d=1

‖Ĵ d̃1,a − Ĵ d̃1,b‖2
L2(∂Ωd),(5.4)

≤
D∑
d=1

‖Ĵd1,a − Ĵd1,b‖2
L2(∂Ωd),

using equation (5.1) and changing the order of the sums in the last step. Each interior

edge will have exactly two elements associated with it, d and d̃. We let v = Ŵ d
2,a − Ŵ d

2,b

and Un,d
i to be first Ŵ d

2,a and then Ŵ d
2,b in equation (2.5) and then subtract to get,

D∑
d=1

‖
√
A∇(Ŵ d

2,a − Ŵ d
2,b)‖2

L2(Ωd) + λ

D∑
d=1

‖(Ŵ d
2,a − Ŵ d

2,b)‖2
L2(∂Ωd) =

D∑
d=1

〈Ĵd2,a − Ĵd2,b, Ŵ d
2,a − Ŵ d

2,b〉d

(5.5)

≤ λ

D∑
d=1

‖(Ŵ d
2,a − Ŵ d

2,b)‖2
L2(∂Ωd) +

1

4λ

D∑
d=1

‖(Ĵd2,a − Ĵd2,b)‖2
L2(∂Ωd),(5.6)

since ε > 0 and,

(5.7) |ab| ≤ ε

2
b2 +

a2

2ε
, for all a, b ∈ R,
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and ε can be chosen to be equal to 2λ. We conclude,

|‖{Ŵ2,a, Ĵ2,a}−{Ŵ2,b, Ĵ2,b}|‖ ≤ Cλ

(
D∑
d=1

‖Ĵ d̃1,a − Ĵ d̃1,b‖2
L2(∂Ωd)

)1/2

≤ Cλ|‖{Ŵ1,a, Ĵ1,a}−{Ŵ1,b, Ĵ1,b}|‖,

where Cλ =
(
1 + 1

4λ

)1/2
. Again we change the order in the sum. �

5.3. Proof of Lemma 3.3.

Proof. We consider one particular subdomain Ωd. Let the matrix m = −(An,dka,d)−1kd.
First we want to show that (1−m)−1 =

∑∞
p=0 m

p, i.e. the Neumann series converges. We
want to study m : Rnd → Rnd . Let m : Vh,d → Vh,d be the corresponding map in the finite
element space. Let z = mx for an arbitrary v ∈ Vh,d. Then we have,

(a∇z,∇v)d + λ〈z, v〉d = −(An,d∇x,∇v), for all v ∈ Vh,d.
This means in particular that,

‖
√
a∇z‖2

L2(Ωd) + λ‖z‖2
L2(∂Ωd) ≤ |δ(a∇x,∇z)| ≤ δ‖

√
a∇x‖L2(Ωd)‖

√
a∇z‖L2(Ωd).

We use equation (5.7) to get,

‖z‖2
d := ‖

√
a∇z‖2

L2(Ωd) + 2λ‖z‖2
L2(∂Ωd) ≤ δ2‖

√
a∇x‖2

L2(Ωd),

where we also define a short notation for this norm. In this norm we have, ‖mx‖d ≤
δ‖
√
a∇x‖L2(Ωd). Furthermore, we can repeat the argument formz andmpz to get, ‖mpx‖d ≤

δp‖
√
a∇x‖L2(Ωd). We know that id − mP = (id − m)

∑P−1
p=0 mp, where id is the iden-

tity operator. We take limit on both sides. Note that mP → 0 as P → ∞, since
limP→∞ sup‖x‖d=1 ‖mpx‖d = 0. We get, id = (id − m)

∑∞
p=0 m

p, which proves that the
Neumann series converges.

Furthermore,

‖((1−m)−1 −
P−1∑
p=0

mp)x‖d = ‖mP(1−m)−1x‖d ≤ δP‖
√
a∇((1−m)−1x)‖L2(Ωd)

If we apply this to all subdomains Ωd with x as the finite element function corresponding to

(ka,d)−1(~bd(f)+~bd(Jd)) on each domain, see Algorithm (1), and let, {W1, J1} = T ({W,J}))
and {Ŵ1, Ĵ1} = T̂ ({W,J}) we get,

D∑
d=1

(
‖
√
a∇(W d

1 − Ŵ d
1 )‖2

L2(Ωd) + 2λ‖W d
1 − Ŵ d

1 ‖2
L2(∂Ωd)

)
≤

D∑
d=1

δ2P‖
√
a∇Ŵ d

1 ‖2
L2(Ωd).

One can easily replace Ŵ d
1 with W d

1 in the right hand side using a simple kick back argu-
ment. Assuming δP < 1/2 yields,
(5.8)

D∑
d=1

(
‖
√
a∇(W d

1 − Ŵ d
1 )‖2

L2(Ωd) + 4λ‖W d
1 − Ŵ d

1 ‖2
L2(∂Ωd)

)
≤ 2

D∑
d=1

δ2P‖
√
a∇W d

1 ‖2
L2(Ωd).
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Since Ĵ1 = J1 we immediately get the first result,

|‖W1 − Ŵ1|‖2 ≤ 4
D∑
d=1

δ2P‖
√
a∇W d

1 ‖2
L2(Ωd),

where we use |a/A| = 1/(1 +A/a) ≥ 1/(1 + δ) ≥ 1/2. Next we let {Ŵ2, Ĵ2} = T̂ ({Ŵ1, Ĵ1})
and {W̃2, J̃2} = T̂ ({W1, J1}). We use equation (5.3,5.5) and (5.8) and that Ĵ1 = J1 to get,

|‖{Ŵ2, Ĵ2} − {W̃2, J̃2}|‖ =
D∑
d=1

(
‖
√
A∇(Ŵ d

2 − W̃ d
2 )‖2

L2(Ωd) + ‖Ĵd2 − J̃d2‖2
L2(∂Ωd)

)
≤ C2

λ

D∑
d=1

‖Ĵd2 − J̃d2‖2
L2(∂Ωd)

≤ 4λ2C2
λ

D∑
d=1

‖Ŵ d
1 −W d

1 ‖2
L2(∂Ωd)

≤ λC2
λδ

2P
D∑
d=1

‖
√
a∇W d

1 ‖2
L2(Ωd).

The Lemma follows immediately. �

5.4. Proof of Theorem 3.5.

Proof. We first consider the difference between I iterations of the exact domain decompo-
sition algorithm {ÛI , ĜI} = T̂ I({W,J}) and I iterations of the algorithm using truncated
Neumann series {UI , GI} = T I({W,J}). We have,

|‖{ÛI , ĜI} − {UI , GI}|‖

≤ |‖{ÛI , ĜI} − T̂ ({UI−1, GI−1})|‖+ |‖T̂ ({UI−1, GI−1})− T ({UI−1, GI−1)}|‖

≤ |‖{ÛI , ĜI} − T̂ 2({UI−2, GI−2})|‖+ |‖T̂ 2({UI−2, GI−2})− T̂ ({UI−1, GI−1})|‖

+ |‖T̂ ({UI−1, GI−1})− T ({UI−1, GI−1)}|‖

≤ Cλ|‖{ÛI−1, ĜI−1} − T̂ ({UI−2, GI−2})|‖+ Cλδ
P

(
λ
D∑
d=1

‖
√
a∇Ud

I−1‖2
L2(Ωd)

)1/2

+ |‖T̂ ({UI−1, GI−1})− T ({UI−1, GI−1)}|‖

≤ Cλ|‖{ÛI−1, ĜI−1} − {UI−1, GI−1}|‖+
(
Cλλ

1/2 + 2
)
δP

(
D∑
d=1

‖
√
a∇Ud

I−1‖2
L2(Ωd)

)1/2

(5.9)

+ 2δP

(
D∑
d=1

‖
√
a∇Ud

I‖2
L2(Ωd)

)1/2
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using Lemma 3.2 and 3.3. We use equation (5.9) for all I down to 0 and let Cλ =
2(λ1/2Cλ + 4) and note that a(1− δ) ≤ A ≤ a(1 + δ) by assumption. We conclude,

(5.10) |‖{ÛI , ĜI} − {UI , GI}|‖ ≤ CλδP
I∑
i=0

Ci
λ

(
D∑
d=1

‖
√
a∇Ud

i ‖2
L2(Ωd)

)1/2

.

We now add and subtract appropriate terms to get,

|‖{ÛI , ĜI} − {UI , GI}|‖

(5.11)

≤ CλδP

1− δ

I∑
i=0

Ci
λ

(
D∑
d=1

‖
√
A
(
∇Ud

i −∇Ûd
i +∇Ûd

i −∇Û +∇Û
)
‖2
L2(Ωd)

)1/2

(5.12)

≤ 3CλδP

1− δ

I∑
i=0

Ci
λ

(
|‖{Ui, Gi} − {Ûi, Ĝi}|‖+ |‖{Ûi, Ĝi} − {Û , Ĝ}|‖+ ‖

√
A∇Û‖L2(Ω)

)

≤ 3CλδP

1− δ

I∑
i=0

Ci
λ

(
|‖{Ui, Gi} − {Ûi, Ĝi}|‖+ C2L

i|‖{W,J} − {Û , Ĝ}|‖+ Cf,α,Ω
)(5.13)

Let j∗ ∈ 1, . . . , I be the index for the largest error,

max
i=1,...,I

|‖{Ûi, Ĝi} − {Ui, Gi})|‖ = |‖{Ûj∗ , Ĝj∗} − {Uj∗ , Gj∗})|‖.

We apply equations (5.11-5.13) with I = j∗ to get,

|‖{Ûj∗ , Ĝj∗} − {Uj∗ , Gj∗})|‖ ≤
3CλδP

1− δ

j∗∑
i=0

Ci
λ|‖{Ui, Gi} − {Ûi, Ĝi}|‖(5.14)

+
3CλδP

1− δ
Cj∗

λ − 1

Cλ − 1

(
C2L|‖{W,J} − {Û , Ĝ}|‖+ Cf,α,Ω

)
≤ 3CλδP

1− δ
Cj∗

λ − 1

Cλ − 1
|‖{Uj∗ , Gj∗} − {Ûj∗ , Ĝj∗}|‖

+
3CλδP

1− δ
Cj∗

λ − 1

Cλ − 1

(
C2L|‖{W,J} − {Û , Ĝ}|‖+ Cf,α,Ω

)
We now assume P be large enough so that δP ≤ C−1

i0,λ
= (Cλ − 1)(1 − δ)/(6Cλ(Ci0

λ − 1))
(where i0 = I, see below). We note that Ci0,λ is easily computable, see the Remarks in the
end of Section 3. We conclude,

|‖{ÛI , ĜI} − {UI , GI})|‖ ≤ |‖{Ûj∗ , Ĝj∗} − {Uj∗ , Gj∗})|‖(5.15)

≤ Ci0,λδ
P(C2L|‖{W,J} − {Û , Ĝ}|‖+ Cf,α,Ω

)
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We are now ready to bound the the error after I iterations. We have,

|‖{Û , Ĝ} − {UI , GI}|‖ ≤ |‖{Û , Ĝ} − {ÛI , ĜI})|‖+ |‖{ÛI , ĜI} − {UI , GI}|‖

≤ (C2L
I + Ci0,λC2Lδ

P)|‖{Û , Ĝ} − {W,J}|‖+ Ci0,λCf,α,Ωδ
P

We now fix I = i0 to be the smallest number so that C2L
i0 < 1/4 and choose P so that

Ci0,λC2Lδ
P < 1/4 and let γ = (C2L

I + Ci0,λC2Lδ
P) < 1/2. This means that,

|‖{Û , Ĝ} − {Ui0 , Gi0}|‖ ≤ γ|‖{Û , Ĝ} − {W,J}|‖+ Ci0,λCf,α,Ωδ
P .

For an arbitrary integer k ≥ 1 we have,

|‖{Û , Ĝ} − {Uki0 , Gki0}|‖ ≤ γ|‖{Û , Ĝ} − {U(k−1)i0 , G(k−1)i0}|‖+ Ci0,λCf,α,Ωδ
P

≤ γk|‖{Û , Ĝ} − {W,J}|‖+
k−1∑
j=0

γjCi0,λCf,α,Ωδ
P

≤ γk|‖{Û , Ĝ} − {W,J}|‖+ 2Ci0,λCf,α,Ωδ
P

which proves the theorem. �
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