
THE NAVIER-STOKES-VOIGHT MODEL FOR IMAGE INPAINTING

M.A. EBRAHIMI, MICHAEL HOLST, AND EVELYN LUNASIN

ABSTRACT. In this paper we investigate the use of the 2D Navier-Stokes-Voight (NSV)
model for use in algorithms and explore its limits in the context of image inpainting. We
begin by giving a brief review of the work of Bertalmio et. al. in 2001 on exploiting an
analogy between the image intensity function for the image inpainting problem and the
stream function in 2D incompressible fluid. An approximate solution to the inpainting
problem was then obtained by numerically approximating the steady state solution of the
2D Navier-Stokes vorticity transport equation, and simultaneously solving the Poisson
problem between the vorticity and stream function, in the region to be inpainted. This
elegant approach allows one to produce an approximate solution to the image inpaint-
ing problem by using techniques from computational fluid dynamics (CFD). Recently,
the three-dimensional (3D) Navier-Stokes-Voight (NSV) model of viscoelastic fluid, was
suggested by Cao, et. al. as an inviscid regularization to the 3D Navier-Stokes equations.
We give some background on the NSV mathematical model, describe why it is a good
candidate sub-grid-scale turbulence model, and propose this model as an alternative for
image inpainting. We describe an implementation of inpainting use the NSV model, and
present numerical results comparing the resulting images when using the NSE and NSV
for inpainting. Our results show that the NSV model allows for a larger time step to
converge to the steady state solution, yielding a more efficient numerical process when
automating the inpainting process. We compare quality of the resulting images using
subjective measure (human evaluation) and objected measure (by calculating the peak
signal-to-noise ratio (PSNR), also known as peak signal-to-reconstructed measure). We
also present some new theoretical results based on energy methods comparing the suf-
ficient conditions for stability of the discretization scheme for the two model equations.
These theoretical and numerical studies shed some light on what can be expected from
this category of approach when automating the inpainting problem.
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1. INTRODUCTION

Image inpainting (inpainting for short) is the process of correcting a damaged im-
age by filling in the missing or altered data of an image with a better suited data for
that region. The idea is to fill in the damaged part of an image using the information
from surrounding areas. The goal of researchers in this area is to develop algorithms for
automatic digital inpainting which mimics the basic manual techniques used by a profes-
sional restorer. In 2001, Bertalmio, et. al. built a method based on an analogy between
image intensity and the stream function in a two-dimensional (2D) incompressible fluid.
The solution to the inpainting problem is then obtained by numerically approximating
the steady state solution of the 2D Navier-Stokes vorticity transport equation, for some
small viscosity, and simultaneously solving the Poisson problem between the vorticity
and stream function in the region to be inpainted. This approach enables automation of
the inpainting process by which inpainting is done using techniques from computational
fluid dynamics (CFD). However, difficulties which arise in CFD are also inherited.

For inpainting, the viscosity in the fluid model should be as small as possible to pre-
serve edges. However, CFD simulation of high Reynolds number flows (flows with very
small viscosity) requires very fine mesh in order to resolve the wide range of scales of
motion contributing to the dynamics of the flow. Sub-grid scale modeling is an alternative
that reduces the computational requirements when simulating turbulent flows. Recently,
the three-dimensional (3D) Navier-Stokes-Voight (NSV) model of viscoelastic fluid,

−α2∆ut + ut − ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
(1.1)

with initial condition u(x, 0) = uin(x) was suggested by Cao, et. al. as an inviscid
regularization to the 3D Navier-Stokes equations (NSE), where the length-scale α is
considered as the regularizing parameter, u is the velocity of the fluid with viscosity
ν > 0, p is the pressure and f is the body force. Note that when α = 0, we re-
cover the Navier-Stokes equations of motion. The system (1.1) was first introduced in
1973 by Oskolkov (see [30, 31]) as a model of a motion of linear, viscoelastic fluid.
In that setting, α is thought of as a length-scale parameter characterizing the elasticity
of the fluid. The 3D NSV model is shown to be globally well-posed [30, 31] and has
a finite-dimensional global attractor [21], making it an attractive sub-grid scale turbu-
lence model for numerical simulation. In the presence of physical boundaries, the above
regularization of the NSE is different in nature from other alpha regularization models
in [7, 8, 9, 10, 11, 13, 20, 24, 29] (see also Section 2.2), because it does not require
additional boundary conditions.

In this paper, we investigate a new approach which arises by combining the recent
technique in [4], which uses ideas from classical fluid dynamics to propagate isophote
lines, and recent results in [8, 22, 21], which studies the NSV model of viscoelastic fluid
as a candidate sub-grid scale turbulence model for purposes of numerical simulation.
Other PDEs have been proposed recently for example in [6, 34] which are possibly con-
sidered to be more efficient and perhaps easier to implement. Of particular interest to
us in this area is to explore different sub-grid scale turbulent models applied to image
inpainting. For the reasons outlined above, we have chosen this particular turbulence
model to study in the context of inpainting. Using this new model, we will study the
effect of the regularization parameter α (which one can think of as the filter width) on
quality and efficiency of inpainting automation. As part of our investigation of 2D NSV
for inpainting, we examine the differences between the 2D NSV model and the 2D NSE
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for inpainting. We look at semi-implicit forward-time upwind method for both NSV and
NSE and compare their stability and efficiency. We will refer to these numerical meth-
ods by their corresponding mathematical model: NSV and NSE numerical model. Our
numerical results show the NSV model, in comparison to NSE, yields a more stable solu-
tion to the inpainting process. That is, the NSV can be computed with larger time-steps,
reducing the computational expense in the automated inpainting procedure. However,
we also study the efficiency of the calculation of the model equations as well as the qual-
ity of the resulting images. We hope that these theoretical and numerical studies shed
some light on what can be expected from this category of approach when automating the
inpainting problem.

This paper is organized as follows. In Section 2 we review the work of Bertalmio et.
al. in [4] on exploiting an analogy between image intensity and the stream function in 2D
incompressible fluid. In Section 2.2 we give some background on the NSV mathematical
model, discuss why it is a good candidate sub-grid-scale turbulence model, and argue that
it makes for a plausible alternative model for inpainting. In Section 3 we describe our
implementation, and then present our numerical results, comparing the resulting images
when using the NSE and NSV for inpainting. The results show the NSV model allows for
larger time steps to converge to the steady state solution yielding a more efficient numeri-
cal process when automating the inpainting process. We compare quality of the resulting
images using subjective measure (human evaluation) and objected measure (by calculat-
ing the peak signal-to-noise ratio (PSNR), also known as peak signal-to-reconstructed
measure). We also give approximate operation counts needed by the two models to con-
verge to steady state solution for some fixed tolerance. In Section 4 we present some
supporting theoretical results. In Section 4.1, we summarize some existing results on the
dependence of uniqueness of the solution to the inpainting problem on the image at the
boundary, viscosity and on the size of the inpainting region. In Sections 4.2, 4.3, and
4.4, we establish some new results comparing the NSE and NSV in terms of stability
conditions. We describe the discretization under consideration, and following [33], de-
rive sufficient conditions for stability based on energy methods, establishing results that
support our numerical results. In Section 5 we summarize our results and outline some
future directions for this work.

2. IMAGE INPAINTING USING FLUID MODELS

In this section we present a summary of the approach in [4] for automating the inpaint-
ing process motivated by ideas from classical fluid dynamics. The idea is to propagate
isophote lines from the exterior into the region to be inpainted, which we denote as Ω,
using the 2D NSE for fluid dynamics. Throughout the paper, we denote the digital gray-
scale image by I , an m × n matrix with gray-scale value 0 to 255 at each pixel, and D
be the set of points (x, y) where I is defined. The value 0 represents black and the value
255 represents white. The values in between are different gray levels between black and
white.

To solve the inpainting problem, a common technique for restorers (see e.g.,[5]) is to
extend edges from the boundary of Ω, filling in the intra-region with the correct color
gradient. For example, in Figure 1, the direction of the isophotes (level lines of equal
color gradients) determines where the smoothness should propagate. To see how we can
automate this technique, we first introduce some basic mathematical concepts. Mathe-
matically, the direction of isophotes (level curves of equal gray-levels) can be represented
as ∇⊥I , which indicates the direction of zero change, and the smoothness of the image,
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FIGURE 1. This image shows the direction of the isophotes and where the
smoothness should propagate.

can be represented by ∆I , where ∆ is the usual Laplacian operator (see [4] and refer-
ences therein).

2.1. Inpainting Using the Navier-Stokes Equations. In [5], Bertalmio, et. al. pro-
posed that the solution I∗ can be approximated with the steady solution to the PDE of
the form

It = ∇⊥I · ∇∆I + ν∇ · (g(|∇I|)∇I), (2.1)
for small ν > 0, where the anisotropic diffusion is added to preserve the edges. We will
list below a few diffusivity functions g that are used in the literature. To be more precise,
the main goal is to find the solution I∗ such that the level curves of ∆I∗ almost parallel
to ∇⊥I∗, that is,

∇⊥I∗ · ∇∆I∗ ' 0. (2.2)
Bertalmio et. al. [4] exploited an analogy between the image of intensity function I and
the stream function in a 2D incompressible fluid. To see this, we recall the vorticity-
stream formulation of the 2D NSE,

∂ω

∂t
+ v · ∇ω = ν∆ω. (2.3)

Here v = ∇⊥Ψ is the velocity, where Ψ is the stream function and ω = ∇ × v is the
vorticity. If the viscosity ν is zero, the steady state solution for the stream-function Ψ in
2D satisfies

∇⊥Ψ · ∇∆Ψ = 0. (2.4)

The similarity between (2.2) and (2.4) allows one to develop methods for the inpaint-
ing problem using techniques from fluid dynamics. For the image inpainting problem,
instead of simulating (2.3), we compute the following numerically:

∂ω

∂t
+ v · ∇ω = ν∇ · (g(|∇ω|)∇ω), (2.5)

where g accounts for the anisotropic diffusion (edge preserving diffusion) to sharpen the
image. At each time step, we solve the Poisson equation:

∆I = ω, I|∂Ω = I0, (2.6)

where the boundary values I0 are derived from the values of I in D − Ω.
We recall that other PDEs have been proposed recently (cf. [6, 34]) which have been

shown to more efficient and perhaps easier to implement. Here, our main interest is to
explore different sub-grid scale turbulent models applied to image inpainting. The idea
is to test different sub-grid scale turbulence models instead of simulating the NSE (or the
equation in (2.5)) for purposes of finding the solution to the image inpainting problem
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for reduced computational requirements. Modifying the function g appropriately in (2.5)
can also add to the accuracy of preserving the edges and hence give a more accurate
image inpainting. In (2.5) we noted that for the image inpainting, the dissipation term in
the NSE was modified to accommodate anisotropic diffusion. If g = 1, we recover the
usual NSE with isotropic diffusion. There has been extensive analysis of various types of
anisotropic filtering, see for example [35]. In our numerical simulation of equation (2.5)
we have used several different diffusivity functions, namely,

g(s) =

[
1 +

( s
k2

)2
]−1

, g(s) = exp
(
− s

k2

)
, g(s) =

[
1 +

( s
k2

)]−1

,

where k is a predefined diffusion parameter. For the particular test cases performed,
we observed no significant difference in the numerical solution to the image inpainting
problem.
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FIGURE 2. This is an example of image inpainting resulting from the steady
state solution of the Navier-Stokes equations (with anisotropic diffusion to pre-
serve edges) with viscosity ν = 2. The time-step dt was set to .0001 to guarantee
convergence of the numerical solution.

Just as an illustration of the idea, we give a simple numerical experiment. In Fig-
ure 2.1a, we took the photo of Alexander Ebrahimi with a noise mask as a test case.
We run the Navier-Stokes equations (NSE) with anisotropic diffusion until its steady
state [4], and recovered the picture in Figure 2.1b. The iterative inpainting process writ-
ten in MATLAB took 24 iterations with a tolerance of 0.0001, in about 1.84 seconds on
a laptop computer with a Intel(R) 1.60 GHz CPU. The grid for the inpainting region is
49× 59 pixels.

2.2. Alpha Models and the Navier-Stokes-Voight (NSV) Equations. The NSV equa-
tions (1.1) were suggested as a regularization model for the 3D NSE, where the length-
scale α is considered as the regularizing parameter. The system (1.1) was first introduced
in 1973 by Oskolkov (see [30, 31]) as a model of a motion of linear, viscoelastic fluid.
In that setting, α is thought of as a length-scale parameter characterizing the elasticity
of the fluid. As noted in [22, 21], the addition of the term −α2∆ut regularizes the 3D
NSE which makes it globally well-posed [8, 30] and it changes the parabolic charac-
ter of the original Navier-Stokes equations where in this case one does not observe an
immediate smoothing of the solutions as usually expected in parabolic PDEs. Instead,
the equations behave like a damped hyperbolic system. Despite the damped hyperbolic
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behavior, it was shown in [22] that the solutions to the 3D NSV equations lying on the
global attractor posses a dissipation range. This property supports the claim that indeed,
the NSV equations can be used as a sub-grid scale turbulence model. This type of invis-
cid regularization (that is, a regularization technique without introducing extra viscous
or hyperviscous terms) has been used for 2D surface quasi-geostrophic (SQG) model
([23]), see also [3] for the Birkhoff-Rott equation, induced by the 2D Euler-α equations
for vortex sheet dynamics and [25] for the 3D Magnetohydrodynamics (MHD) equations.

There is an interesting literature behind the rediscovery of the NSV equation as a
turbulence model. It can be traced back from the early study of 3D Navier-Stokes-α
(NS-α) turbulence model in 1998 (also known as the viscous Camassa-Holm equations
(VCHE) and Lagrangian averaged Navier-Stokes-α (LANS-α) model, which can be writ-
ten as [15, 16, 19, 28]

∂tv − ν∆v − u×∇× v = −∇p+ f,

∇ · u = ∇ · v = 0,

v = (I − α2∆)u,

(2.7)

with u(x, 0) = uin(x). The parameter α can be viewed as the length scale associated
with filter width smoothing v to obtain u, with filter associated with the Green’s function
(Bessel potential) of the Helmholtz operator (I − α2∆). The system is supplemented
with periodic boundary conditions in a box [0, L]3.

The inviscid and unforced version of the 3D NS-α was introduced in [19] based on
the Hamilton variational principle subject to the incompressibility constraint div v = 0.
By adding the viscous term −ν∆v and the forcing f in an ad hoc fashion, the authors
in [9, 10, 11] and [16] obtain the NS-α system which they named, at the time, the vis-
cous Camassa-Holm equations (VCHE), also known as the Lagrangian averaged Navier-
Stokes-α model (LANS-α). In [9, 10, 11] it was found that steady state solutions of the
3D NS-α model compared well with averaged experimental data from turbulent flows
in channels and pipes for large Reynolds numbers. This led researchers [9, 10, 11] to
suggest that the NS-α model be used as a closure model for the Reynolds averaged equa-
tions. Since then, an entire family of ‘α’- models has been found which provide similar
successful comparison with empirical data – among these are the Clark-α model [7],
the Leray-α model [13], the modified Leray-α model [20] and the simplified Bardina
model [8, 24] (see also [29] for a family of similar models). We focus our attention on
the simplified Bardina model:

∂tv − ν∆v + (u · ∇)u = −∇p+ f,

∇ · u = ∇ · v = 0,

v = u− α2∆u,

(2.8)

with initial condition u(x, 0) = uin(x). The equation above was introduced and studied
in [24] supplemented with periodic boundary conditions. Notice that consistent with all
the other alpha models, the above system is the Navier-Stokes system of equations when
α = 0, i.e. u = v. In [8], the viscous and inviscid simplified Bardina models were
shown to be globally well-posed. It was also shown that the viscous simplified Bardina
model has a finite dimensional global attractor. In [8] it was observed that the inviscid
simplified Bardina model, is equivalent to the following modification of the 3D Euler



THE NAVIER-STOKES-VOIGHT MODEL FOR IMAGE INPAINTING 7

equations

−α2∆
∂u

∂t
+
∂u

∂t
+ (u · ∇)u+∇p = f,

∇ · u = 0,
(2.9)

with initial condition u(x, 0) = uin. In particular, it is equal to the Euler equations when
α = 0. Following this observation, Cao, et. al. [8] proposed the inviscid simplified
Bardina model as regularization of the 3D Euler equations that could be used for simu-
lations of 3D inviscid flows. Inspired by the above model, Cao, et. al then proposed the
following regularization of the 3D Navier-Stokes equations

−α2∆
∂u

∂t
+
∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
(2.10)

with initial condition u(x, 0) = uin, and subject to either periodic boundary condition or
the no-slip Dirichlet boundary condition u|∂Ω = 0. In the presence of physical bound-
aries the above regularization (2.10) of the Navier-Stokes equations, is different in nature
from any of the other alpha regularization models, because it does not require any addi-
tional boundary conditions.

This newest addition to the family of ‘α’ models was later on discovered to have
already existed in the literature known as the Navier-Stokes Voight equations but as a
model for viscoelastic fluids [30, 31]. As mentioned earlier, the α in that setting repre-
sents the elasticity of the fluid.

2.3. The Alpha Model as Sub-Grid-Scale Turbulence Model. In addition to the re-
markable match of explicit analytical steady state solutions of the alpha models to the
experimental data in channels and pipes, the validity of the first alpha model, namely the
NS-αmodel, as a sub-grid scale turbulence model was also tested numerically in [12, 28].
In the numerical simulation of the 3D NS-αmodel, the authors of [12, 17, 18, 28] showed
that the large scale (to be more specific, those scales of motion bigger than the length
scale α) features of a turbulent flow is captured. For scales of motion smaller than the
length scale α, the energy spectra decays faster in comparison to that of NSE. This nu-
merical observation has been justified analytically in [15]. In direct numerical simulation,
the fast decay of the energy spectra for scales of motion smaller than the supplied filter
length represents reduced grid requirements in simulating a flow. The numerical study
of [12] gives the same results, which also hold for the Leray-α model in [13, 17].

In [26] it was observed that the scaling exponent of the energy spectrum of the 2D
Navier-Stokes-α model (NS-α), for wave numbers k such that kα � 1, is k−7. A pos-
teriori, it was observed that this scaling corresponding to that predicted by assuming
that the dynamics for kα � 1 was governed by the characteristic time scale for flux of
the conserved enstrophy. This observation led researchers [26] to speculate that (in gen-
eral) the unknown scaling exponent for any α-model may be predicted by the dynamical
time scales for the dominant conserved quantity for that model in the regime kα � 1.
This speculation is verified to be correct in [27], where numerical simulations of the 2D
Leray-α model were presented.

2.4. Navier-Stokes-Voight for Image Inpainting. The main difference between NSV
and other alpha models is that it needs no additional boundary conditions in the presence
of physical boundaries. This makes NSV a natural alternative to NSE for inpainting.
In order to solve the inpainting problem we need to compute the solution to (2.4). We
approximate it with the steady state solutions of (2.5) with viscosity ν > 0. As noted
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in [4] the presence of viscosity is needed to have a unique steady-state solution and its
stability depends on how big or small is the viscosity. It is well-known that for very high
Reynolds number flows (ie very small viscosity ν), direct numerical simulation of the
NSE, requires computational resources which cannot be accessed easily. For purposes
of direct numerical simulations, the NSV equations were proposed as a sub-grid scale
turbulence model. Here we would like to investigate the effects of this regularized equa-
tions to image inpainting. Notice that the steady state solution to the NSV equations in
(1.1) matches the steady state solution to the NSE. We expect that by using the NSV,
the convergence to the steady state solution will be at a much faster rate reducing the
computational cost.

3. NUMERICAL COMPARISON NSE AND NSV FOR IMAGE INPAINTING

We simulate the inviscid 2D NSV with anisotropic diffusion (artificial viscosity)

− α2 ∂

∂t
∆ω +

∂ω

∂t
+ u · ∇ω = ν∇ · (g(|∇ω|)∇ω), (3.1)

where, ω = ∇ × u. Notice that when α = 0, we recover (2.5). Using a forward time
up-wind finite-difference scheme [2], we solve for ω(n+1)

i,j in the discretized equation:

(1− α2∆)ωn+1
i,j − νdt (∂x(gω

n+1
x ) + ∂y(gω

n+1
y )) = (1− α2∆)ωni,j

+ dt

[
−|un1 | sgn(un1 )

ωni+ sgn(un
1 ),j − ωni,j
dx

− |un2 | sgn(un2 )
ωni,j+ sgn(un

2 ) − ωni,j
dy

]
.

(3.2)

Our numerical experiments can be summarized into three categories: test for stability,
test for efficiency and test for quality. In section 3.1, we present some test cases showing
that for a given time stepping size, the gray-level blows up when the inpainting is done
using NSE while the inpainting using NSV produced a stable solution. We give theoret-
ical arguments in the appendix which in some sense support these numerical results. It
is worthwhile to mention that using an explicit numerical scheme for both the 2D NSE
and 2D NSV equations, one can see a nice advantage of using NSV instead of the NSE
in automating the inpainting problem in terms of CFL condition when we for simplicity
ignore the nonlinear term in the governing equations. In particular, the usual stiffness
of the NSE by discretizing the linear part explicitly is no longer present for NSV. In the
Appendix, we present rigorous argument for the stability condition when the nonlinear
term is taken into consideration. In section 3.2 we present some numerical studies using
NSE and NSV for different values of α. We look at the effect of the parameter α on
the quality of the resulting images and estimate the number of floating point operations
(FLOPS) needed to converge to steady state. We perform this numerical experiment for
two different time-steps. The quality of the resulting image is measured using PSNR
which will be defined in the next section.

3.1. Stability Behavior of NSE and NSV for Inpainting. In this section we will present
two test cases comparing the NSE and NSV both with anisotropic diffusion. The results
presented here suggests that for some fixed specified time-stepping size dt, the NSV
produced a stable solution in the image inpainting iteration process while the NSE with
anisotropic diffusion provided an unstable solution (gray-level blows up). A quick sum-
mary of results is provided in Table 1.

For each test cases, we fix the viscosity ν, tolerance tol, and the inpainting region Ω.
In Figure 3a, the inpainting region was computed in a grid (in pixels) of 10 × 10. For
dt = 0.1 and ν = 2, the NSE did not converge to the steady state solution due to large



THE NAVIER-STOKES-VOIGHT MODEL FOR IMAGE INPAINTING 9

TABLE 1. Comparison between NSE(α = 0) and NSV. ν = viscosity coefficient,
dt- size of time step, Ω (in pixels) = size of the inpainting region.

Figure α ν dt Ω Recovered image
3a 10× 10 Original image
3b 0 2 0.1 Does not converge
3c 0.5 0.1 Converges
3d 0 0.001 Converges
4a 64× 12 Original image
4b 0 2 0.1 Does not converge
4c 0.9 0.1 Converges
4d 0 0.01 Converges

time-stepping, as shown in Figure 3b. On the other hand, for the same dt = 0.1 and
viscosity ν = 2, the steady state solution to NSV with α = 0.5 gave a reasonable image
inpainting as shown in Figure 3c. In Figure 3d, we show the converged steady state
solution of NSE for a smaller dt = 0.001. Using a subjective measure, Figures 3c and
3d are comparable in quality but Figure 3d required a larger time-step to converge to the
steady state solution.
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FIGURE 3. A comparison between the NSE and NSV. Figure a: Original image
I with the inpainting region. Figure 3b: For step size dt = 0.1 the NSE with
anisotropic diffusion does not converge to its steady state solution. Figure 3c:
On the other hand the NSV with anisotropic diffusion does converge for α = 0.5
and dt = 0.1. Figure d: For a smaller step size dt = .001, the NSE with
anisotropic diffusion does converge.
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[ht] In Figure 4a, we choose a slightly different size of the inpainting region computed
in a grid (in pixels) of 64 × 12. For dt = 0.1 and ν = 2, the NSE did not converge to
the steady state solution due to large time-stepping, as shown in Figure 4b. Similar to
the first example, for the same dt = 0.1 and viscosity ν = 2, the steady state solution to
the NSV model, with α = 0.9, gave a reasonable result to the image inpainting problem
as shown in Figure 4c. In Figure 4d, we show the converged steady state solution of
NSE for a smaller dt = 0.01. Figures 4c and 4d are comparable in quality but Figure 4d
required a larger time-step to converge to the steady state solution.
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FIGURE 4. A comparison between the NSE and NSV. Figure a: Original image
I with the inpainting region. Figure4b: For step size dt = 0.1 the NSE with
anisotropic diffusion does not converge to its steady state solution. Figure 4c:
On the other hand the NSV with anisotropic diffusion does converge for α = 0.9
and dt = 0.1. Figure 4d: For a smaller step size dt = .001, the NSE with
anisotropic diffusion does converge.

3.2. Comparing the Efficiency of NSE and NSV for Inpainting. The NSV converges
to its steady state solution using a larger time-step or fewer number of iterations. How-
ever, it is not clear whether it is more efficient than the NSE because of the extra com-
putational cost, for the α term, for each iteration. In addition, we also need to compare
the quality of the resulting images. We do a FLOP counting for the two model equations
until it reached a steady state solution by using the Lightspeed MATLAB toolbox. We
approximated the FLOP by taking only in consideration the cost of matrix inversions.
We use the FLOP inv function which returns the number of FLOP necessary to invert an
n × n matrix. Note that this function returns the minimal number of FLOP for matrix
inversion, as though the best possible algorithm was used, no matter which method we
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are actually using. This should not be an issue for we use the same matrix inversion
technique when running the two model equations. Given that Ω is N × M , we take
n = max(N,M). We then normalize the FLOP count by dividing it by the number of
pixels in Ω. That is, the FLOP count is in units of number of FLOP per pixel. In addition,
we also compute the PSNR of the resulting images to give some measure of comparison
for the quality of the resulting images in addition to subjective measure. Let P (i, j) be
the original image that contains N by M pixels and I(i, j) the reconstructed image. The
pixel values range between black (0) and white (255). The PSNR in decibels (dB) are
computed as follows:

PSNR = 20 log10

(
255

RMSE

)
, where RMSE =

√∑
i

∑
j (P (i, j)− I(i, j))2

N ∗M
.

Comparison between two PSNR values for different reconstructed image gives one mea-

TABLE 2. Comparison between NSE(α = 0) and NSV. ν = viscosity coefficient,
dt- size of time step, FLOP count = FLOP count/(N*M), PSNR = Peak signal-
to-noise ratio.

FLOPS α dt = 0.001 dt = 0.0001

0 1.2375e4 9.0000e3
1/3 6.3753e3 5.6253e3
2/3 4.1252e3 3.7502e3
1 3.7502e3 3.3751e3
4/3 3.3751e3 3.7501e3

sure of quality. Reconstructed images with higher PSNR are considered better. (How-
ever, as frequently mentioned in the literature, PSNR may not equate with human percep-
tion; we will view PSNR as a reasonable metric here.) In any case, we now describe of
our results based on observations in Table 2 and Figure 5. In this numerical experiment,
we fix the value of ν = 2.

(1) Comparing NSE (α = 0) and NSV with α = 1/3 for both time steps dt = 0.001
and dt = 0.0001 in Table 5, we notice the number of FLOPS needed by NSV to
converge to steady state has been reduced to almost half of the FLOPS required
by the NSE to converge to its steady state solution.

(2) In Figure 5a, for smaller dt = 0.001, the PSNR of NSV (α = 1/2) is 45 dB and
is 1 point higher than that of NSE. In the case when dt = 0.0001, (Figure 5b) the
PSNR of NSE is 46.5 dB while the NSV for α = 1/3 has a PSNR value of 46.

(3) We also notice that increasing the time step from dt = 0.0001 to dt = 0.001 for
the NSE changes the quality of the picture dramatically under subjective measure.
In Figure 5, the PSNR for NSE is reduced from 46.5 dB to 44 dB when dt is
increased from 0.0001 to 0.001. In the case of NSV for α = 1/3, the change in
quality of the picture under subjective measure is unnoticeable. In particular, the
PSNR is changed from 46 dB to 45 dB as the dt is increased.

In summary, one can show that for some value of α > 0, NSV gives an inpainting
which is comparable to NSE but requiring less resources. It is then natural to ask if
one can determine the value of α a priori which will yield the smallest FLOP count
with maximum PSNR. Our preliminary studies suggest that choice of α may be image
dependent. For this reason, one may prefer the NSE to avoid finding the optimal α. This
suggests the development of schemes to adaptively determine optimized α.
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FIGURE 5. PSNR of NSE vs NSV (for various values of α). When dt = 0.001,
the PSNR of NSV (α=1/3) is higher than the NSE and requires only about half of
the number of FLOPS needed for the NSE to converge to its steady state solution.
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FIGURE 6. An example of image recovered for (a) NSE and (b) NSV (α = 1/3)
with dt = 0.0001.

4. SOME SUPPORTING THEORETICAL RESULTS

In this section we summarize some existing results, and then establish some new re-
sults that support the numerical results in the previous section. To this end, let Ω =
[0, 2πL]2. The NSE of viscous incompressible flows, subject to periodic boundary con-
dition on domain Ω, is written in the form:

∂tu− ν∆u+ (u · ∇)u = −∇p+ f,

∇ · u = 0,
(4.1)
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with initial condition u(x, 0) = uin(x), where u represents the unknown fluid veloc-
ity, p is the unknown pressure scalar, ν > 0 is the constant kinematic viscosity, The
given forcing function f is assumed here to be time independent and with mean zero:∫

Ω
f(x)dx = 0. The initial velocity uin is also assumed to have zero mean, hence also

u. Below we use will use standard notation in the context of the mathematical theory of
Navier-Stokes equations (NSE) (see, e.g., [14, 32, 33]). In particular,

(1) We denote by Lp and Hm the usual Lebesgue and Sobolev spaces, respectively.
And we denote by | · | and (·, ·) the L2−norm and L2−inner product, respectively.

(2) Let F be the set of all vector trigonometric polynomials with periodic domain Ω.
We then set

V =

{
φ ∈ F : ∇ · φ = 0 and

∫
Ω

φ(x) dx = 0

}
.

We set H and V to be the closures of V in L2 and H1, respectively. We note by
Rellich lemma (see, e.g., [1]) we have the V is compactly embedded in H .

(3) We denote by Pσ : L2 → H the Helmholtz-Leray orthogonal projection operator,
and by A = −Pσ∆ the Stokes operator subject to periodic boundary condition
with domain D(A) = (H2(Ω))2 ∩ V . We note that in the space-periodic case,

Au = −Pσ∆u = −∆u, for all u ∈ D(A),

with A−1 self-adjoint positive definite and compact from H into H (cf. [14, 33]).
Denote 0 < L−2 = λ1 ≤ λ2 ≤ . . . . . . the eigenvalues of A, repeated according
to their multiplicities.

(4) We recall the following two-dimensional Ladyzhenskaya inequality:

‖φ‖L4 ≤ c‖φ‖1/2

L2 ‖φ‖1/2

H1 , for every φ ∈ H1(Ω). (4.2)

Hereafter c will denote a generic dimensionless constant.
(5) For w1, w2 ∈ V , we define the bilinear form

B(w1, w2) = Pσ((w1 · ∇)w2). (4.3)

(6) By the Sobolev inequalities and compactness theorems, in two dimensions (or
any dimensions less than 4) we can define on V a trilinear continuous form b by
setting

b(u, v, w) = (B(u, v), w). (4.4)
If u, v ∈ V then

b(u, v, v) = 0. (4.5)
A special case we will need to establish for stability of 2D NSV is:

b(u, u,Au) = 0, for all u ∈ D(A). (4.6)

We finish by mentioning some useful inequalities for semi-discretizations. Let n be
the spatial dimension. The following are easily established (cf. [32, 33]):

‖uh‖2
h =

n∑
i,j=1

{
1

h2
j

∫
Ω

|uih

(
x+

~hj
2

)
− uih

(
x−

~hj
2

)
|2 dx

}

≤ 4

(
n∑
j=1

1

h2
j

)
|uh|2 = S(h)2|uh|2

(4.7)
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|∆huh|2 =
1

4

n∑
i,j=1

{
1

h2
j

∫
Ω

|uih
(
x+ ~hj

)
+ uih

(
x− ~hj

)
− 2uih(x)|2 dx

}

≤ 4

(
n∑
j=1

1

h2
j

)
‖uh‖2 = S(h)2‖uh‖2

(4.8)

4.1. Uniqueness of Steady State Solutions for Boundary Driven Flows. The results
in [4] is obtained by requiring the user to tune the parameters and related data in the
inpainting region to suit the particular problem at hand. In [2] while inpainting various
sample images, with similar inpainting region, viscosity ν and δt, it was found that cer-
tain set of parameters produced stable solutions in some images and unstable solutions
(gray-level blows up) in others. They have noted that certain characteristics of I near
∂Ω has some effect on the maximum allowable stable choice of δt. In this section we
will present analytical arguments on the dependence of the solution on the image at the
boundary, size of the inpainting region and viscosity. We give some hypothesis on how
the related data affects the convergence of the numerical solution. Note that the steady
state solution for the NSV is exactly equal to the steady state solution of NSE. The main
goal for this study is to determine the relationship between the viscosity, the image at the
boundary and the size of the inpainting region. For example, we would like to determine
for which size of the inpainting region and norm of I on the boundary, do we get a unique
steady state solution.

In [4], for the Navier-Stokes based inpainting, a discussion on the uniqueness of steady
state solution and its relevance to inpainting was presented. It was expected that Navier-
Stokes based inpainting may inherit some of the stability and uniqueness issues known
for incompressible fluids, although the effect of anisotropic diffusion is still unclear. The
dependence of uniqueness in the viscosity of the fluid is discussed in [4]. In this section,
we present some rigorous arguments following the work in [32, 33]), modified slightly to
interpret it in the context of image inpainting. In this section we show the dependence of
the uniqueness of steady solution on the viscosity, on the image at the boundary, and on
the size of the inpainting region. We start here by recalling some notation. The notation
used here are similar to those used in Section 2.2. Let us denote by Ω a bounded domain
of R2 of class C2 which is filled with an incompressible viscous fluid.

For the particular application of NSE and NSV in image inpainting, we supplement it
with Dirichlet boundary condition u = φ on ∂Ω, in which φ is independent of time. We
consider here the non-homogeneous steady state Navier-Stokes problem which coincides
with the steady state Navier-Stokes-Voight problem. Find u and p such that

− ν∆u+ (u · ∇)u+∇p = 0, in Ω, (4.9)
div u = 0, in Ω, (4.10)
u = φ on ∂Ω. (4.11)

We assume that φ is given as the trace on ∂Ω of a function Φ,

Φ ∈ H2(Ω), div Φ = 0,

∫
∂Ω

Φ · n ds = 0, (4.12)

where n is the unit outward normal in ∂Ω. The idea is the following: Given the physical
data φ defined on ∂Ω, we find an extension Φ of φ inside Ω satisfying (4.12). Under
the above hypothesis there exist at least one u ∈ H1 and distribution p on Ω satisfying
(4.9) (see [32, 33]) provided we choose the extension Φ ∈ La(Ω) of φ such that ‖Φ‖a is
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sufficiently small for a > 2 so that

|b(v,Φ, v)| ≤ ν

2
‖v‖2, for all v ∈ V. (4.13)

The construction of Φ satisfying (4.12) and (4.13) is presented in [33]. Knowing Φ and
knowing u is a solution of (4.9) then letting û = u− Φ, equation (4.9) is equivalent to

− ν∆û+ (û · ∇)û+ (û · ∇)Φ + (Φ · ∇)û+∇p = ν∆Φ− (Φ · ∇)Φ, in Ω, (4.14)
div û = 0, in Ω, (4.15)

û = 0 on ∂Ω. (4.16)

We now state a uniqueness result.

Theorem 4.1. Suppose that the norm of Φ in La(Ω) is sufficiently small so that

|b(v,Φ, v)| ≤ ν

2
‖v‖2, for all v ∈ V, (4.17)

and ν is sufficiently large so that

ν2 > 2Cλ
−1/2
1 ‖f‖, (4.18)

where f = ν∆Φ− B(Φ,Φ), λ1 is the smallest eigenvalue of the Stokes operator, and C
is constant, then (4.9) has a unique solution.

Proof. See [32, 33]. �

We can recast the theorem above, in the context of image inpainting, as the dependence
of the uniqueness of steady solution on the viscosity ν, on the image at the boundary,
which is related to Φ (since the stream function is related to the velocity field), and on
the size of the inpainting region which is related to λ−1/2.

4.2. Stability Analysis of the Scheme based on 2D NSE. In this section we are con-
cerned with a discussion on the discretization of the Navier Stokes equations in two
dimensions, subject to periodic boundary conditions, with basic domain Ω = [0, 2πL]2.
We study here a full discretization of the equations, both in space and time. We start with
a description of the approximating scheme and then proceed to the study of the stability
of this scheme. Our study here is based on the energy methods similar as in [33] which
leads to sufficient conditions for stability.

We now begin by defining a Galerkin approximation of the separable normed space
V . For reference we direct the reader to [33]. Let Vh, h ∈ N, be an increasing sequence
of finite-dimensional subspaces of V whose union is dense in V . For simplicity, assume
that

Vh ⊂ L2(Ω), for all h ∈ N. (4.19)
The space Vh is therefore equipped with two norms: the norm | · | induced by L2(Ω)
and its own norm ‖ · ‖h. Since Vh is finite dimensional then these two norms must be
equivalent. To be more precise we have with d0 independent of h,

|uh| ≤ d0‖uh‖h, for all uh ∈ Vh, (4.20)
‖uh‖h ≤ S(h)|uh|, for all uh ∈ Vh. (4.21)

Similarly, let D(A)h, h ∈ N, be an increasing sequence of finite-dimensional subspaces
of D(A) whose union is dense in D(A). For simplicity, assume that

D(A)h ⊂ Vh ⊂ L2(Ω), for all h ∈ N. (4.22)

The space D(A)h is therefore equipped with two norms: the norm ‖ · ‖h induced by Vh
and its own norm |Ah · |. Since D(A)h is finite dimensional normed space then these two
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norms must be equivalent. To be more precise we have with d2 independent of h,

‖uh‖h ≤ d2|Ahuh|, for all uh ∈ D(A)h, (4.23)
|Ahuh| ≤ cS(h)‖uh‖h, for all uh ∈ D(A)h. (4.24)

The constant S(h), which depends on h is sometimes called the stability constant since
it plays a major important role in obtaining necessary conditions on the stability of nu-
merical approximations. Usually S(h)→∞, as h→ 0.

Let there be given a trilinear continuous form on Vh, say bh(uh, vh, wh) which satisfies
the following:

(1) For all uh, vh ∈ Vh, both of the following hold:

bh(uh, vh, vh) = 0, (4.25)

|bh(uh, uh, vh)| ≤ d1‖uh‖2
h‖vh‖h ≤ d1S

2(h)|uh|‖uh‖h|vh|
≤ S1(h)|uh|‖uh‖h|vh|,

(4.26)

where at least,
S1(h) ≤ d1S

2(h). (4.27)
(2) For all uh, vh, wh ∈ Vh,

|bh(uh, vh, wh)| ≤ d1‖uh‖h‖vh‖h‖wh‖h. (4.28)

We divide the interval [0, T ] into N intervals of equal length k = T/N . We associate
with k and the function f , the elements f1, . . . , f

N :

fm =
1

k

∫ mk

(m−1)k

f(t) dt, m = 1, . . . , N ; fm ∈ L2(Ω). (4.29)

We denote by u0
h the orthogonal projection of the initial condition u0 onto D(A)h in

L2(Ω). When u0
h, . . . , u

m−1
h , are known, umh is the solution in D(A)h of

1

k
(umh − um−1

h , vh) + ν((um−1
h , vh))h + bh(u

m−1
h , um−1

h , vh) = (fm, vh) (4.30)

for all vh ∈ D(A)h.

Lemma 4.2. We assume that k and h satisfy

(1) kS2(h) ≤ 1− δ
4ν

for some δ, 0 < δ < 1 ,

(2) kS2(h) ≤ 1,

(3) kS2
1(h)S2(h) ≤ νδ

8d2
0d5

,

where d0 is as in (4.20) and

d5 = ‖u0‖2 + d2
0

(
d2

0 + 1− δ
νd2

0

)∫ T

0

|f(s)|2 ds, (4.31)

then, the umh given by (4.30) remain bounded in the following sense

‖umh ‖2
h ≤ d5 m = 1, . . . , N, (4.32)

k

r∑
m=1

|Ahum−1
h |2 ≤ 2d5

νδ
, (4.33)

N∑
m=1

‖umh − um−1
h ‖2

h ≤ 2

(
2− δ
δ

)
d5 + 4

∫ T

0

|f(s)|2 ds. (4.34)
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Proof. We replace by vh by Ahum−1
h in (4.30); due to the identity

2(a− b, b) = |a|2 − |b|2 − |a− b|2, (4.35)

we find
‖umh ‖2

h − ‖um−1
h ‖2

h − ‖umh − um−1
h ‖2

h + 2kν|Ahum−1
h |2 = 2k(fm, Ahu

m−1
h )

≤ 2kd0|fm||Ahum−1
h |

≤ kν|Ahum−1
h |2 + k

d2
0

ν
|fm|2.

(4.36)

We would like to majorize ‖umh −um−1
h ‖2

h in (4.36). Let vh = Ahu
m
h −Ahum−1

h in (4.30).
This gives

2‖umh − um−1
h ‖2

h = −2kν
(
Ahu

m−1
h , A(umh − um−1

h )
)

− 2kbh(u
m−1
h , um−1

h , Ahu
m
h − um−1

h )

+ 2k(fm, Ah(u
m
h − um−1

h )) =: I1 + I2 + I3.

(4.37)

We successively majorize I1, I2 and I3 using (4.21), (4.24), (4.26), and Cauchy-Schwarz
inequality

|I1| ≤ 2kν|Ahum−1
h ||Ah(umh − um−1

h )| (4.38)
≤ 2kνS(h)|Ahum−1

h |‖umh − um−1
h ‖h (4.39)

≤ 1

4
‖umh − um−1

h ‖2
h + 4k2ν2S2(h)|Ahum−1

h |2, (4.40)

|I2| ≤ 2kS1(h)|um−1
h |‖um−1

h ‖h|Ah(umh − um−1
h )| (4.41)

≤ 2kS(h)S1(h)|um−1
h |‖um−1

h ‖h‖umh um−1
h ‖h (4.42)

≤ 1

4
‖umh − um−1

h ‖2
h + 4k2d0S

2(h)S2
1(h)|um−1

h |2‖um−1
h ‖2

h (4.43)

≤ 1

4
‖umh − um−1

h ‖2
h + 4k2d2

0S
2(h)S2

1(h)|um−1
h |2|Ahum−1

h |2, (4.44)

|I3| ≤ 2k|fm||Ah(umh − um−1
h )| ≤ 2kS(h)|fm|‖umh − um−1

h ‖h (4.45)

≤ 1

4
‖umh − um−1

h ‖2
h + 4k2S2(h)|fm|. (4.46)

Denoting as Θ = 4k2d2
0S

2
1(h)S2(h)|um−1

h |2|Ahum−1
h |2, we have that (4.37) becomes

‖umh − um−1
h ‖2

h ≤ 4k2ν2S(h)|Ahum−1
h |2 + Θ ≤ kν(1− δ)|Ahum−1

h |2 + Θ. (4.47)

Going back to (4.36) we have

‖umh ‖2
h − ‖um−1

h ‖2
h + k(νδ − 4kd2

0S
2
1(h)S2(h)|um−1

h |2)|Ahum−1
h |2

≤ k

(
d2

0

ν
+ 4kS2(h)

)
|fm|2

≤ kd2
0

(
1

ν
+

1− δ
νd2

0

)
|fm|2

≤ kd2
0

(
d2

0 + 1− δ
νd2

0

)
|fm|2.

(4.48)
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Summing up (4.48) for m = 1 to r we get

‖urh‖2
h + k

r∑
m=1

(
νδ − 4kd2

0S
2
1(h)S2(h)|um−1

h |2
)
|Ahum−1

h |2 ≤ µr, (4.49)

where

µr = ‖u0
h‖2

h + kd2
0

(
d2

0 + 1− δ
νd2

0

) r∑
m=1

|fm|2.

Now using condition (iii) in Lemma 4.2, we will prove by the method of induction that

‖urh‖2
h +

kνδ

2

r∑
m=1

|Ahum−1
h |2 ≤ µr, r = 1 to N. (4.50)

First observe that

µr ≤ µN = ‖u0
h‖2 + kd2

0

(
d2

0 + 1− δ
νd2

0

) N∑
m−1

|fm|2

≤ ‖u0‖2 + d2
0

(
d2

0 + 1− δ
νd2

0

)∫ T

0

|f(s)|2 ds =: d5

(4.51)

To establish the basis for induction (r = 1) we write (4.48) for m = 1 and use (iii) in
Lemma 4.2 to get

‖u1
h‖2

h + kνδ|Ahu0
h|2 ≤ ‖u0

h‖2
h + 4k2d2

0S
2
1(h)S2(h)|u0

h|2|Ahu0
h|2

+ kd2
0

(
d2

0 + 1− δ
νd2

0

)
|f 1|2

≤ µ1 +
kνδ

2
|Ahu0

h|2.

(4.52)

Thus equation (4.50) for r = 1 is satisfied. By induction on r, assume that (4.50) holds
up to the order r − 1. Note that by the recurrence hypothesis

‖ur−1
h ‖

2
h ≤ µr−1 ≤ µN ≤ d5. (4.53)

Thus by (4.49), we have

‖urh‖2
h + kνδ

r∑
m=1

|Ahum−1
h |2 ≤ µr + 4k2d2

0S
2
1(h)S2(h)|um−1

h |2

≤ µr + 4k2d2
0S

2
1(h)S2(h)d5

r∑
m=1

|Ahum−1
h |2

≤ µ2 +
kνδ

2

r∑
m=1

|Ahum−1
h |2.

(4.54)

Hence,

‖urh‖2
h +

kνδ

2

r∑
m=1

|Ahum−1
h |2 ≤ µr. (4.55)
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This gives (4.33). It remains to prove (4.34). From (4.47), applying (ii) and (iii) from
Lemma 4.2, we get

‖umh − um−1
h ‖2

h ≤ k2ν2S(h)|Ahum−1
h |2 + 4k2d2

0S
2
1(h)S2(h)|um−1

h |2|Ahuhm− 1|2

+ 4k2S2(h)|fm|2

≤ kν(1− δ)|Ahum−1
h |2 + 4k

νδ

8d5

|um−1
h |2|Ahum−1

h |2 + 4k|fm|2

≤ kν(1− δ)|Ahum−1
h |2 + kνδ|Ahum−1

h |2 + 4k|fm|2

≤ kν(2− δ)|Ahum−1
h |2 + 4k|fm|2.

(4.56)
Summing it up over all m = 1 to N and using (4.33) we find (4.34). �

4.3. Stability Analysis of the Scheme based on 2D NSV. The preliminary setup is the
same as those of 2D NSE in the previous section. When u0

h, . . . , u
m−1
h , are known, umh is

the solution in D(A)h of

1

k
(umh − um−1

h , vh) +
α2

k

(
Ahu

m
h − Ahum−1

h , vh
)

+ ν((um−1
h , vh))h

+bh(u
m−1
h , um−1

h , vh) = (fm, vh),
(4.57)

for all vh ∈ Vh.

Lemma 4.3. We assume that k and h satisfy

(1) kS2(h) ≤ 1− δ
4ν

for some δ, 0 < δ < 1,

(2) kS2
1(h) ≤ νδ

8d6

,

d6 = |u0|2 + α2‖u0‖2 +

(
d2

0

ν
+ 4T

)∫ T

0

|f(s)|2 ds, (4.58)

and d0 is as in (4.20), then, the umh given by (4.57) remain bounded in the following sense

|umh |2 + α2‖umh ‖2
h ≤ d6 m = 1, . . . , N, (4.59)

k

r∑
m=1

‖um−1
h ‖2

h ≤
2d6

νδ
, (4.60)

N∑
m=1

(
|umh − um−1

h |2 + α2‖umh − um−1
h ‖2

h

)
≤
(

2− δ
δ

)
d6 + 4T

∫ T

0

|f(s)|2 ds. (4.61)

Proof. We replace by vh by um−1
h in (4.57); due to (4.20), (4.21),(4.35) and Cauchy-

Schwarz, we get

|umh |2 − |um−1
h |2 − |umh − um−1

h |2 + 2kν‖um−1
h ‖2

h

+ α2
(
‖umh ‖2

h − ‖um−1
h ‖2

h − ‖umh − um−1
h ‖2

h

)
= 2k(fm, Ahu

m−1
h )

≤ 2kd0|fm|‖um−1
h ‖h ≤ kν‖um−1

h ‖2
h + k

d2
0

ν
|fm|2,

(4.62)
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that is, (
|umh |2 − |um−1

h |2
)

+ α2
(
‖umh ‖2

h − ‖um−1
h ‖2

h

)
−
(
|umh − um−1

h |2 + α2‖umh − um−1
h ‖2

h

)
≤ k

d2
0

ν
|fm|2.

(4.63)

We would like to majorize the term
(
|umh − um−1

h |2 + α2‖umh − um−1
h ‖2

h

)
in (4.63). Let

vh = umh − um−1
h in (4.57). This gives

2|umh − um−1
h |2 + 2α2‖umh − um−1

h ‖2
h

= −2kν
((
um−1
h , umh − um−1

h

))
h

− 2kbh(u
m−1
h , um−1

h , umh − um−1
h ) + 2k(fm, umh − um−1

h ) =: I1 + I2 + I3.

(4.64)

We successively majorize I1, I2 and I3 using repeatedly (4.21), (4.26), and Cauchy-
Schwarz inequality and get exactly the estimates as in page 234 of [33]. Therefore (4.64)
becomes
|umh − um−1

h |2 + α2‖umh − um−1
h ‖2

h ≤ 4k2ν2S(h)‖um−1
h ‖2

h

+ 4k2S2
1(h)|um−1

h |2‖um−1
h ‖2

h + 4k2|fm|2

≤ kν(1− δ)‖um−1
h ‖2

h

+ 4k2S2
1(h)|um−1

h |2‖um−1
h ‖2

h + 4k2|fm|2.

(4.65)

Going back to (4.63) we have

|umh |2 − |um−1
h |2 + α2

(
‖umh ‖2

h − ‖um−1
h ‖2

h

)
+ k(νδ − 4kS2

1(h)|um−1
h |2)‖um−1

h ‖2
h

≤ k

(
d2

0

ν
+ 4k

)
|fm|2

≤ k

(
d2

0

ν
+ 4T

)
|fm|2 (since k ≤ T ).

(4.66)

Summing up (4.65) for m = 1 to r we get

|urh|2 + α2‖urh‖2
h + k

r∑
m=1

(
νδ − 4kS2

1(h)|um−1
h |2

)
‖um−1

h ‖2
h ≤ µr, (4.67)

where

µr = |u0
h|2 + α2‖u0

h‖2
h + k

(
d2

0

ν
+ 4T

) r∑
m=1

|fm|2.

Now using condition (ii) in Lemma 4.3, we will prove by the method of induction that

|urh|2 + α2‖urh‖2
h +

kνδ

2

r∑
m=1

‖um−1
h ‖2

h ≤ µr, r = 1 to N. (4.68)

First observe that

µr ≤ µN = |u0
h|2 + α2‖u0

h‖2 + k

(
d2

0

ν
+ 4T

) N∑
m−1

|fm|2 =: d6. (4.69)
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To establish the basis for induction (r = 1) we write (4.66) for m = 1 and use (ii) in
Lemma 4.3 to get

|u1
h|2 + α2‖u1

h‖2
h + kνδ‖u0

h‖2
h ≤ |u0

h|2 + α2‖u0
h‖2

h,

+ 4k2S2
1(h)|u0

h|2‖u0
h‖2

h + k

(
d2

0

ν
+ 4T

)
|f 1|2 ≤ µ1 +

kνδ

2
‖u0

h‖2
h.

(4.70)

Thus equation (4.68) for r = 1 is satisfied. By induction on r, assume that (4.68) holds
up to the order r − 1. Note that by the recurrence hypothesis

|ur−1
h |

2 + α2‖ur−1
h ‖

2
h ≤ µr−1 ≤ µN ≤ d6. (4.71)

Thus by (4.67), we have

|ur−1
h |

2 + α2‖urh‖2
h + kνδ

r∑
m=1

‖um−1
h ‖2

h ≤ µr + 4k2S2
1(h)|um−1

h |2|um−1
h |2

≤ µr + 4k2S2
1(h)d6

r∑
m=1

‖um−1
h ‖2

h

≤ µ2 +
kνδ

2

r∑
m=1

‖um−1
h ‖2

h.

(4.72)

Hence,

|urh|2 + α2‖urh‖2
h +

kνδ

2

r∑
m=1

‖um−1
h ‖2

h ≤ µr. (4.73)

This gives us (4.60). It remains to prove (4.61). From (4.65) and applying condition (i)
and (ii) from Lemma 4.3, we get

|umh − um−1
h |2 + α2‖umh − um−1

h ‖2
h ≤ kν(1− δ)‖um−1

h ‖2
h

+ 4k2S2
1(h)|um−1

h |2‖um−1
h ‖2

h + 4k2|fm|2

≤ kν

(
1− δ

2

)
‖um−1

h ‖2
h + 4kT |fm|2.

(4.74)

Summing it up over all m = 1 to N and using (4.60) we find (4.61). �

4.4. Stability Analysis of a Semi-Implicit Scheme based on 2D NSE. We present
here general results for stability analysis for the full NSE equations vorticity formula-
tion (implicit only on the linear part of the operator). The setup is as follows: When
u0
h, . . . , u

m−1
h , are known, umh is the solution in D(A)h of

1

k
(umh − um−1

h , vh) + ν((umh , vh))h + bh(u
m−1
h , um−1

h , vh) = (fm, vh), (4.75)

for all vh ∈ Vh.

Lemma 4.4. We assume that k and h satisfy

(1) kS4(h) ≤ d′,
(2) kS2

1(h)S2(h) ≤ d′′,

where d′ = and d′′ =, then, the umh given by (4.75) remain bounded in the following sense

‖umh ‖h ≤ d7, m = 0, . . . , N,

N∑
m=1

‖umh − um−1
h ‖2

h ≤ d7, k
N∑
m=1

|Ahumh |2 ≤ d7,
(4.76)
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where d7 is some constant depending only on the data d′ and d′′.

Proof. We let vh = Ahu
m
h in (4.75). Using the identity (4.35), we get

‖umh ‖2
h − ‖um−1

h ‖h + ‖umh − um−1
h ‖2

h + 2kν|Ahumh |2

= −2kbh
(
um−1
h , um−1

h , Ahu
m
h

)
+ 2k(fm, Ahu

m
h )

:= I1 + I2.

(4.77)

We would like bound the terms I1 and I2. The identity bh
(
um−1
h , um−1

h , Aum−1
h

)
= 0

together with (4.20) and (4.26) gives

|I1| ≤ 2kS1(h)|um−1
h |‖um−1

h ‖h|A(umh − um−1
h )|

≤ 2kS1(h)S(h)|um−1
h |‖um−1

h ‖h‖umh − um−1
h ‖h

≤ 2k2S2
1(h)S2(h)|um−1

h |2‖um−1
h ‖2

h +
1

2
‖umh − um−1

h ‖h,
(4.78)

and

|I2| ≤ 2kd0|fm||Ahumh | ≤ k

(
d2

0

ν
|fm|2 + ν|Aumh |2

)
. (4.79)

Hence,

‖umh ‖2
h − ‖um−1

h ‖2
h +

1

2
‖umh − um−1

h ‖2
h + kν|Ahumh |2

− 2k2S2
1(h)S2(h)|um−1

h |2‖um−1
h ‖2

h ≤
kd2

0

ν
|fm|2.

(4.80)

We sum up these inequalities for m = 1 to r, to get

‖urh‖2
h +

1

2

r∑
m=1

‖umh − um−1
h ‖2

h + kν

r∑
m=1

|Ahumh |2

− 2k2S2
1(h)S2(h)

r∑
m=2

|um−1
h |2‖um−1

h ‖2
h ≤ λr,

(4.81)

where,

λr = ‖u0
h‖h =

kd2
0

ν

r∑
m=1

|fm|2 + 2k2S2
1(h)S2(h)|u0

h|2‖u0
h‖2

h. (4.82)

We assume that
2kd0d2S

2
1(h)S2(h)λN ≤ ν − δ, (4.83)

for some fixed δ, 0 ≤ δ ≤ ν. If this holds then one can show recursively that

‖urh‖2
h +

1

2

r∑
m−1

‖umh − um−1
h ‖2

h + kδ
r∑

m=1

|Ahumh |2 ≤ λr, r = 1, . . . , N. (4.84)

Clearly, letting m = 1 in (4.80) shows that (4.84) is true for r = 1. Let us assume that
(4.84) is valid up to the order r − 1, we want to show that (4.84) is valid for r. Observe
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that by the inductive hypothesis ‖umh ‖2
h ≤ λm ≤ λN . Hence, by the condition (4.83)

2k2S2
1(h)S2(h)

r∑
m=2

|um−1
h |‖um−1

h ‖2
h ≤ 2d2k

2S2
1(h)S2(h)

r∑
m=2

|um−1
h ||Ahum−1

h |2

≤ 2d0d2k
2S2

1(h)S2(h)λN

r∑
m−1

|Ahum−1
h |2

≤ k(ν − δ)
r∑

m=1

|Ahum−1
h |2.

(4.85)

We apply this upper bound into (4.81), we get (4.84) for the integer r. To complete the
proof it suffices to show that conditions (i) and (ii) in Lemma 4.4 ensure the condition
(4.83). We recall that since ‖u0

h‖ ≤ ‖u0‖ for all h and

k

N∑
m=1

|fm|2 ≤
∫ T

0

|f(s)|2 ds,

then,

λN ≤ ‖u0‖2 +
d2

0

ν

∫ T

0

||f(s)|2 ds+ 2k2S2
1(h)S2(h)|u0|2‖u0

h‖2
h

≤ d10 + 2k2S2
1(h)S2(h)|u0|2‖u0‖2.

(4.86)

Hence, if kS2
1S

2(h) ≤ d′, then

2kd0d2S
2
1(h)S2(h)λN ≤ 2d′(d10 + 2d′d′′|u0|2‖u0‖2) ≤ ν − δ, (4.87)

provided d′, d′′ are sufficiently small. �

5. SUMMARY

The NSV model of viscoelastic incompressible fluid has been proposed as a regular-
ization of the 3D NSE for purposes of direct numerical simulation. In this work, we have
shown one of the benefits of using the 2D NSV turbulence model for small regularization
parameter α, instead of the 2D NSE to reduce computational expense when automating
the inpainting process. To be more precise, one can find a parameter α > 0 in which
the 2D NSV gives a solution to the image inpainting problem comparable (both using
subjective and objective measure) to that of the solution of the 2D NSE but only requires
a time step much larger in comparison to that of 2D NSE. That is, the 2D NSV converge
to the steady state solution with a much larger time step and hence solves the image in-
painting problem using less computational resources. In the numerical experiments, we
found that after accounting for the relative costs of the two methods, the 2D NSV gives
a solution to the inpainting problem which matches the quality of the image produced by
when NSE is used but using less resources.

In future work we would like to investigate other PDEs which can be used instead of
the 2D NSE and 2D NSV when solving the inpainting process. In particular, we would
like to use a PDE to solve the inpainting problem without the addition of anisotropic
diffusion. The dependence of the stability of solutions on certain characteristics of the
image near the boundary is also of major interest in this topic. We would like to in-
vestigate the dependence of the uniqueness of steady solution on the viscosity, on the
image at the boundary, and on the size of the inpainting region. We have presented some
basic results on the uniqueness of steady state solution of the 2D steady state applied in
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the context of image inpainting. We would like to do further numerical experiments to
verify these hypothesis.
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