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Abstract. One well-known approach to a posteriori analysis of finite element solutions of elliptic
problems estimates the error in a quantity of interest in terms of residuals and a generalized Green’s
function. The generalized Green’s function solves the adjoint problem with data related to a quan-
tity of interest and measures the effects of stability, including any decay of influence characteristic
of elliptic problems. We show that consideration of the generalized Green’s function can be used
to improve the efficiency of the solution process when the goal is to compute multiple quantities of
interest and/or to compute quantities of interest that involve globally-supported information such
as average values and norms. In the latter case, we introduce a solution decomposition in which
we solve a set of problems involving localized information, and then recover the desired information
by combining the local solutions. By treating each computation of a quantity of interest indepen-
dently, the maximum number of elements required to achieve the desired accuracy can be decreased
significantly.

Key words. a posteriori error estimates, adaptive error control, adaptive mesh refinement,
adjoint problem, coarse-grained parallelization, decay of influence, domain decomposition, effective
domain of influence, dual problem, efficient discretization, elliptic problem, error estimates, finite
element method, generalized Green’s function, localization, residual error, solution decomposition,
stability, variational analysis

AMS subject classifications. 65N15, 65N30, 65N50

1. Introduction. A characteristic property of elliptic partial differential equa-
tions is a global domain of influence. That is, a local perturbation of data near one
point affects the solution throughout the domain of the problem. Indeed, in the ex-
treme case of an analytic harmonic function, prescribing the values of a solution on
any small sub-domain or even on a piece of curve suffices to define its values through-
out the domain. Of course, this property has profound consequences for the numerical
solution of elliptic equations.

Yet when taken out of context, this property can give a misleading impression. In
particular, elliptic problems often have the property that the strength of the effect of
a localized perturbation on a solution decays significantly with the distance from the
support of the perturbation, at least in some directions. It turns out that this property
also has profound consequences for the numerical solution of elliptic problems, which
we explore in this paper.

One way to see the decay of influence in an elliptic problem is to consider the
properties of Green’s functions. Green’s functions play the role of fundamental solu-
tions for boundary value problems on finite domains. To simplify the presentation,
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we consider the Dirichlet problem for a second order linear elliptic operator L(D,x),
{

L(D, x)u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where Ω is a smooth or polygonal domain in Rd, d = 2 or 3 and the coefficients of L
and the data f are suitably smooth. Suppose that y ∈ Ω and let δy denote the delta
distribution at y. The Green’s function G(y, x) for (1.1) satisfies the adjoint boundary
value problem,

{
L∗(D, x)G(y, x) = δy(x), x ∈ Ω,

G(y, x) = 0, x ∈ ∂Ω,
(1.2)

where the adjoint operator L∗(D, x) satisfies

(L(D, ·)u(·), v(·)) = (u(·), L∗(D, ·)v(·)) (1.3)

for all smooth functions u, v with compact support in Ω = Ω∪∂Ω, with ( , ) denoting
the L2 inner product on Ω. For example, if

L(D, x)u = −∇ · a(x)∇u + b(x) · ∇u + c(x)u(x), (1.4)

where u : Rd → R, a is a d× d matrix function of x, b is a d-vector function of x, and
c is a function of x, then

L∗(D,x)v = −∇ · a(x)>∇v − div (b(x)v) + c(x)v(x),

where a> is the transpose of a.
Because of the boundary conditions in (1.1) and (1.2), for y ∈ Ω,

(
f(·), G(y, ·)) =

(
L(D, ·)u(·), G(y, ·)) =

(
u(·), L∗(D, ·)G(y, ·)) =

(
u, δy

)
= u(y),

(1.5)
when the integrals are defined. In other words, the solution of (1.1) is given by

u(y) =
∫

Ω

G(y, x)f(x) dx, y ∈ Ω, (1.6)

when the integral on the right is defined. In the case of a boundary value problem with
general boundary conditions, the integration by parts (1.3) that defines the adjoint
yields generally nonzero boundary integrals over the boundary ∂Ω. The Green’s
function is a solution of the adjoint differential equation chosen to yield the analog of
the representation (1.6) and to simplify any boundary integrals, see [20].

In this paper, we are concerned with the effects of perturbations on the data. If
the data f is perturbed by a smooth function δf , the perturbation in the value of the
solution δu(y) is given by

δu(y) =
∫

Ω

G(y, x)δf(x) dx, y ∈ Ω. (1.7)

Of course, we interpret (1.2) in a weak sense. Standard elliptic theory yields the
existence of the solution G of (1.2), and in a very few special cases, we can even find a
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formula for the Green’s function. For example, the Green’s function for the Dirichlet
problem for the Laplacian L = −∆ on the ball Ω of radius r centered at the origin is

G(y, x) =
1
4π

×
{
|y − x|−1 − r|y|−1

∣∣ r2y
|y|2 − x

∣∣−1
, y 6= 0,

|x|−1 − r−1, y = 0,

where |x| denotes the Euclidean norm of x. If δf has compact support supp(δf) ⊂ Ω,
then a simple geometrical argument shows that

|y − x| ≤
∣∣∣∣
r2y

|y|2 − x

∣∣∣∣ , x ∈ supp(δf), y ∈ Ω \ supp(δf).

We conclude that

|δu(y)| ≤
max |δf | × volume of supp(δf)× (

1 + r
|y|

)

4π × the distance from y to supp(δf)
,

and the effects of a local perturbation in the data decays with the distance to the
support of the perturbation.

In this paper, we explore the consequences of the decay of influence for the nu-
merical solution of elliptic problems. Our chief tool is an a posteriori error analysis
that involves an generalization of the notion of a Green’s function, which determines
the propagation and decay of influence of discretization error in a quantity of interest.
Using the generalized Green’s function, we define the notion of an effective domain
of influence. In order to achieve accuracy in the desired quantity, a mesh must be
sufficiently refined inside the effective domain of influence, while outside the effective
domain, the mesh may be relatively coarse. This turns out to be useful in terms of
computing efficiently.

We begin in Sec. 3 with a simple example of a finite element discretization of
Poisson’s equation in a disk. Using an a posteriori analysis together with formula for
the Green’s function, we show that the error in the energy norm in a small region
is affected relatively little by discretization errors committed away from the region.
This means we can compute a numerical solution with accurate values in a small
region using a mesh that is fine near the region and coarse away from the region. The
effective domain of influence is the region requiring the fine mesh.

In Sec. 4, we consider a general linear elliptic problem as well as the generalized
Green’s function corresponding to a particular quantity of interest. We explain how
the generalized Green’s function can be used in adaptive error control to produce an
efficiently refined mesh. Since, it is usually impossible to find an explicit formula for
the generalized Green’s function, we discuss its numerical approximation as well.

In Sec. 5, we explain how the problem of computing multiple quantities of interest
simultaneously arises naturally in practice and also when the data for the generalized
Green’s function does not have spatially localized support. In that case, we introduce
a partition of unity to localize the data for the generalized Green’s function and, in
effect, to decompose the solution process. In Sec. 6, we then explain how explicit
knowledge of the effective domains of influence corresponding to multiple quantities
of interest can be used to compute the solution efficiently.

The solution decomposition introduced in Sec. 5 raises the two issues of identifying
the effective domain of influence in terms of a given mesh and recognizing whether
two effective domains of influence are more-or-less distinct or not. We address these
issues in Sec. 7.
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Finally, we present several computational examples illustrating these ideas in
Sec. 8 and conclude in Sec. 9.

Acknowledgements. The authors gratefully thank James Stewart, Sandia Na-
tional Laboratories and Simon Tavener, Colorado State University for their comments.

2. Finite element discretization. We consider the second order linear elliptic
boundary value problem (1.1) with L defined by (1.4). We assume that Ω ⊂ Rd,
d = 2, 3, is a smooth or polygonal domain; a = (aij), where ai,j are continuous in Ω
for 1 ≤ i, j ≤ n and there is a a0 > 0 such that v>av ≥ a0 for all v ∈ Rd \ {0} and
x ∈ Ω; b = (bi) where bi is continuous in Ω; and finally c and f are continuous in Ω.

For a region Ω in Rd, d = 2, 3, we use L2(Ω) to denote the space of square inte-
grable functions with inner product, (u, v) = (u, v)Ω =

∫
Ω

u · v dx, and corresponding
norm ‖u‖ = ‖u‖Ω = (u, u)1/2, with the obvious interpretation for scalar or vector
valued functions. We use Hp(Ω) to denote the space of functions that are in L2(Ω)
and whose derivatives up to order p are in L2(Ω), with the usual norm. We use H1

0 (Ω)
to denote the subspace of H1(Ω) consisting of functions that are zero on the boundary
∂Ω of Ω. We also use the seminorm, |v|1,Ω = ‖∇v‖Ω.

We discretize (1.1) by applying a finite element method to the associated varia-
tional formulation:

Find u ∈ H1
0 (Ω) such that

A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) for all v ∈ H1
0 (Ω). (2.1)

To construct a finite element discretization, we form a piecewise polygonal ap-
proximation of ∂Ω whose nodes lie on ∂Ω and which is contained inside Ω. This forms
the boundary of a convex polygonal domain Ωh. We let Th denote a simplex triangu-
lation of Ωh that is locally quasi-uniform. We let hK denote the length of the longest
edge of K ∈ Th and define the piecewise constant mesh function h by h(x) = hK

for x ∈ K. We also use h to denote maxK hK . We choose a finite element solution
from the space Vh of functions that are continuous on Ω, piecewise linear on Ωh with
respect to Th, zero on the boundary ∂Ωh, and finally extended to be zero in the region
Ω \ Ωh. With this construction, we have Vh ⊂ H1

0 (Ω), and for smooth functions, the
error of interpolation into Vh is O(h2) in ‖ ‖, but not better (see [19]). The finite
element method is:

Compute U ∈ Vh such that A(U, v) = (f, v) for all v ∈ Vh. (2.2)

By standard results, we know that U exists and converges to u as h → 0.

3. The Green’s function and the error of a finite element solution of
Poisson’s equation in a disk. In this section, we analyze an example for which
there is a formula for the Green’s function. We let Ω denote the disk of radius r
centered at the origin in R2, and consider the Dirichlet problem (1.1) with L = −∆.
Suppose that ω is a small region contained in Ω located well away from ∂Ω and that
we wish to estimate the error e = u − U in the energy norm ‖e‖1,ω in ω. We use
the a posteriori error analysis introduced in [9] closely, varying only the data for the
adjoint problem and the way the bounds on the a posteriori estimate are written.
With H−1(ω) denoting the dual space to H1(ω) and ‖ ‖−1,ω the associated norm, we
can evaluate the norm variationally as

‖e‖1,ω = sup
ψ∈H−1(ω)
‖ψ‖−1,ω=1

(e, ψ). (3.1)
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The supremum is achieved for some ψ ∈ H−1(ω). We extend this ψ to H−1(Ω) by
setting it to zero in Ω \ ω. Let φ solve the adjoint, or dual, problem:

Find φ ∈ H1
0 (Ω) such that A(v, φ) = (v, ψ) for all v ∈ H1

0 (Ω).

We obtain

‖e‖1,ω = (e, ψ) = A(e, φ) =
∫

Ω

∇e · ∇φdx =
∫

Ω

fφ dx−
∫

Ω

∇U · ∇φdx.

Using the Galerkin orthogonality (2.2), we obtain the error representation formula,

‖e‖1,ω =
∫

Ω

f(φ− πhφ) dx−
∫

Ω

∇U · ∇(φ− πhφ) dx, (3.2)

where πhφ is an approximation of φ in Vh. The representation (3.2) is the finite
element-energy norm analog of the Green’s function representation (1.7) of the effect
of perturbing the data.

From (3.2), we obtain a standard a posteriori error bound in terms of the residual
RK and corresponding adjoint weights WK similar to the result in [9].

Theorem 3.1. The energy norm error of the finite element approximation (2.2)
on ω is bounded by

‖e‖1,ω ≤
∑

K∈Th

RK · WK =
∑

K∈Th

( ‖∆U + f‖K

‖h−1/2[∇U ]‖∂K/2

)
·
( ‖φ− πhφ‖K

‖h1/2(φ− πhφ)‖∂K

)
,

where n∂K denotes the outward normal to ∂K and [U ] denotes the “jump” in ∇U
across an edge of K in the direction of the normal n∂K . The residual is bounded by
a mesh-independent constant C in the sense that

RK ≤ C|K|1/2, (3.3)

where |K| denote the area of K ∈ Th.
The proof is given in the Appendix.

Clearly, the convergence of the Galerkin approximation is strongly influenced
by the dual weights φ − πhφ, i.e. by the approximation properties of Vh and the
smoothness of φ. This reflects the importance of the cancellation of errors inherent to
the Galerkin method. If we let G(x, y) denote the Green’s function for the Laplacian
on Ω, then

φ(x) =
∫

Ω

G(x, y)ψ(y) dy =
∫

ω

G(x, y)ψ(y) dy.

There are two cases to consider. For y ∈ ω, G(x, y) is a smooth function of x for
x ∈ Ω \ ω, and therefore so is φ. We assume that δ > 0 is small enough that
ωδ = {x ∈ Ω : dist (x, ω) ≤ δ} is contained in Ω, but large enough that for K ⊂ Ω\ωδ,
the union N (K) of K and the elements bordering K does not intersect ω, see Fig. 3.1.
For K ⊂ Ω \ ωδ, we let πh be the Lagrange nodal interpolant with respect to Th, so
that

‖φ− πhφ‖K ≤ C
∑

|α|=2

‖h2Dαφ‖K .
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∂Ω

∂ω

∂ωδ

Fig. 3.1. The choice of ωδ.

On the other hand, φ is only in H1(ω) in general. For K ∩ ωδ 6= ∅, we let πh be
the Scott-Zhang interpolant ([5]), for which

‖φ− πhφ‖K ≤ C|hφ|1,N (K),

for a mesh-independent constant C.
The second component of WK is bounded similarly after using a trace theorem,

‖h1/2(φ− πhφ)‖∂K ≤ ‖φ− πhφ‖1/2
N (K)‖h(φ− πhφ)‖1/2

1,N (K),

and the local quasi-uniformity of the mesh. We conclude,
Theorem 3.2. For any δ > 0 small enough that ωδ ⊂ Ω but large enough that

N (K) ∩ ω = ∅ for K ⊂ Ω \ ωδ, there is a constant C such that

‖e‖1,ω ≤
∑

K⊂Ω\ωδ

∑

|α|=2

C‖h2Dαφ‖K |K|1/2 +
∑

K∩ωδ 6=∅
C|hφ|1,N (K)|K|1/2. (3.4)

To understand the implications of (3.4) for mesh selection in an adaptive setting,
we further estimate the quantities on the right in (3.4). To handle the first sum, we
estimate the derivatives using the Green’s function as

‖Dα
x φ‖2K =

∫

K

(∫

ω

Dα
x G(x, y)ψ(y) dy

)2

dx ≤
∫

K

‖Dα
x G(x, ·)‖21,ω‖ψ‖2−1,ω dx

=
∑

|β|=1

∫

K

∫

ω

|Dα
x Dβ

y G(x, y)|2 dydx +
∫

K

∫

ω

|Dα
x G(x, y)|2 dydx.

The Green’s function for the Dirichlet problem for the Laplacian on the disk of radius
r is given by

G(y, x) =
1
2π

×





ln
(
|y|

∣∣ r2y

|y|2−x
∣∣

r|y−x|

)
, y 6= 0,

ln
(

r
|x|

)
, y = 0,

(3.5)

so there is a constant C such that

|Dα
x Dβ

y G(x, y)| ≤ C

|x− y|2 , x 6= y ∈ Ω, |α| = 2, |β| ≤ 1.

We conclude there is a constant C independent of the mesh such that for K ⊂ Ω \ωδ,

‖φ− πhφ‖K ≤ Ch2
K

dist (K, ω)2
|K|1/2.
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To handle the second sum on the right of (3.4), we use the basic stability estimate,

‖φ‖1,Ω ≤ ‖ψ‖−1,Ω = ‖ψ‖−1,ω = 1.

If we assume a uniform (small) size hK = h for elements such that K ∩ ωδ 6= ∅, we
obtain

∑

K∩ωδ 6=∅
ChK |φ|1,N (K) ≤ Ch‖φ‖1,Ω = Ch =

C

|ωδ|
∑

K∩ωδ 6=∅
h|K|.

We conclude
Theorem 3.3. For any δ > 0 small enough that ωδ ⊂ Ω but large enough that

N (K) ∩ ω = ∅ for K ⊂ Ω \ ωδ, there is a constant C such that

‖e‖1,ω ≤
∑

K⊂Ω\ωδ

Ch2
K

dist (K, ω)2
|K|+

∑

K∩ωδ 6=∅
Ch|K|. (3.6)

In common approaches to adaptive error control, a “Principle of Equidistribution”
shows that the element contributions to the error are approximately equal in a nearly
optimal mesh. In (3.6), the element indicators are Ch2

K/dist (K, ω)2 respectively Ch,
and in an optimal mesh,

h2
K

dist (K, ω)2
≈ h or hK ≈ h1/2 × dist (K, ω), K ⊂ Ω \ ωδ.

The decay of influence inherent to the Laplacian on the disk means that away
from the region ω where we estimate the norm, we can choose elements asymptotically
larger than the element size used in ωδ. Moreover, the elements can increase in size
as the distance to ωδ increases. In this problem, we call ωδ the effective domain of
influence for the error in the energy norm in ω. The effective domain of influence is
characterized by the requirement that the mesh size needed for accurate computation
is small in the effective domain relative to the size required in its complement.

4. An a posteriori error analysis using the generalized Green’s func-
tion. In this section, we explain how the a posteriori error analysis presented in
Sec. 3 can be extended to more general situations. Again, the analysis follows the
ideas introduced in [9] closely, with the main difference being the choice of data for
the adjoint problem.

Classical analysis of finite element methods tends to focus on estimating the error
in global norms, such as ‖ ‖L2(Ω) or the energy norm. In practice, however, this may
not be meaningful. Often, the practical goal for solving a differential equation is to
compute specific information from the solution. In that situation, the concern is the
error in the desired information, which may not have much to do with the error in
some global norm.

In contrast, the goal of the a posteriori error analysis conducted below is to
estimate the error in a quantity of interest that can be represented as (u, ψ), where
ψ is some distribution in a suitable Sobolev space. Some useful choices of ψ include:

• ψ = χω/|ω| gives the error in the average value over ω ⊂ Ω, where χω is the
characteristic function of ω.

• ψ = δx gives the error at a point x, ψ = δc gives the error in the average
over a curve c in Rd, d = 2, 3, and ψ = δs gives the error in the average over
a plane surface s in R3. We can obtain errors in derivatives using dipoles in
the same way.
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• ψ = χωe/‖e‖ω gives the error in the L2(ω) norm, ‖e‖ω. In practice, good
approximations can be obtained with Richardson extrapolation using finite
element solutions with different accuracy.

• ψ = R gives the error in the energy norm when b ≡ c ≡ 0 and R is the
residual defined weakly by (R, v) = (a∇U,∇v)− (f, v) for all v ∈ H1

0 (Ω).
Note that only some of these data ψ have spatially local support.

The a posteriori analysis that we employ suggests an extension of the classic
concept of a Green’s function, which is defined traditionally as the solution of the
adjoint problem posed with data δy corresponding to the value u(y). The natural
extension corresponds to the data ψ that gives the desired information of the solution
via (u, ψ). We define the generalized Green’s function φ as the solution of the weak
adjoint problem,

Find φ ∈ H1
0 (Ω) such that

A∗(v, φ) = (∇v, a∇φ)− (v, div (bφ)) + (v, cφ) = (v, ψ) for all v ∈ H1
0 (Ω), (4.1)

corresponding to the adjoint problem L∗(D, x)φ = ψ. Arguing as in Sec. 3,

(e, ψ) = (∇e, a∇φ)− (e, div (bφ)) + (e, cφ) = (a∇e,∇φ) + (b · ∇e, φ) + (ce, φ)
= (f, φ)− (a∇U,∇φ)− (b · ∇U, φ)− (cU, φ).

Letting πhφ denote an approximation of φ in Vh, using Galerkin orthogonality, we
conclude

Theorem 4.1. The error of the finite element solution (2.2) satisfies the error
representation,

(e, ψ) = (f, φ− πhφ)− (a∇U,∇(φ− πhφ))− (b · ∇U, φ− πhφ)− (cU, φ− πhφ), (4.2)

where the generalized Green’s function φ satisfies the adjoint problem (4.1) corre-
sponding to data ψ.

To obtain accurate error estimates, we use (4.2) directly by approximating φ using
a finite element method. Since φ − πhφ ∼ ∑

|α|=2 Dαφ where φ is smooth, we use
a high order finite element method. For example, good results are obtained using
the space V 2

h of continuous, piecewise quadratic functions with respect to Th. The
approximate generalized Green’s function is

Compute Φ ∈ V 2
h such that

A∗(v, Φ) = (∇v, a∇Φ)− (v, div (bΦ)) + (v, cΦ) = (v, ψ) for all v ∈ V 2
h . (4.3)

The corresponding approximate error representation is

(e, ψ) ≈ (f, Φ−πhΦ)− (a∇U,∇(Φ−πhΦ))− (b ·∇U,Φ−πhΦ)− (cU,Φ−πhΦ). (4.4)

The use of the adjoint problem to obtain information about stability in a pos-
teriori error analysis was introduced in [9]. The goal in that paper was to obtain
reasonably accurate a priori bounds on the adjoint weights, and the paper dealt with
the Poisson equation and the linear heat equation, for which this is possible. The idea
of using a numerical approximation of the generalized Green’s function to compute
very accurate a posteriori estimates was introduced experimentally in [6] and devel-
oped in the context of nonlinear ordinary differential equations in [10] and nonlinear
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partial differential equations in [13]. Since these early contributions, there has been
substantial contributions and applications, see [7, 14, 4, 15, 2].

For the purpose of adaptive error control, we rewrite (4.4) as a sum of element
contributions,

(e, ψ) ≈
∑

K∈Th

∫

K

(
(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)

)
dx. (4.5)

As in Sec. 3, we define the notion of an effective domain of influence through consid-
eration of adaptive meshing. An ideal goal of adaptive error control is to find a mesh
with a relatively small number of elements such that for a given tolerance TOL and
data ψ, |(e, ψ)| ≤ TOL . We use (4.5) to replace this with a practical mesh acceptance
criterion:

∣∣∣∣∣
∑

K∈Th

∫

K

(
(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)

)
dx

∣∣∣∣∣ ≤ TOL. (4.6)

The standard variational “Principle of Equidistribution” argument requires an esti-
mate consisting of an element-wise sum of positive quantities. Thus, if (4.6) is not
satisfied, then the mesh is refined in order to achieve the more conservative condition,

∑

K∈Th

∫

K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ dx ≤ TOL. (4.7)

Then, the element indicators on a nearly optimal mesh are roughly equal across the
elements. Depending on the argument, we may use

max
K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ . TOL

|Ω| , (4.8)

or
∫

K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ dx . TOL

M
, (4.9)

as element acceptance criteria, where M is the number of elements in Th. Computing
a mesh using these criteria is usually performed by a “compute-estimate-mark-refine”
adaptive strategy that begins with a coarse mesh and then refines those elements on
which (4.8) respectively (4.9) fail if (4.6) is violated.

An effective domain of influence corresponding to the data ψ is the region ωψ

in which the corresponding elements must be significantly smaller in size than the
elements used in the complement Ω \ ωψ in order to satisfy (4.6). Equivalently, if
Th comprises uniformly sized elements, then the effective domain of influence com-
prises those elements on which the element indicators (4.8), alternatively (4.9), are
substantially larger than those in the complement.

5. A decomposition of the solution. It is often the case that the goal of solv-
ing a differential equation is to compute several pieces of information. For example,
we might wish to compute values of the solution at a number of points and internal
boundaries. In this section, we explain how the problem of computing multiple quan-
tities of interest also arises naturally when the data ψ for the adjoint problem does
not have spatially localized support, such as an average or norm over the domain Ω.
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In general, we cannot expect a significant localizing effect from the decay of influ-
ence when the support of the data for the adjoint problem is not spatially localized.
Certainly, if the data ψ has the property that the corresponding adjoint weight φ−πhφ
has a more-or-less uniform size throughout Ω, then the degree of non-uniformity in
an adapted mesh depends largely on the spatial variation of the residual.

However, we can use a partition of unity to “localize” a problem in which supp (ψ)
does not have local support. We let {Ωi}N

i=1 be a finite open cover of Ω. A Lipschitz
partition of unity subordinate to {Ωi} is a collection of functions {pi}N

i=1 with the
properties

supp (pi) ⊂ Ωi, 1 ≤ i ≤ N,

N∑

i=1

pi(x) = 1, x ∈ Ω, (5.1)

pi is continuous on Ω and differentiable on Ωi, 1 ≤ i ≤ N, (5.2)
‖pi‖L∞(Ω) ≤ C and ‖∇pi‖L∞(Ωi) ≤ C/diam (Ωi), 1 ≤ i ≤ N, (5.3)

where C is a constant and diam (Ωi) is the diameter of Ωi. Several partitions of unity
satisfying (5.1)-(5.3) exist, see e.g. [16].

We use a partition of unity {pi} to write ψ ≡ ∑N
i=1 ψpi and consider the problem

of estimating the error in the localized information (U,ψpi) corresponding to data
ψi = ψpi for some 1 ≤ i ≤ N . Correspondingly, we obtain a finite element solution
via:

Compute Ûi ∈ V̂i such that A(Ûi, v) = (f, v) for all v ∈ V̂i, (5.4)

where V̂i is a space of continuous, piecewise linear functions on a locally quasi-uniform
simplex triangulation Ti of Ω obtained by (presumably local) refinement of an initial
coarse triangulation T0 of Ω. We emphasize that the space {V̂i} is globally defined and
the “localized” problem (5.4) is solved over the entire domain, though we hope that
(5.4) will require a locally refined mesh because the corresponding data has localized
support.

We can obtain a partition of unity approximation in the sense of Babuška and
Melenk [1] by defining the truly local approximations Ui = χiÛi, 1 ≤ i ≤ N , where
χi is the characteristic function of Ωi. The local approximation Ui is in the local
finite element space Vi = χiV̂i. The partition of unity approximation is defined by
Up =

∑N
i=1 Uipi, which is in the partition of unity finite element space

Vp =
N∑

i=1

Vipi =

{
N∑

i=1

vipi : vi ∈ Vi

}
.

The basic convergence results for this method are proved in [17] and [18] using ideas
of Babuška and Melenk [1] and Xu and Zhou [21]. The upshot is that the partition
of unity approximation recovers the full convergence properties of an approximation
of the original solution. Note that

Up =
N∑

i=1

Uipi =
N∑

i=1

χiÛipi ≡
N∑

i=1

Ûipi.

In words, the values of Ui or Ûi outside of Ωi are immaterial in forming the global
partition of unity approximation.
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To estimate the error in the localized information corresponding to ψi, we use the
generalized Green’s function satisfying the adjoint problem:

Find φi ∈ H1
0 (Ω) such that A∗(v, φi) = (v, ψi) for all v ∈ H1

0 (Ω). (5.5)

We expand the global error in the partition of unity approximation as

(u− Up, ψ) =
N∑

i=1

(
(u− Ui)pi, ψ

)
.

We estimate each summand on the right as

(
(u− Ui)pi, ψ

)
= (u− Ûi, ψi) = A∗(u− Ûi, φi)

= (f, φi)− (a∇Ûi,∇φi)− (b · ∇Ûi, φi)− (cÛi, φi).

Letting πiφi denote an approximation of φi in V̂i, using Galerkin orthogonality, we
conclude

Theorem 5.1. The error of the partition of unity finite element solution Up

satisfies the error representation,

(u− Up, ψ) =
N∑

i=1

(
(f, φi − πiφi)− (a∇Ûi,∇(φi − πiφi))− (b · ∇Ûi, φi − πiφi)

− (cÛi, φi − πiφi)
)
, (5.6)

where φi is the solution of the adjoint problem (5.5) and Ûi solves the finite element
problem (5.4) corresponding to the localized data ψi.

In practice, we compute approximate generalized Green’s functions via;

Compute Φi ∈ V 2
i such that A∗(v,Φi) = (v, ψi) for all v ∈ V 2

i , 1 ≤ i ≤ N, (5.7)

where V 2
i is the space of continuous, piecewise quadratic functions with respect to Ti.

The corresponding approximate error representation for each computation is

(u− Ûi, ψi) ≈ (f, Φi − πiΦi)− (a∇Ûi,∇(Φi − πiΦi))− (b · ∇Ûi, Φi − πiΦi)

− (cÛi, Φi − πiΦi). (5.8)

Note that the proof of Theorem 5.1 also implies that if the localized error satisfies

∣∣(u− Ûi, ψi

)∣∣ ≤ TOL
N

, 1 ≤ i ≤ N, (5.9)

then |(u − Up, ψ)| ≤ TOL. This justifies treating the N “localized” problems in-
dependently in terms of mesh refinement. Note however that (5.9) is based on the
pessimistic assumption that there is no cancellation of errors when combining the
“localized” solutions to get the full solution. Using TOL/N for the tolerance for the
“localized” solutions turns out to be much too pessimistic in practice. Finding more
reasonable tolerances is an interesting problem.
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6. Efficient computation of multiple quantities of interest using the ef-
fective domain of influence. In this section, we develop an algorithm for computing
multiple quantities of interest efficiently using knowledge of the effective domains of
influence of the corresponding Green’s functions. We assume that the information is
specified as {(U,ψi)}N

i=1 for a set of N functions {ψi}N
i=1. These data might arise as

particular goals or via localization through a partition of unity. We assume that the
goal is to compute the information associated to ψi so that the error is smaller than
a tolerance TOLi for 1 ≤ i ≤ N .

At least two approaches for this problem come to mind:
Approach 1: A Global Computation
Find one triangulation such that the corresponding finite element solution
satisfies |(e, ψi)| ≤ TOLi, for 1 ≤ i ≤ N .
Approach 2: A Decomposed Computation
Find N independent triangulations and finite element solutions Ui so that
the errors satisfy |(ei, ψi)| ≤ TOLi, for 1 ≤ i ≤ N .

Note that the Global Computation can be implemented with a straightforward mod-
ification of the standard adaptive strategy in which the N corresponding mesh ac-
ceptance criteria are checked on each element and if any of the N criteria fail, the
element is marked for refinement.

Generally, if the correlation, i.e., overlap, between the effective domains of influ-
ence associated to the N data {ψi} is relatively small and the effective domains of
influence are relatively small subsets of Ω, then each individual solution in the De-
composed Computation will require significantly fewer elements than the solution in
the Global Computation to achieve the desired accuracy. This can yield significant
computational advantage in terms of lowering the maximum memory requirement to
solve the problem. We provide some examples showing the possible gain in Sec. 8.

Decreasing the maximum memory required to solve a problem can be signifi-
cant in at least two situations. First, if the individual solutions in the Decomposed
Computation are computed in parallel, then the time needed for the Decomposed
Computation is determined roughly by the time it takes to solve for the solution re-
quiring the largest number of elements. If the individual solutions in the Decomposed
Computation require significantly fewer elements than the Global Computation, we
can expect to see significant speedup. Second, if we are solving in an environment
with limited memory capabilities, then decomposing a Global Computation requiring
a large number of elements into a set of significantly smaller computations can greatly
increase the accuracy of the solution that can be computed and/or decrease the time
of solution. In this case, the individual solutions in the Decomposed Computation
may be computed serially.

Vice versa, if the effective domains of influence associated to the N data {ψ}
have relatively large intersections, then the individual solutions in the Decomposed
Computation will require roughly the same number of elements as the solution for
the Global Computation. In this case, there is little to be gained in using the Decom-
posed Computation. In general, we can expect that some of the N effective domains
of influence associated to data {ψi} in the Decomposed Computation will correlate
significantly and the rest will have low correlation. We can optimize the use of re-
sources by combining computations for data whose associated domains of influence
have significant correlation and treating the rest independently.

An algorithm for the decomposition of the solution process using effective domains
of influence is:
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Algorithm 6.1. Determining the Solution Decomposition
1. Discretize Ω by an initial coarse triangulation T0 and compute an initial finite

element solution U0.
2. Estimate the error in each quantity (U0, ψi) by solving the N approximate

adjoint problems (5.7) and then using (5.8).
3. Using the element indicators associated to (5.8) to identify the effective do-

mains of influence for the data {ψi} in terms of the mesh T0 and significant
correlations between the effective domains of influence.

4. Decide on the number of approximate solutions to be computed and the subset
of information to be computed from each solution.

5. Compute the approximate solutions independently using adaptive error control
aimed at computing the specified quantity or quantities of interest accurately.

We address the key step 3. in the practical implementation of this algorithm in
Sec. 7.

7. Identifying significant correlations between effective domain of in-
fluences. The key issue in implementing Algorithm 6.1 is identifying the effective
domains of influence for the various generalized Green’s functions and recognizing
significant correlation, or overlap, between different effective domains of influence in
Step 3. In this section, we present a method to do this.

Recall from Sec. 4 that the mesh refinement decisions are based on the sizes of
the element indicators on element K,

Ei|K = max
K

∣∣(f − b · ∇Ûi − cÛi)(Φi − πiΦi)− a∇Ûi · ∇(Φi − πiΦi)
∣∣ (7.1)

or

Ei|K =
∫

K

∣∣(f − b · ∇Ûi − cÛi)(Φi − πiΦi)− a∇Ûi · ∇(Φi − πiΦi)
∣∣ dx, (7.2)

associated to the estimate (5.8). We let Ei(x) denote the piecewise constant element
error indicator function associated to data ψi with Ei(x) ≡ Ei|K for K ∈ T0.

Identifying the effective domain of influence associated to a data means finding a
set of elements on which the element error indicators are significantly larger than on
the complement, if such a dichotomy exists. Identifying significant correlation between
the effective domains of influence of two data entails showing that the effective domains
of influence have a significant number of elements in common.

To do this, we borrow techniques from pattern matching in signal processing.
Of particular importance is the (cross-)correlation of two functions f ∈ Lp(Ω) and
g ∈ Lq(Ω), defined as:

(f ◦ g)(y) =
∫

Ω

f(x)g(y + x) dx,

which is an L1(Ω) function. In template matching algorithms used in image and
signal processing, the correlations between an input signal and a library of signals
are computed and the closest match from the library is the signal containing the
“largest” correlation function in some measure. Since each correlation function is itself
a real-valued function of n variables, determining the goodness of a match requires
computing some real-valued correlation indicator c(f, g) of the correlation function
(f ◦ g), which is typically an Lp-norm.
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For the problem of recognizing correlation between effective domains of influence,
we treat the element error indicator functions {Ei} as signal functions. In this case,
if one signal matches the other signal only after a translation or rotation, we do not
consider the functions to be well correlated since this coincides with two primarily
disjoint effective domains of influence. Without translation or rotation, correlation of
Ei and Ej reduces to the L2-inner-product:

(Ei ◦ Ej)(0) =
∫

Ω

Ei(x)Ej(x) dx = (Ei, Ej)Ω.

The correlation function evaluated at u = 0 is just a real number, so that the corre-
lation indicator c(Ei, Ej) can be taken as c(Ei, Ej) = |(Ei ◦ Ej)(0)| = (Ei, Ej)Ω.

We mark the effective domain of influence associated to ψi as significantly corre-
lated to the domain of influence associated to ψj if two conditions hold:

1. The correlation of Ei and Ej is larger than a fixed fraction of the norm of Ej ,
or mathematically,

Correlation Ratio 1 =
c(Ei, Ej)
‖Ej‖2 ≥ γ1, (7.3)

for some fixed 0 ≤ γ1 ≤ 1. This means that the projection of Ei onto Ej is
sufficiently large.

2. The component of Ej orthogonal to Ei is smaller than a fixed fraction of the
norm of Ej , or mathematically,

Correlation Ratio 2 =

∥∥∥∥Ej − c(Ej , Ei)
‖Ei‖2 Ei

∥∥∥∥
‖Ej‖ ≤ γ2, (7.4)

for some fixed 0 ≤ γ2 ≤ 1. This corrects for the potential difficulties in the
mesh refinement decision that arise when Ei is much larger than Ej and the
corresponding computations are combined.

In general, both Correlation Ratios converge to a limit as the number of elements
increases. Moreover, the second Correlation Ratio varies relatively little as the mesh
density changes for all kinds of data. The first Correlation Ratio for data representing
a partition of unity decomposition also varies relatively little as the mesh density
changes. However, the first Correlation Ratio varies quite a bit on coarse meshes
when one of the data is an approximate delta function. We find that the determination
that two effective domains of influence are not closely correlated seems to be relatively
invariant with respect to the density of the mesh. However, the determination that
two effective domains of influence are correlated does vary with mesh density and
there is a mild tendency to combine computations that are more efficiently treated
independently if the correlation indicators are computed on very coarse meshes.

We emphasize that the initial identification of significant correlation between
effective domains of influence of various Green’s functions in a computation is carried
out on a coarse initial partition of the domain and hence is relatively inexpensive.

8. Computational examples. In this section, we present several computa-
tional examples illustrating and testing the ideas in this paper. In these experiments,
we solve various elliptic problems using adaptive mesh refinement to achieve a specified
accuracy in a specified set of quantities of interest first using a Global Computation
and then using a Decomposed Computation implemented using Algorithm 6.1. The
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results suggest that the individual solutions in the Decomposed Computation require
significantly fewer elements to achieve the desired accuracy than the Global Compu-
tation in a variety of situations.

Determining the overall gain in efficiency or capability due to reducing the number
of elements to achieve a desired accuracy is difficult. In general, the principle factors
determining the time it takes for a solution to be computed, including the solution of
the nonlinear system determining the approximation, the marking and refinement of
meshes in each refinement level, and, in a massively parallel setting, the IO of the data,
all scale super-linearly with the number of elements. Moreover, these factors depend
heavily on the algorithm, implementation, and machine. So, as a relatively universal
measure of the gain from using the Decomposed Computation, we report the Final
Element Ratio of the number of elements in the final mesh refinement level required
to achieve the specified accuracy in the specified quantities of interest in the Global
Computation to the maximum number of elements in the final mesh refinement
levels for the individual computations in the Decomposed Computation. Generally,
we expect the gain in efficiency to scale super-linearly with the Final Element Ratio.

All computations are performed using FETkLab [11]. This adaptive finite element
code, running under MATLAB, can solve general nonlinear elliptic systems on gen-
eral domains in two space dimensions. It implements the a posteriori error estimate
described in Sec. 4, allowing up to 16 simultaneous adjoint data ψi to be specified.
In the computations below, we use red-green quadrisection to refine elements, where
the elements marked for refinement are refined using quadrisection while the resulting
nonconforming border elements are fixed using bisection. To reduce over-refinement
in any one level, only those elements whose element indicators are larger than the
mean plus one standard deviation of all of the element indicators in that level are
refined.

8.1. Example 1. We test the partition of unity decomposition of a solution
aimed at computing information corresponding to data with global support. We
approximate u satisfying the Poisson problem with smooth data,

{
− 1

10π2 ∆u(x) = sin(πx) sin(πy), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(8.1)

on the domain Ω = [0, 8] × [0, 8]. The solution is u(x, y) = 5 sin(πx) sin(πy). We
solve this problem with the goal of controlling the error in the average value of u by
choosing ψ ≡ 1/|Ω| = 1/64.

For the Global Computation, we use a tolerance of 5% for the error in the average.
We begin with an initial mesh of 10 × 10 elements. After five refinement levels, we
end up with 3505 elements, achieving an error of .022. We plot both the initial and
final meshes in Fig. 8.1. We plot the numerical solution on the final mesh in Fig. 8.2.

Since we know the true solution, we can compute the actual average error and
so evaluate the accuracy of the estimate. Below, we list the estimates, errors, and
error/estimate ratios:

Level Elts. Estimate Error Ratio
1 100 .1567 .1534 .9786
2 211 .1157 .1224 1.058
3 585 .3063 .3078 1.005

Level Elts. Estimate Error Ratio
4 1309 .1159 .1166 1.006
5 3505 .02163 .02148 .9975

We see the excellent accuracy of the computed error estimate at all levels of mesh
refinement, which is typical with this approach to a posteriori error estimation.
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Initial Mesh Final Mesh

Fig. 8.1. Initial and final meshes for Example 1 with data ψ giving the average error.

Fig. 8.2. Numerical solutions on the initial (left) and final (right) meshes for Example 1 with
data ψ giving the average error.

Note, that in this example, we can also estimate the L2 error using ψ = e/‖e‖Ω.
The results are similarly satisfying. In the examples following, we do not have a
true solution available, so we continue to use the error in the average for the sake of
consistency.

The data ψ ≡ 1/64 is a natural candidate for localization using a partition of
unity. We begin with a partition with the four domains shown on the left in Fig. 8.3.
Introducing the corresponding partition of unity yields four data {ψ1, ψ2, ψ3, ψ4} cor-
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12

Fig. 8.3. Domains for the first (left) and second (right) partitions of unity used in Example 1.

responding to the regions indicated in Fig. 8.3.
In the first Decomposed Computation, we compute the four localized approxima-

tions {Û1, · · · , Û4} using the same initial mesh as shown in Fig. 8.1. Using γ1 = .9
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and γ2 = .5 in the conditions on the Correlation Ratios (7.3) and (7.4) indicates that
all four localized solutions should be computed independently.

For the first Decomposed Computation, we obtain acceptable results using the
tolerance of 5%. Details of the final computed solutions are listed below:

Data Level Elements Estimate
ψ1 3 618 .01242
ψ2 3 575 −.0009109
ψ3 3 618 .01242
ψ4 3 575 −.0009109

Combining these solutions yields a partition of unity solution Up with accuracy .023.
Using the Decomposed Computation yields a Final Element Ratio of 3505/618 ≈ 5.7.

We plot the final meshes for two of the computations in Fig. 8.4. We plot the

Final Mesh for U1

^
Final Mesh for U2

^

Fig. 8.4. Final meshes for Û1 and Û2 for Example 1 with a partition of unity on four domains.

generalized Green’s functions for the global average error and the localized solution
corresponding to ψ2 in Fig. 8.5. The decay of influence away from the support of ψ2

is clearly visible in the solution on the right.

Fig. 8.5. The generalized Green’s functions for the global average error and the localized solution
Û2 corresponding to ψ2 with a partition of unity on four domains.

Next, we perform a Decomposed Computation using a partition of unity on the
16 equal-sized regions shown on the right in Fig. 8.3. We again use an error tolerance
of 5% and start the localized computations with the same initial 10 × 10 mesh used
above. Computing the correlation ratios, we find these significant correlations:

E2 with E3 E5 with E8 E10 with E9 E13 with E14

E4 with E3 E7 with E8 E12 with E9 E15 with E14
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This suggests that we should see less gain on this partition. In order to obtain an
acceptable accuracy in the four sub-domains closest to the center, we have to use an
extra refinement level in the computation of the corresponding local solutions. The
error in the average of the resulting partition of unity solution is .011. If we use the
Decomposed Computation, the most intensive individual computations are those for
ψ3 and ψ9, which yields a Final Element Ratio of 3505/1371 ≈ 2.6. There is still a
significant gain over the Global Computation, but not as large as for the partition
with four sub-domains.

8.2. Example 2. We estimate the error in some point values and the average
value of u solving





−∇ · ((1.1 + sin(πx) sin(πy))∇u(x, y)
)

= −3 cos2(πx) + 4 cos2(πx) cos2(πx)
+2.2 sin(πx) sin(πy) + 2− 3 cos2(πy), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

(8.2)

where Ω = [0, 2] × [0, 2] and the exact solution is u(x, y) = sin(πx) sin(πy). We
compute the average error corresponding to ψ1 ≡ 1/4 and then four point values
corresponding to ψ2 ≈ δ(.5,.5), ψ3 ≈ δ(.5,1.5), ψ4 ≈ δ(1.5,1.5), and ψ5 ≈ δ(1.5,.5). We use

δ̂(cx,cy) =
400
π

e−400((x−cx)2+(y−cy)2)

to approximate the delta function δ(cx,cy).
In the Global Computation, we compute a mesh that gives all of the desired

information accurately using a tolerance of 2%. We begin with an 8 × 8 mesh. We
list the results below:

ψ1 ψ2 and ψ4 ψ3 and ψ5

Lev. Elt’s
1 64
2 201
3 763
4 2917

Est. Err. Rat.
.035 .035 1.0
.0088 .0089 1.0
.0027 .0027 1.0
.00044 .00044 1.0

Est. Err. Rat.
.090 .29 3.3
.042 .082 1.9
.020 .020 .99
.0050 .00504 1.0

Est. Err. Rat.
.24 .022 .091
.0024 .014 6.0
.0020 .0020 1.0
.0049 .00504 1.0

We obtain an acceptably accurate solution after four refinement levels using a mesh
with 2917 elements. Note that the estimates for the point values become very accurate
on mesh of moderate density and finer, which place sufficient elements near the center
of the corresponding delta functions.

We next perform a Decomposed Computation by solving for approximate solu-
tions {Û1, · · · , Û5} corresponding to each data {ψ1, · · · , ψ5} independently. Checking
the Correlation Ratios reveals no significant correlations between the independent
error indicators. To obtain final independent solutions that yield roughly the same
accuracy in the computed quantities as the solution of the Global Computation, we
use a tolerance of 2% and uniform initial meshes that are 7 × 7 for Û1; 9 × 9 for Û2

and Û4; and 12× 12 for Û3 and Û5. The final results for each computation are listed
below:

Data Level Elements Estimate
ψ1 3 409 −.0004699
ψ2 4 1037 −.007870
ψ3 2 281 −.005571
ψ4 4 1037 −.007870
ψ5 2 281 −.005571

The Final Element Ratio is 2917/1037 ≈ 2.8.
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8.3. Example 3. We consider a problem with diffusion that is nearly singular
at one point and that has strong convection, for which there is no precise analytic
information about the generalized Green’s function. We estimate the error in the
average value of u solving





−∇ · ((.05 + tanh
(
10(x− 5)2 + 10(y − 1)2

))∇u
)

+

(
−100

0

)
· ∇u = 1, (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

(8.3)

where Ω = [0, 10]×[0, 2]. The diffusion is 1 over most of Ω, but drops to .05 near (5, 1).
Because of the sign of the convection, we expect that perturbations to the solution at
a point with x-coordinate x0 will affect the solution’s values “downstream” for x < x0

most strongly. The Peclet number for this problem is Pe = 1000.
We begin the computations with an initial mesh of 80 elements. For the Global

Computation, we use an error tolerance of TOL = .04%. We list some details of the
computation below:

Level Elements Estimate
1 80 −.0005919
2 193 −.001595
3 394 −.0009039
4 828 −.0003820

Level Elements Estimate
5 1809 −.0001070
6 3849 −.00004073
7 9380 −.00001715
8 23989 −.000007553

We plot the final mesh in Fig. 8.6. The effects of the convection are clear in the

Fig. 8.6. Plot of the final mesh for Example 3 with data ψ giving the average error.

pattern of mesh refinement.
Next, we consider the partition of unity with 20 subdomains shown in Fig. 8.7.

Computing the Correlation Ratios, we find the significant correlations:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Fig. 8.7. Domains for the partition of unity used in Example 3.

E3 with E4 E6 with E7 E7 with E6 E9 with E8 E10 with E8, E9

E13 with E14 E16 with E17 E17 with E16 E19 with E18 E20 with E18, E19

We compute the localized solutions {Ûi} in the Decomposed Computation using two
tolerances. Details of the final computed solutions are listed below. The results are
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completely symmetric across y = 1.

Data TOL Lev. Elts. Est. ×10−7

ψ1 .04% 7 7334 −6.927
ψ2 .04% 7 8409 −5.986
ψ3 .04% 7 7839 −5.189
ψ4 .04% 7 7177 −5.306
ψ5 .04% 7 7301 −4.008

Data TOL Lev. Elts. Est. ×10−7

ψ6 .02% 7 6613 −2.471
ψ7 .02% 7 4396 −2.938
ψ8 .02% 7 4248 −1.656
ψ9 .02% 7 3506 −1.221
ψ10 .02% 7 1963 −.5550

The estimate on the total average error of Up is 7.24 × 10−6 and the Final Element
Ratio is 23909/8409 ≈ 2.9.

We show a sample of the final meshes for the Decomposed Computation in Fig. 8.8.
The effect of the convection is clearly visible in the pattern of mesh refinement. We

Final Mesh for U1
^

^

Final Mesh for U
5

^

Final Mesh for U
9

^

Fig. 8.8. Plots of the final meshes for the localized solutions Û1, Û5, and Û9 in Example 3.

can also see this in the graphs of the generalized Green’s functions. We plot a sample
in Fig. 8.9. In general, effective domains of influence may not be spatially compactly-
shaped. The upper plot in Fig. 8.8 shows this situation. The effective domain of
influence for the average value of the solution in the lower left corner of the domain,
close to the “outflow” boundary at x = 0, contains the immediate neighborhood of
the boundary along y = 0, a swath that cuts up from the center of the “outflow”
boundary through the center of the domain up to the upper boundary, and most of
the “inflow” boundary.

Given the significant correlations listed above, we combine some of the localized
computations by solving for localized solutions corresponding to summing the two of
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Fig. 8.9. Plots of the generalized Green’s functions corresponding to ψ11 (left) and ψ19 (right)
in Example 3.

the partition of unity data. We list details of the final computed solutions below:

Data TOL Level Elements Est. ×10−7

ψ3 + ψ4 .04% 7 8330 −9.8884
ψ6 + ψ7 .02% 7 5951 −5.897
ψ8 + ψ9 .02% 7 4406 −3.486
ψ9 + ψ10 .02% 7 3202 −2.243

The solutions for ψ3 + ψ4 and ψ8 + ψ9 use a few more elements than required for
either of the original localized solutions. The solutions for ψ6 + ψ7 and ψ9 + ψ10 use
less than the maximum required for the individual localized solutions.

8.4. Example 4. We consider a problem posed on a more complicated domain.
We estimate the error in the average value of u solving

{
− 1

π2 ∆u = 2 + 4e−5((x−.5)2+(y−2.5)2), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(8.4)

where Ω is the “square annulus” Ω = [0, 3]× [0, 3] \ [1, 2]× [1, 2] shown in Fig. 8.12.
We begin the computations with an initial mesh of 48 elements. For the Global

Computation, we use an error tolerance of TOL = 1%. We list some details of the
computation below:

Level Elements Estimate
1 48 −5.168
2 125 −1.584
3 380 −.6879

Level Elements Estimate
4 894 −.3029
5 2075 −.1435

We plot the initial and final meshes in Fig. 8.10. Note the expected refinement required
near the interior corners. We plot the final solution and generalized Green’s function
in Fig. 8.11.

Next, we consider the partition of unity with 8 subdomains shown in Fig. 8.12.
Checking the Correlation Ratios reveals no significant correlations. We obtain accept-
able results in the Decomposed Computation using the tolerance of 1%. Details of
the final computed solutions are listed below:

Data Level Elements Estimate
ψ1 5 1082 −.01935
ψ2 5 1101 −.01399
ψ3 5 1144 −.01540
ψ4 5 1107 −.01360

Data Level Elements Estimate
ψ5 5 1104 −.01436
ψ6 5 1110 −.01587
ψ7 5 1074 −.02529
ψ8 5 1098 −.01660

Combining these solutions yields a partition of unity solution Up with accuracy
−.1344. Using the Decomposed Computation yields a Final Element Ratio of ≈ 1.8.



22 D. ESTEP, M. HOLST, AND M. LARSON
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Fig. 8.10. Plots of the initial (left) and final (right) meshes for Example 4 with data ψ giving
the average error.
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Fig. 8.11. Plots of the final solution (left) and generalized Green’s function (right) for Example
4 with data ψ giving the average error.

We show a sample of the final meshes in Fig. 8.13 and a couple of the final generalized
Green’s functions in Fig. 8.14.

We also tried a partition of unity on a finer decomposition of Ω obtained by
dividing each sub-domain in the first partition into four equal squares. However, the
Final Element Ratio is only 1.09.

9. Conclusion. The a posteriori error analysis used in this paper takes into
account the behavior of the generalized Green’s function associated to the quantity
of interest to determine the global effects of stability. The cost of this approach can
be considerable, as it involves numerically solving the adjoint problem. One payoff is
accuracy of the estimate.

We have demonstrated that, in certain situations, consideration of the approxi-
mate generalized Green’s function can be used to improve the efficiency of the solution
process. This possibility arises when the goal is to compute multiple quantities of
interest and/or to compute quantities of interest that involve globally-supported in-
formation of the solution. In the latter case, we introduce a decomposition of solution
that localizes the global computation by replacing it by a set of problems involving
localized information. The decomposition allows recovery of the desired information
by combining the local solutions. By treating each computation of a quantity of inter-
est as an independent computation, we can reduce the maximum number of elements
required to achieve a specified accuracy in the specified quantities of interest. This
in turn can lead to significant computational gains in the settings of coarse-grained
parallelization and memory-constrained computing environments.
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Fig. 8.12. Domains for the partition of unity used in Example 4.
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Fig. 8.13. Plots of the final meshes for the localized solutions Û6 and Û7 in Example 4.

We have demonstrated that significant gains are possible in a variety of situations
using one analytic example and a series of computations. Moreover, the nature of
elliptic problems means that we can expect even larger reduction on problems posed
on three dimensional domains or complicated and large domains.

It is instructive to compare this decomposition of the solution with more tradi-
tional domain decomposition, which is a decomposition of the spatial domain. The
spatial domain is partitioned into compactly-shaped sub-domains on which approxi-
mate problems that are completely local to the sub-domains are solved. Because the
solution of the global problem generally involves transmission of information across
the entire domain, approximating the global solution by local decomposition solutions
involves iterations consisting of alternately passing information, e.g., through bound-
ary conditions, between the sub-domains coupled with solving the localized problems.
In contrast, we propose a decomposition of the solution operator associated to the
differential equation, not of the domain. In traditional domain decomposition, any
computational savings comes from solving problems that are truly localized. In the
proposed approach, any savings comes from the use of coarse discretizations in a ma-
jor part of the domain. It is important to note that effective domains of influence
need not be compactly-shaped, as in Example 3 in Sec. 8.

This work suggests a new approach to traditional domain decomposition in which
effective domains of influence are used instead of the traditional type of sub-domains.
We conjecture that relatively few iterations would be required to obtain an accu-
rate solution of the entire problem because of the reduced amount of information
that would need to be passed between sub-domains consisting of different domains of
influence.

Appendix. Proof. Following [9], to prove the a posteriori bound in Theorem
3.1, we break up the second integral on the right of (3.2) and use Green’s formula on
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Fig. 8.14. Plots of the generalized Green’s functions corresponding to ψ6 (left) and ψ7 (right)
for the partition of unity decomposition for Example 4.

each element K to get
∫

Ω

∇U · ∇(φ− πhφ) dx =
∑

K∈Th

−
∫

K

∆U(φ− πhφ) dx +
∫

∂K

∇U · n∂K(φ− πhφ) ds.

Upon summing over all elements K ∈ Th, the boundary integrals give two contri-
butions from each element edge, computed in opposite directions. The contribution
from a common edge σ1 ⊂ ∂K1 = σ2 ⊂ ∂K2, where K1,K2 ∈ Th, is

∫

σ1

∇U |K1 · nσ1(φ− πhφ) ds +
∫

σ2

∇U |K2 · nσ2(φ− πhφ) ds

= −
∫

σ1

[∇U ] · nσ1(φ− πhφ) ds.

When summing over the elements, we associate half of the common contribution
across a shared edge between two elements with each element and obtain an alternate
error representation,

‖e‖1,ω = −
∑

K∈Th

(∫

K

(∆U + f)(φ− πhφ) dx− 1
2

∫

∂K

[∇U ] · n∂K(φ− πhφ) ds

)
.

The a posteriori bound follows upon taking norms and estimating.
The bound (3.3) on the first component of RK is simple, ‖∆U + f‖K = ‖f‖K ≤

maxΩ |f | × |K|1/2. To bound the second component, consider an integral over the
common edge σ between two elements K1 and K2,

‖[∇U ]‖σ = ‖∇U |K2 −∇U |K1‖σ ≤ ‖∇U |K2 −∇u|σ‖σ + ‖∇u|σ −∇U |K1‖σ.

By a trace inequality, the standard energy norm convergence result, and a standard
elliptic regularity result, we have

‖∇U |Ki −∇u|σ‖σ ≤ ‖∇U −∇u‖1/2
Ki
‖∇U −∇u‖1/2

1,Ki
≤ C‖hu‖1/2

2,Ki
‖u‖1/2

2,Ki

≤ C‖h1/2f‖Ki ,

for i = 1, 2. The local quasi-uniformity of the mesh implies 1
2‖h−1/2[∇U ]‖∂K ≤

C maxΩ |f | × |K|1/2.
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