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ABSTRACT. The conformal formulation of the Einstein constraint equations has been
studied intensively since the modern version of the conformal method was first pub-
lished in the early 1970s. Proofs of existence and uniqueness of solutions were limited
to the constant mean curvature (CMC) case through the early 90s, with analogous results
for the near-CMC case beginning to appear thereafter. In the last decade, there has been
some limited progress towards understanding the properties of the conformal method
for far-from-CMC solutions as well. Although it was initially conceivable that that these
far-from-CMC results would lead to a solution theory for the non-CMC case that would
mirror the good properties of the CMC and near-CMC cases, examples of bifurcations
and of nonexistence of solutions have been since discovered. Nevertheless, the general
properties of the conformal method for far-from-CMC data remain unknown. In this
article we apply analytic and numerical continuation techniques to the study of the con-
formal method, in an attempt to give some insight into what the solution behavior is in
the far-from-CMC case in various scenarios.
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1. INTRODUCTION

In general relativity spacetime is described by by a Lorentzian manifold (M, g), that
is, a four-dimensional differentiable manifoldM endowed with a non-degenerate, sym-
metric rank (0, 2) tensor field g onM whose signature is (−1, 1, 1, 1). The space-time
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(M, g) is required to satisfy the Einstein field equations,

Ricg −
1

2
Rg =

8πG

c4
T , (1.1)

where Ricg is the Ricci curvature tensor, Rg its scalar (R := Ricabg
ab), and T is the

stress energy-momentum tensor of any matter fields present. Once a time function has
been chosen, space-time is foliated by space-like constant-time hypersurfaces Σt and
evolution and constraint equations are obtained by considering the projections of the
field equations (1.1) in directions tangent and orthogonal to the space-like hypersurfaces.
The evolution equations can be cast as a first-order system for the first and second fun-
damental forms associated with the time slices, namely the three-metric ĝ and extrinsic
curvature k̂. With ĝ and k̂ symmetric tensors, this represents 12 equations for the 12
components of ĝ and k̂, with the equations being first-order in time and second-order in
space.

The four constraint equations on the 12 degrees of freedom are

Rg + τ 2 − |k̂|2g = 0, (1.2)

div k̂ − dτ = 0 (1.3)

withRg the scalar curvature of g and τ = ĝij k̂ij the trace of the extrinsic curvature. These
equations are direct consequences of the Gauss-Codazzi-Mainardi conditions which are
required for an 3-manifold to arise as a submanifold of a 4-manifold. If matter and/or
energy sources are present, then the 12 evolution equations and the four constraint equa-
tions (1.2)–(1.3) contain additional terms. The constraint equations are obviously under-
determined as a stand-alone system of equations for the initial data, in that they fix only
some part of the 12 degrees of freedom. One must therefore make a choice of which
parts of the initial data one wishes to fix, and which parts are to be determined by the
constraint equations (1.2)–(1.3). The conformal method, described in the next section,
is an approach to parameterizing the initial data so that the constraint equations for the
remaining degrees of freedom can potentially be uniquely solved. It provides an effec-
tive parameterization of the constant-mean-curvature (CMC) solutions of the constraint
equations, and is generally effective for near-constant mean curvatures as well. There has
been recent progress in determining its properties in the far-from-CMC setting, and what
little we know indicates the situation is somewhat complex. The aim of this paper is to
bring numerical methods, and numerical bifurcation theory specifically, to yield further
insight into what can be expected for the conformal method when applied to far-from-
CMC initial data.

1.1. The Conformal Method. The conformal method was proposed by Lichnerowicz
in 1944 [37], and then substantially generalized in the 1970s by York [49], among other
authors. The method is based on a splitting of the initial data ĝ (a Riemannian metric on
a space-like hypersurface Σt) and k̂ (the extrinsic curvature of the hypersurface Σt) into
eight freely specifiable pieces, with four remaining pieces to be determined by solving
the four constraint equations.

The pieces of the initial data that are specified as part of the method are called the seed
data and are comprised of a spatial background metric g on Σt, defined up to multiplica-
tion by a conformal factor (five free functions), a positive function N (a so-called densi-
tized lapse), a function τ , and a transverse, traceless (TT) tensor σij (effectively two free
functions, as it is symmetric, trace-free and divergence free). The two remaining pieces
of the initial data to be determined by the constraints are a scalar conformal factor ϕ > 0
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and a vector potential W . The full spatial metric ĝ and the extrinsic curvature k̂ are then
recovered from ϕ, W , and the eight specified functions from the expressions: ĝ = ϕ4g,

and k̂ = ϕ−2
[
σ + 1

2N
(ckW )

]
+ 1

3
ϕ4τg. This transformation has been engineered so that

the constraints (1.2)–(1.3) reduce to coupled PDEs for ϕ and W with standard elliptic
operators as their principle parts; in three spatial dimensions the equations are

−8∆ϕ+Rϕ+
2

3
τ 2ϕ5 −

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 ϕ−7 = 0, (1.4)

− div

[
1

2N
LW

]
+

2

3
ϕ6d τ = 0. (1.5)

Here, ∆ is the Laplace-Beltrami operator with respect to the background metric g, L
denotes the conformal Killing operator (LW )ij = ∇iWj + ∇jWi − 2

3
(∇kW

k)gij , and
τ = k̂ij ĝ

ij is again the trace of the extrinsic curvature. We note that the densitized lapse
N is more commonly associated with the conformal thin-sandwich method[50], but the
equivalence of that method with the standard conformal method was demonstrated in
[43]. In particular, the conformal method represents a family of parameterizations of the
constraint equations within a given conformal class of metric, one for each choice of N
(or one for each choice of metric representing the conformal class). A detailed overview
of the conformal method, and its variations, may be found in the 2004 survey [3].

When τ is constant (i.e. when the Cauchy surface Σt has constant mean curvature),
then the term in equation (1.5) involving d τ vanishes, and the two equations decouple.
The only solutions of (1.5) have LW = 0, and it remains only to solve the Lichnerowicz
equation (1.4) with LW = 0; a similar decoupling occurs for non-vacuum seed data
data. Initial work starting with [47] focused on the CMC case of the conformal method,
and a full description of the parameterization on compact manifolds was achieved in
[31]. The theory depends on on the Yamabe invariant Y (g) of the seed metric1, and is
summarized in Table 1.

TABLE 1. Constant mean curvature (CMC) solvability [31]

τ = 0, σ ≡ 0 τ = 0, σ 6≡ 0 τ 6= 0, σ ≡ 0 τ 6= 0, σ 6≡ 0
Y (g) > 0 None Unique None Unique
Y (g) = 0 Unique up to homotopy None None Unique
Y (g) < 0 None None Unique Unique

The CMC conformal method is also well understood in other asymptotic geometries
(e.g, asymptotically Euclidean [9][39], asymptotically hyperbolic [2]). It has been used
in a number of applications, including results for open manifolds with interior “black
hole” boundary models [18, 39], results allowing for “rough” data [40, 7], and numerical
relativity (e.g. [15, 14])

Investigations of near-CMC seed data began to appear in the mid-90s, and we point to
[32], [1] and [33] which developed the near-CMC theory2 on compact manifolds sum-
marized in Table 2.

1Recall that Y (g) > 0 if and only if g has a conformally related metric with positive scalar curvature,
and similarly for Y (g) = 0 and Y (g) < 0.

2The specific conditions characterizing near-CMC seed data depend on the context but all involve con-
trol on dτ/τ .
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TABLE 2. Near-CMC Solvability [32, 1, 33]

τ 6≡ 0, σ ≡ 0 τ 6≡ 0, σ 6≡ 0
Y (g) > 0 None Unique
Y (g) = 0 None Unique
Y (g) < 0 Unique Unique

The existence results in this table require an additional hypothesis that the background
metric not have any conformal Killing fields, and it has been recently shown [25] that
in some cases this hypothesis is necessary. Conformal Killing fields form the kernel
of the self-adjoint elliptic operator appearing in equation (1.5), and their presence in-
terferes with iterative approaches to obtaining solutions; nearly all theorems concerning
non-CMC seed data for the conformal method assume there are no conformal Killing
fields. Extensions of the near-CMC theory are available in other asymptotic geometries
(asymptotically Euclidean [9], asymptotically hyperbolic [34]), and it has been applied
in numerical relativity [16, 5, 24, 48].

1.2. Far-from-CMC results for the conformal method. In the last decade, a handful
of results have appeared concerning the conformal method in the far-from CMC setting.
They provide the main context needed to understand our numerical experiments, and we
summarize them in somewhat more detail in this section.

Building off of a strictly non-vacuum result [29], the following theorem provides ex-
istence, in vacuum, for arbitrary mean curvatures, so long as the background metric is
Yamabe positive and the TT tensor is sufficiently small.

Theorem 1.1 ([41]). Let (M, g) be a compact Yamabe-positive manifold with no confor-
mal Killing fields. Given arbitrary vacuum seed data (τ, σ,N), if σ 6≡ 0 is sufficiently
small (with smallness depends on the choice of τ ), then there exists at least one solution
of the conformally parameterized constraint equations (1.4)-(1.5).

Variations on this theorem have subsequently been demonstrated in other contexts
(asymptotically Euclidean manifolds [20, 27, 4], manifolds with asymptotically cylindri-
cal or periodic ends [12, 13], and other settings [30, 28, 19, 29, 4]). Although Theorem
1.1 is silent on the issue of uniqueness, it is consistent with Table 2 extending generally
for arbitrary mean curvatures, and there was some optimism that this might be the case
when [29, 41] appeared. Although it is evidently a far-from CMC result, the alterna-
tive perspective of [22] demonstrates that the solutions found in Theorem 1.1 can also
be thought of as rescalings of near-CMC solutions that are perturbations off of τ ≡ 0
solutions, as allowed in Table 1 for Yamabe-positive seed data.

The following result is a consequence of a groundbreaking blowup analysis for the
conformal method.

Theorem 1.2 ([17]). Let (Mn, g) be a compact manifold without conformal Killing
fields, and let (σ, τ,N) be vacuum seed data on it with τ 6= 0 having constant sign.
If there does not exist a solution of the conformally parameterized constraint equations
(1.4)-(1.5), then there exists a solution of the limit equation

div

[
1

2N
LW

]
= α

√
n− 1

n

∣∣∣∣ 1

2N
LW

∣∣∣∣ dττ . (1.6)

for some α ∈ (0, 1].
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See also [23, 21], where Theorem 1.2 has been extended to other settings. The main
idea behind the proof of the theorem is that if one cannot maintain L∞ control on approx-
imate solutions φ of the conformally parameterized constraint equations, then rescalings
of the approximations eventually lead to a solution of the blowup profile (1.6). One po-
tential application of Theorem 1.2 is to show solutions exist by ruling out the possibility
of solutions of the limit equation (1.6), and indeed [17] contains a near-CMC existence
theorem with a large perturbation constant based on this idea. Although Theorem 1.2
has proved difficult to apply in practice, because of the challenge of working with equa-
tion (1.6), our numerical work suggests that it plays a decisive role in analyzing system
(1.4)-(1.5) for constant sign mean curvatures.

For mean curvatures that change sign, little is known in general aside from Theorem
1.1. However, [42] contains an analysis of some very specific families of seed data on
the flat torus that includes the sign changing case. Among the seed data considered there
is a family of mean curvatures of the form

τ = 1 + aξ

where ξ is a particular dicontinuous, piecewise constant function equal to ±1 and TT
tensors of the form ησ̂ for a particular reference TT tensor σ̂ and an arbitrary constant η.

Theorem 1.3 ([42]). For particular seed data on the flat torus T 3 of the form

(τ = 1 + aξ, σ = ησ̂, N),

if |a| > 1 (and hence τ changes sign), there is an η∗ > 0 depending on a so that if η > η∗
there is no solution of system (1.4)-(1.5) with the symmetry of the data, but if 0 < η < η∗
then there are at least two solutions.

This was the first theorem to demonstrate the existence of multiple solutions of the
vacuum conformal method in the far-from-CMC setting. Although in involves Yamabe-
null examples, it cast doubt on the possibility that Theorem 1.1 concerning Yamabe-
positive seed data could be extended to include a uniqueness statement or that its small-
TT tensor requirement could be dropped. The follow-up study [44] contains additional
results on related families of far-from-CMC data.

Using ideas from [17], Nguyen [45] recently showed conclusively that the restrictions
of Theorem 1.1 are essential.

Theorem 1.4 ([45]). Let (M, g) be a compact Yamabe-positive manifold (M, g) with no
conformal Killing fields. Consider a family of seed data (τ = ξa, µσ,N) with a > 0,
µ ∈ R, where ξ is a fixed positive function. Assume additionally ξ satisfies∣∣∣∣L(dξξ

)∣∣∣∣ ≤ c

∣∣∣∣dξξ
∣∣∣∣2 (1.7)

for some c > 0, and that σ is supported away from the critical points of τ . Then if a is
sufficiently large, and if |µ| is larger than a threshold depending on a, the conformally
parameterized constraint equations (1.4)-(1.5) do not admit a solution. For the same a,
there is a sequence µk → 0 such that there are at least two solutions to these equations
along the sequence, and such that there is a solution with µ = 0.

The set of seed data satisfying these conditions is nonempty.

The restrictions on the seed data in Theorem 1.4 are quite severe, but the result is
remarkable nevertheless. In particular, the existence of solutions at σ ≡ 0 for Yamabe-
positive data was a surprise. In addition to proving Theorem 1.4, [45] gives insight into
the role of the deficiency parameter α in the limit equation (1.6) and these unexpected
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σ ≡ 0 solutions. On a Yamabe-positive manifold, if there does not exist a solution for
given seed data, and if there does not exist a solution of the limit equation with α = 1,
then there is, in fact, a solution for the same seed data but with σ ≡ 0.

Very recently, Nguyen obtained the following extension of Theorem 1.4.

Theorem 1.5 ([46]). Let (M, g) be a compact Yamabe-positive manifold (M, g) with no
conformal Killing fields. Consider a family of seed data (τ = ξa, µσ,N) with a > 0,
µ ∈ R, and where ξ is a fixed positive function satisfying inequality (1.7). Then, for each
a sufficiently large, there is a m0 depending on a such that if 0 < µ < m0 there are
at least two solutions of the conformally parameterized constraint equations, and when
µ = 0 there is at least one.

While Theorem 1.5 significantly relaxes many of the hypotheses of Theorem 1.4 and
strengthens some of its conclusions, it makes no claims concerning non-existence for
large µ, a point we will revisit in our numerical experiments. Inequality (1.7) needed
for Theorems 1.4 and 1.5 is non-generic, and our numerical work gives insight about the
extent to which Theorem 1.5 holds more generally.

In summary, we have the following.
• On Yamabe-positive manifolds, arbitrary mean curvatures can be used for seed

data, so long as the TT tensor is small enough. For certain families of Yamabe-
positive seed data, there are multiple solutions for small TT tensors. Moreover,
for these families of seed data, there exist solutions at σ ≡ 0, something ruled
out in the near-CMC case (Table 2). Additionally, there are some cases where
there are no solutions for large TT tensors.
• On a particular Yamabe-null manifold, with particular sign-changing seed data,

we have multiple solutions for small TT tensors, and nonexistence (within the
symmetry class) for large TT tensors.
• Nothing specific is known for Yamabe-negative seed data.
• The limit equation criterion holds for all Yamabe classes, but the question of the

existence of solutions of the limit equation is essentially open.
These limited results provide our motivation to look at analytic bifurcation theory and
closely related numerical continuation methods to try to gain intuition for what can be
expected more generally from the conformal method in the far-from CMC regime.

2. TOOLS FROM BIFURCATION ANALYSIS

The unexpectedly complex behavior of solutions to the conformal method equations
in the far-from-CMC regime leads one to the language and technical tools of analytic
bifurcation theory. This area of nonlinear analysis is the study of the branching of solu-
tions of nonlinear problems with respect to the parameters. Numerical continuation (or
numerical homotopy methods) is a related area and refers to a collection of practical nu-
merical methods for computing solution branches of nonlinear problems through critical
points such as folds and bifurcations.

2.1. Analytic Bifurcation Theory. To explain the main ideas that are relevant here,
consider again the PDE representation of the conformal method (1.4)–(1.5), but written
more simply as the abstract nonlinear problem: Find u ∈ X such that

F (u, λ) = 0, (2.1)

where F : X × Z → Y for suitably chosen Banach spaces X , Y , and Z, and where
λ ∈ Z represents the parameters of interest that are moved through the parameter space
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Z. In the setting of the conformal method and its variations, one can consider various
parameterizations. Once a parameterization λ is chosen, one is interested in the local
behavior of the solution curve u(λ) in a neighborhood of a known solution u0(λ0). The
techniques of both analytic and numerical bifurcation analysis rely on the Implicit Func-
tion Theorem (IFT) as the basic tool for doing this exploration.

Given F : X × Z → Y , where X , Y , and Z are Banach spaces, if F (u0, λ0) = 0, if
F and Fu (the Frechét derivative of F ) are continuous on some region U × V ⊂ X × R
containing (u0, λ0), and if Fu(u0, λ0) is nonsingular with a bounded inverse, then there
is a unique branch of solutions (u(λ), λ)) to F (u(λ), λ) = 0 for λ ∈ V . Moreover, u(λ)
is continuous with respect to λ in V .

The IFT effectively states that if the linearization Fu of the nonlinear operator operator
F is nonsingular at the point [u0, λ0], then there is a unique solution u(λ) for each λ in a
ball around λ0. More details about this theorem and its proof can be found in [36, 51, 10].

If Fu is singular, however, the proof of the IFT fails, suggesting the possibility of two
or more u(λ) branches, or no solutions, for some λ in every neighborhood around λ0.
The form of the branching depends on the structure of the subspaces associated with the
linear maps Fu(u0, λ0) and Fλ(u0, λ0). In the case of a “fold”, there is a one-dimensional
path through [u0, λ0]; in the case of a simple (or more general) singular point, there is
the possibility of branch-switching, with two (or more) branches of solutions crossing
through [u0, λ0].

One of the central tools in analytic bifurcation theory is Lyapunov-Schmidt Reduc-
tion [52]. To explain, assume Fu(u0, λ0) is a Fredholm operator of index k, and that
dim(N (Fu(u0, λ0))) = n. Define now projection operators P : X → X and Q : X →
X with P (X) = N (Fu(u0, λ0)) and (I − Q)(Y ) = R(Fu(u0, λ0)). Equation (2.1) is
equivalent to the pair

(I −Q)F (y + z, λ) = 0, (2.2)

QF (y + z, λ) = 0, (2.3)

with y = (I − P )u and z = Pu. Equation (2.2) satisfies the assumptions of the IFT, and
so one obtains a unique solution branch y(z, λ), then substitutes into (2.3) to obtain the
branching equation:

QF (y(z, λ) + z, λ) = 0. (2.4)
One then solves for z(λ) to get the branch u = y(z(λ), λ) + z(λ). In practice, one solves
(2.2)–(2.3) by expanding the operators in bases of N (Fu(u0, λ0)) and N (Fu(u0, λ0)

∗).
A more detailed description of the application of Lyapunov-Schmidt Reduction to varia-
tions of the conformal method may be found in [26, 11]. One of our goals here is to apply
the reduction technique to the far-from-CMC parameterizations that were described ear-
lier. More information on this decomposition can be found in [36].

2.2. Numerical Bifurcation Analysis. To apply Lyapunov-Schmidt reduction analyti-
cally, one needs detailed information about the null and range spaces of the linearization
operators Fu and F ∗u , and therefore the technique is usually limited to model situations.
However, by discretizing problem (2.1), it becomes tractable to explicitly compute the
information one needs for a finite-dimensional approximation of (2.1). The problem re-
tains the structure of (2.1), but the discretized problem now involves finite-dimensional
spaces X = Y = Rn and Z = Rm, where n is the resolution of the discretization
(e.g. number of finite element basis functions), and m is the number of parameters. One
now numerically computes bases explicitly for the range and null spaces of what are
now matrix operators Fu and Fλ. Moreover, a numerical continuation algorithm can be
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designed around a predictor-corrector strategy: one increments the parameter λ0 → λ1
as part of a prediction step, followed by the use of Newton’s method to solve (2.1) to
correct the solution u(λ0) → u(λ1). Where the fold or higher-order singularity on the
branch is encountered, the linearization Fu becomes singular, leading to failure of New-
ton’s method at the correction step. To remedy this, one adds a normalization equation
N(u(λ(s)), λ(s), s) = 0 that allows the larger coupled system involving F and N to
again be solvable. One of the standard normalization techniques is known as pseudo-
arclength continuation, based on parameterizing λ(s) by arclength s. These numerical
techniques are well-studied [35] and there are well-established software packages that
implement these techniques, such as AUTO [6]. We use AUTO as our primary tool in
our numerical analysis of the conformal method for far-from-CMC seed data.

3. NUMERICAL RESULTS

The AUTO software package applies numerical bifurcation analysis to systems of or-
dinary differential equations. Thus, to apply it to the conformal method, we require seed
data with sufficient symmetry so that the conformally-parameterized constraint equations
(1.4)-(1.5) reduce to ODEs. Once this is done, the parameter space can be explored via
homotopies starting with CMC solutions. The following subsections describe a number
of concrete datasets where we have done so and report on folds and the number of solu-
tions found as the mean curvature is made increasingly far-from-CMC and as the size of
the TT tensor is varied. Some care is needed in interpreting our results. If we find, e.g.,
two solutions for a given seed data set, it does not imply that there are only two. Rather,
with homotopies we chose starting from CMC data, we were only able to find two. There
may be more that we did not find because we did not, or were not able, to explore the
parameter space more broadly. A similar caveat applies when we find no solutions; there
may be solutions that we did not find along our homotopies. Additionally, because we
seek solutions having the same symmmetry as the seed data (in practice, these are solu-
tions depending on only one coordinate of the underlying 3-manifold), we cannot rule
out the possibility of additional solutions that break this symmetry. Finally, because of
the high symmetry of our seed data, our metrics always admit conformal Killing fields,
and hence violate a key technical hypothesis of most theorems concering the conformal
method with non-CMC seed data.

3.1. Sign-changing mean curvature. In this section we examine properties of the con-
formal method when the far-from-CMC regime is reached via a sign changing mean
curvature. The conformal seed data has the following form:

• The manifold is S1 ×M2 where M2 is one of S2, T 2 or a compact quotient H2

of hyperbolic space. We use s for the unit speed parameter along S1.
• The mean curvature is

τ = 1 + a cos(s).

So a = 0 is the CMC case, and τ is sign-changing whenever |a| > 1.
• We work with two different classes of TT tensors.

(1) On a product (Mn1
1 , g1)× (Mn2

2 , g2), the tensor

σ̄ = n1g2 − n2g1 (3.1)

is easily seen to be transverse-traceless. For many of our experiments we
use a TT tensor of the form µσ, where µ is a constant.
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(2) Additionally, on S1×T 2 and on S1×S2 we can find a TT tensor σ̂ with con-
stant (nonzero) norm that is pointwise orthogonal to LW for W = w(s)ds.
These are easy enough to find on T 2 and Appendix A describes a suitable
construction on S2. Some of our experiments make use of TT tensors of the
form σ = ησ̂ where η is a constant.

• For simplicity of exposition, we use a lapse density N = 1/2. We conducted
experiments with other choices for the lapse density but did not see qualitatively
different phenomena.

For solutions φ = φ(s) and W = w(s)∂s of the conformally-parameterized constraint
equations (1.4)-(1.5) having the same symmetry as our seed data, the constraint equations
reduce to the coupled ODEs

−8ϕ′′ +Rϕ+
2

3
τ 2ϕ5 =

2

3
(µ+ 2w′)2ϕ−7 + η2ϕ−7, (3.2)

2w′′ = τ ′ϕ6, (3.3)

whereR is the constant scalar curvature of the product manifold, and where we set η = 0
if R < 0.

We start by examining solutions on S1×T 2, and it turns out that the effects of the two
TT tensors σ̂ (corresponding to the parameter η) and σ̄ (corresponding to the parameter
µ) are quite different. In particular, if η = 0 and hence σ = µσ̄, it is easy to see that
φ ≡ |µ|1/6 and w = µa sin(s) solve system (3.2). These exact solutions are among those
discussed in [44], and are the only solutions we were able to find using AUTO. Hence
we obtain results consistent with existence and uniqueness for this family, save for the
exceptional case µ = 0 where the solution degenerates to zero volume.

On the other hand, fixing µ = 0, Figure 1 indicates the multiplicity of solutions found
on S1× T 2 with τ = 1 + a cos(s) and σ = ησ̂ as the parameters a and η are varied. This
computation is an analogue of the examples of [42] recalled in Theorem 1.3, except that
it involves a family of smooth, rather than piecewise constant, mean curvatures.

In the region where the mean curvature changes sign, (i.e., for a > 1) we find a fold,
indicated by a solid blue line, and no solutions when the TT tensor is sufficiently large.
Figure 2 indicates how the volume of the solution metric changes changes as we traverse
the gray dashed lines of Figure 1; the plots, in green, indicate

∫
S1 φ

6, which agrees with
volume up to an inessential constant factor depending on the second factor of the product
manifold. On the vertical gray dashed line, corresponding to Figure 2 (left-hand side),
the sign-changing mean curvature is fixed and the size of the TT tensor is varied. When
the TT tensor is sufficiently large a fold appears and there are no solutions, and as it
is decreased to zero there are two solutions, one heading to zero volume and the other
blowing up. The horizontal gray dashed line of Figure 1 corresponds with Figure 2 (right-
hand side) and we again observe the fold and a branch where the volume blows up. It
is difficult to ascertain from this graph the precise value of a where the blowup occurs,
and computationally we found it difficult to approach the singularity. We find, however,
that near the singularity the value of

∫
φ6 along this line is in reasonable agreement

with a growth rate ∼ (a − 1)−5.14. In later related examples we find more conclusive
evidence of blowup at a = 1, so we infer this is the case here as well. That is, there is
a transition at a = 1, the threshold of sign-changing mean curvatures. The red dashed
lines of Figure 1 indicate locations where we have inferred blowup occurs. The results
we observe here are completely parallel with the prior analytical results of [42] found for
a more restrictive mean curvature.
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FIGURE 1. Multiplicity of solutions found on S1 × T 2. Seed data: τ =
1 + a cos(s) and σ = ησ̂. The blue line is a computed fold, whereas the
red dashed lines indicate locations where blowup is inferred. The blue
dotted line indicates a zero-volume solution, which should be discounted.
Solutions along the gray dashed lines are discussed in Figure 2.

0.0 0.4 0.8 1.2

η

100

101

102

103

104

105

∫ φ
6

0.0 0.5 1.0 1.5 2.0

a

100

101

102

103

104

105

FIGURE 2. Volume of solutions on S1×T 2 as the size η of the TT tensor
(left-hand side) and as the mean curvature τ = 1 + a cos(s) (right-hand
side) are varied. The left-hand graph corresponds with the vertical gray
dashed line of Figure 1 at a = 1.94, and right-hand graph corresponds
with the horizontal gray dashed line at η = 1.
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FIGURE 3. Multiplicity of solutions found on an S1 × S2 with R =
0.001. Here τ = 1 + a cos(s) and σ = ησ̂. The blue line is a computed
fold. On the blue dotted line at µ = 0 (i.e., σ ≡ 0) there is no solution;
the volume has shrunk to zero. Solutions along the gray dashed lines are
discussed in Figure 4.
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FIGURE 4. Volume of solutions on an S1×S2 withR = 0.001 as the size
of the TT tensor and as the mean curvature are varied. The left and right-
hand graphs correspond with the vertical and horizontal gray dashed lines
of Figure 3 respectively. The dashed lines are the corresponding volumes
on S1 × T 2 from Figure 2 for comparison.
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FIGURE 5. Multiplicity of solutions found on an S1 ×H2 with negative
scalar curvature R = −0.1. Seed data: τ = 1 + a cos(s) and σ = µσ.
The blue line is a computed fold, whereas the red dashed line indicate
locations where blowup is inferred. Solutions along the gray dashed lines
are illustrated in Figure 6.
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FIGURE 6. Volume of solutions on an S1 ×M2 with R = −0.1 as the
size of the TT tensor and as the mean curvature are varied. The left and
right-hand graphs correspond with the vertical and horizontal gray dashed
lines of Figure 5 respectively.
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Recalling that the only analytical results for sign-changing mean curvatures are avail-
able in the Yamabe-null case, we now consider the effect of changing the Yamabe class
in these computations. We first consider the Yamabe-positive case by adjusting the previ-
ous computation by settingR = 0.001 in system (3.2) (e.g. by working on an appropriate
S1 × S2). As in the Yamabe-null setting, when working with families of seed data with
σ = µσ̄ we found tame behavior (one solution was found for each parameter). On the
other hand, for seed data with σ = µσ̂ and τ = 1 + a cos(s) the situation is more com-
plicated. Figure 3 indicates the multiplicity of solutions found for this family and can
be compared directly with its Yamabe-null counterpart, Figure 1. The region of zero
solutions has vanished and we find solutions exist always. However, in a region near the
original Yamabe-null fold, we find two folds and a narrow region of multiple solutions in
between. Figure 4 shows the effect of traversing along the dashed gray lines of Figure 3
and indicates how the family of solutions in this case corresponds with the Yamabe null
families in Figure 2. Note that the various blowup phenomena found in the Yamabe-null
case have vanished. The observed fold can be thought of as a purturbation of the situa-
tion at R = 0, and separate computations show that as R is pulled away from zero and
approaches, e.g., R = 1 the volume curves in Figure 4 stablize further, and the doubling
back behavior vanishes.

Turning to the Yamabe-negative case we set R = −0.1 in equations (3.2) and use
η = 0 since we do not have an equivalent for σ̂ for Yamabe-negative seed data. Thus we
use µ to scale the size of the TT tensor, and unlike the Yamabe-positive and -null cases
when using σ = µσ, we find interesting results; Figure 5 shows the number of solutions
found when using mean curvatures of the form τ = 1 + a cos(s). Note that, unlike the
parameter η, system (3.2) does not have even symmetry with respect to µ and hence
our computations involved values of µ with both signs. As the mean curvature is made
increasingly far-from CMC we find a fold, and subsequently no solutions. Just as in the
Yamabe-null case, the second branch of solutions blows up at a = 1, the value of a that
transitions from constant-sign to sign-changing mean curvatures; (Figure 6, right-hand
side). On the other hand, far enough into the far-from-CMC regime we were unable to
find solutions of system 3.2. This is perhaps surprising since in the near-CMC setting
one can always find solutions when σ ≡ 0 (unless τ ≡ 0 as well), and indeed solutions
at σ ≡ 0 are a hallmark of Yamabe-negative CMC seed data. Instead, we find that at
σ ≡ 0, as a is increased to make the solution far-from-CMC, there is a fold around a = 2
and no solutions were encountered beyond this point. The absence of solutions appears
to be loosely associated with the behavior when µ = 0 (i.e. σ ≡ 0), although one notes
that the tip of the ‘nose’ on the blue fold line of Figure 5 does not lie on the line µ = 0.
Therefore, there are values of awhere no solutions exist at µ ≡ 0, but for which solutions
exist for certain values of µ 6= 0.

3.2. Constant-sign mean curvatures. We now examine excursions into the far-from
CMC regime using mean curvatures of the form τ = ξa, where ξ is a positive function.
Starting again with S1-dependent data of the form of the previous section, but now with
mean curvature τ(s) = (2

3
− 1

3
cos(s))a, we were only able to find a single solution of

the constraint equations for all choices of a, µ and η, except (as is expected) when σ ≡ 0
in the Yamabe non-negative case. We can understand the tame behavior we observed
by appealing to the limit equation of Theorem 1.2. For S1-symmetric solutions of the
S1-dependent data we consider, the limit equation becomes(

W ′

N

)′
= α

∣∣∣∣W ′

N

∣∣∣∣ τ ′τ (3.4)
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and it is straightforward to show that this admits no solutions on S1.

Theorem 3.1. Let τ > 0 be in C1. Then there are no nontrivial C2 solutions W of the
S1-dependent limit equation (3.4).

Proof. Suppose W is a nontrivial solution, and consider a maximal interval on which W ′

does not vanish. On this interval we have

log(W ′)′ = k log(τ)′ (3.5)

where k = α if W ′ > 0 on the interval, and k = −α if W ′ < 0. Hence

W ′ = cτ k (3.6)

for some constant c 6= 0. At the endpoints of the interval W ′ tends to zero. But the
right-hand side of equation (3.6) is uniformly bounded away from zero. �

Strictly speaking, Theorem 1.2 does not apply in our setting because of the presence
of conformal Killing fields. We expect, however, that one can use techniques found in
[42] to adapt the main theorem of [17] to this specific family of data to conclude that the
nonexistence of solutions to (3.4) implies existence of (S1-symmetric) solutions.

The simple behavior seen for S1-dependent data does not hold generally, however.
Throughout the remainder of this section we use conformal seed data of the following
type:

• The manifold is S2 ×M2 where M2 is one of S1,or H2. We use φ ∈ (0, π) for a
latitude parameter on S2.
• The mean curvature τ = ξa depends only on φ, where 0 ≤ ξ ≤ 1 and ξ(φ) = 1

somewhere. In practice we used

ξ(φ) =
2

3
− 1

3
cos(kφ)

with k = 1 or 2.
• The TT tensor is σ = µσ, where σ was introduced in equation (3.1).
• The lapse density is N = 1/2.

As a first example, consider data on S2× S1. The reduced conformal constraint equa-
tions for latitude-dependent data are more complicated than those for S1-dependent data;
the main differential operators are

∆ f =
1

r
(f ′′ + cotφf ′) , and

divLW = (3w′′ + 3 cotφw′ +
1

2r
(1− 3 cot2 φ)w)dφ

where f = f(φ) and W = w(φ)dφ. We seek solutions of the constrant equations (1.2)-
(1.3) the form ϕ = ϕ(φ) andW = w(φ)dφ supplemented with boundary conditions ϕ′ =
0 and w′ = 0 at φ = 0 and φ = π needed to ensure regularity. An additional boundary
condition w = 0 at φ = 0, π is effectively enforced by the momentum constraint.

Figure 7 shows the number of solutions found on an S2 × S1 with scalar curvature
R = 1 with σ = µσ and a relatively simple non-CMC mean curvature

τ =

[
2

3
+

1

2
cos(φ)

]a
Theorem 1.5 would apply to this data, except for the usual caveat about conformal Killing
fields and, more crucially, the fact that the mean curvature violates the non-generic in-
equality (1.7). We nevertheless find behaviour consistent with its conclusions: multiple
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FIGURE 7. Multiplicity of solutions found on an S2 × S1 with positive
scalar curvature R = 1. Seed data: τ = (2

3
+ 1

3
cos(φ))a and σ = µσ. The

solid blue line is a computed fold, whereas the red dashed line indicate
locations where blowup is inferred. At the dotted blue line at µ = 0 there
is a zero volume solution which should be discounted. The gray dashed
lines are discussed in Figure 8.
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FIGURE 8. Volume of solutions on an S2 × S1 with R = 1 as the size
µ of the TT tensor and as the mean curvature ξa is varied. The left- and
right-hand graphs correspond with the vertical and horizontal gray dashed
lines of Figure 7 respectively.
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√
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ϕ6τ to

∣∣ 1
2N
LW

∣∣ as a function of latitude φ for
the large solution of the conformally-parameterized constraint equations
at a = 2.46, µ = 1 in Figure 7. The ratio is nearly 1, indicating that the
vector field W of the solution is nearly a solution of the limit equation
(1.6).

solutions when both a is sufficiently large and µ 6= 0 is sufficiently small. Moreover, the
transition to the far-from-CMC regime is abrupt, starting at a ≈ 2.46, which we will call
a∗. Figure 8, (right-hand side) shows that a∗ is associated with a blowup of a branch of
solutions, and one expects there is a solution of the limit equation (1.6) with α = 1 at
a = a∗. Indeed, the limit equation arises as the Hamiltonian constraint degenerates to
the algebraic equation √

2

3
φ6τ =

∣∣∣∣ 1

2N
LW

∣∣∣∣ , (3.7)

which can then be substituted back into the momentum constraint. Figure 9 shows the
ratio of the two sides of equation (3.7) for the larger of the two solutions at the point
a = 2.46m µ = 1 in Figure 7. The ratio is nearly 1, so the solution vector field W at that
point is nearly a solution of the limit equation.

The proofs of Theorems 1.4 and 1.5 demonstrate the existence of multiple solutions
for a large and µ small by showing that at µ = 0 there is both a zero volume solution and
a true solution, and that perturbing off of these yields two solutions; this mechanism is
illustrated in Figure 8 (left-hand side). Recall that solutions with µ = 0 are impossible in
the near-CMC setting for Yamabe-positive seed data such as this, and at the dotted line
at µ = 0 of Figure 7 there is one less solution than at neighboring points (so there is no
solution to the left of the singularity at a = a∗ and just one solution to the right).

As a test of the robustness of these results, consider the same conformal seed data as
the previous example, except that the mean curvature is now

τ =

[
2

3
+

1

2
cos(2φ)

]a
.
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FIGURE 10. Multiplicity of solutions found on an S2×S1 with positive
scalar curvature R = 1. Seed data: τ = (2

3
+ 1

3
cos(2φ))a and σ = µσ;

note the 2 in the argument of cos. The solid blue line is a computed fold,
whereas the red dashed lines indicate locations where blowup is inferred.
At the dotted blue line there is a zero-volume solution, which should be
discounted. The gray dashed lines are discussed in Figure 11.
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FIGURE 11. Volume of solutions on an S2 × S1 with R = 1 as the size
µ of the TT tensor (left-hand side) and as the mean curvature ξa (right-
hand side) are varied. The left- and right-hand graphs correspond with the
vertical and horizontal gray dashed lines of Figure 10 respectively.
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Figure 10 illustrates the multiplicity of solutions we found as we varied the parameters
µ and a. Here again we find a sharp transition to the far-from-CMC setting, now at a =
a∗ ≈ 3.3. There is blowup associated with this transition (Figure 11, right-hand side),
and again we presume there is a solution to the limit equation with α = 1 and a = a∗.
For a > a∗ we find a solution at µ = 0 in addition to the zero volume solution (Figure 11,
left-hand side), and hence there two solutions for µ sufficiently small. However, we find
an apparent difference between scaling µ large and positive versus large and negative for
this seed data. For µ positive and large enough (depending on a) there are no solutions,
just as was the case in Figure 7. But for µ large and negative we were unable to find a
fold and a consequential transition to zero solutions. Instead, the two solutions remain
well-separated in volume as µ is made large (Figure 11, left-hand side). We cannot
rule out the possibility that the two branches eventually merge, but this was not the
case out to µ = −2500000. Although this data violates inequality 1.7 of Theorem 1.5,
our observations are nevertheless consistent with its conclusions. In particular, unlike
Theorem 1.4, Theorem 1.5 does not predict non-existence for large TT tensors, and it is
conceivable that 1.5 holds more generally for mean curvatures not satisfying inequality
1.7.

The previous two examples involve Yamabe-positive data. To explore the other Yam-
abe classes we consider latitude-dependent data on S2 × H2; by varying the size of the
round S2 factor we can obtain any desired constant scalar curvature. Before looking at
the other Yamabe classes, however, we remark that even for Yamabe-positive data of this
type we find differences from what was observed for S2 × S1. Figure 12 illustrates the
multiplicity of solutions found on an S2 × H2 with R = 0.1, where the seed data has
σ = µσ and

τ =

[
2

3
− 1

3
cos(φ)

]a
.

This seed data is comparable to that used for Figure 7, but there are some fine differences
in the results. Again we find a sharp transition to the far-from-CMC setting, now at
a = a∗ ≈ 2.8. However, for a > a∗ the multiplicity of solutions is a bit complicated.
There is a primary fold roughly at a = 3.23 in the far-from-CMC regime. Beyond this
point, the behavior is similar to that of Figure 7, with no solutions when µ is sufficiently
large and two solutions when µ 6= 0 is sufficiently small. Between a = a∗ and a = 3.23,
however, the situation has changed from that of Figure 7. We found variously between
1 and 4 solutions, and no convincing evidence that there are no solutions when µ is
sufficiently large at, e.g., a = 2.87.

Figure 13, illustrates how the the various folds appear as the dashed line at µ = 7 in
Figure 12 is traversed. First the right-most purple fold is encountered, then the left-most
and finally the blue fold around a = 3.23 is hit before heading off to the singularity at
a = a∗. Conversely, Figure 14 illustrates the various solutions along the line a = 3.2, and
we see two disconnected loops (the upper branches in Figure 14, left-hand side, rejoin
at µ ≈ −800000). As was discussed previously for Figure 8, Figure 14 illustrates how
one can visualize the multiple solutions near µ = 0 as perturbations of the usual zero
solution at µ = 0 and the additional three non-trivial solutions we found there.

Turning to non-Yamabe-positive seed data, Figure 15 illustrates the number of solu-
tions found with the same conformal data as in Figure 12, except now with R = −0.1
and R = 0. For this seed data there are no applicable far-from-CMC theorems to guide
expectations, and we find a situation similar to the Yamabe-negative sign-changing data
of Figure 5. There is a sharp transition to far-from-CMC data at a∗ ≈ 2.8, but now
solutions vanish sufficiently far into the far-from CMC regime. The blue fold from the
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FIGURE 12. Multiplicity of solutions found on an S2×H2 with positive
scalar curvature R = 0.1. Seed data: τ = (2
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cos(φ))a and σ =

µσ. The solid blue and purple lines are computed folds, whereas the
red dashed line indicate locations where blowup is inferred. At the blue
dotted line at µ = 0 one solution has zero volume and should be ignored.
Solutions along the gray dashed lines are discussed in Figures 13 and 14.
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horizontal gray dashed line at µ = 7 in Figure 12. At a = 3.1, four
solutions are found for a single conformal seed dataset.
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FIGURE 14. Left-hand side: volume of solutions on an S2 × H2 with
R = 0.1 as the size µ of the TT tensor is varied. Solutions correspond
with the vertical gray dashed line at a = 3.2 in Figure 12. Right-hand
side shows a detail of the small loop near µ = 0. The large upper loop
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FIGURE 15. Multiplicity of solutions found on an S2 ×H2 with scalar
curvatures R = −0.2 (left-hand side) and R = 0 (right-hand side). Seed
data: τ = (2
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cos(φ))a and σ = µσ. The solid blue lines are computed

folds, whereas the red dashed lines indicate locations where blowup is
inferred. The folds are comparable with the blue fold of Figure 12, which
has a similar shape when drawn at this scale. On the right-hand side
(R = 0), the dotted blue line indicates a zero solution which should be
discounted. Fine details near µ = 0 in the region 2.8 < a < 3.2 are
potentially unresolved; see Figure 16 (middle).
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FIGURE 16. Volume of solutions along σ ≡ 0 for an S2 × H2 having
R = −0.2 (left), R = 0 (middle) and R = 0.1 (right). Mean curvature
τ = (2
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cos(φ))a. Conformal seed data is the same as in Figures 12

and 15.

Yamabe-positive data of Figure 12 persists, but the purple fold that extended out along
the line µ = 0 has vanished. The apparent non-existence of solutions far enough into the
far-from-CMC regime violates the conclusion of Theorem 1.5, and we therefore suspect
that the Yamabe-positive hypothesis of Theorem 1.5 is essential.

Although the vertical scales for Figures 12 and 15 are markedly different, it is not the
case that we have missed a fine feature near the line µ = 0 in Figure 15 corresponding to
the purple folds of Figure 12. Indeed, Figure 16 illustrates the volume of solutions along
the line µ = 0 (i.e. σ ≡ 0) for the three cases R = −0.2, R = 0 and R = 0.1 illustrated
in Figures 12 and 15. For far-from-CMC Yamabe-positive seed data (Figure 16, right-
hand side) we find solutions at σ ≡ 0; these solutions are not present for near-CMC data
and had not been expected before [45]. By contrast, for the Yamabe-negative seed data
the near-CMC solutions at σ ≡ 0 vanish once the mean curvature is sufficiently far-from
CMC (Figure 16, left-hand side). At the boundary R ≡ 0 (Figure 16, middle) we find
a narrow band in which solutions exist; none in the near-CMC case (which is expected)
and none for the far-from CMC seed data as well. The narrow band is reminiscent of the
well known one-parameter family of solutions found found for CMC Yamabe-null seed
data when τ ≡ 0 and when σ ≡ 0. It is also similar to the somewhat analogous one-
parameter families found for particular Yamabe-null seed data in [42] and [44]. What
would have been a vertical line of solutions in the analytic cases has been deformed to
the distorted vertical line of Figure 16, middle.

The role of solutions at σ ≡ 0 appears to be important for understanding the conformal
method in the far-from-CMC setting, and we believe this is a consequence of σ being
absent from the limit equation. Nevertheless, the interplay between σ ≡ 0 and σ 6≡ 0
is nuanced. For example, the breakdown of the existence of solutions along σ ≡ 0 for
Yamabe-negative data (Figure 16, left-hand side) at a ≈ 3.2 is not perfectly correlated
with nonexistence of solutions for nearby values of a. This can be seen by inspecting
the blue fold of Figure 15, left-hand side. It crosses µ = 0 at a value a ≈ 3.2 but there
nevertheless exist certain solutions for values of a > 3.2 beyond the crossing point, but
not much larger.

Finally, we consider seed data on S2 ×H2 with σ = µσ and

τ =

[
2

3
− 1

3
cos(2φ)

]a
,
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FIGURE 17. Multiplicity of solutions found on an S2 ×H2 with scalar
curvatures R = 0 (left-hand side) and R = 0.5 (right-hand side). Seed
data: τ = (2
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3
cos(2φ))a and σ = µσ. The solid blue line indicates

a fold, whereas the red dashed line indicate locations where blowup is
inferred. The blue dotted lines at µ = 0 indicate one solution has zero
volume and should be ignored.

which can be compared with the seed data used for Figure 10. Figure 17 illustrates the
number of solutions found for R = 0 and R = 0.5, and the outcomes are qualitatively
similar to those of Figure 10. In particular, for µ < 0 we do not find evidence of non-
existence of solutions. On the other hand, for this same data but R = −1/2 we obtain
multiplicities shown in Figure 18 and find a situation akin to what we have seen previ-
ously in Figure 5 and Figure 15 (left-hand side) for Yamabe-negative data: no solutions
for a sufficiently large. In an independent computation, not shown, we found that the
location of the blue fold crossing µ = 0 (e.g. at a ≈ 108 in Figure 18) grows as (−R)−13

and therefore we believe there is indeed a transition at R = 0 between the two qualitative
behaviors seen here for R = 1/2 and R = −1/2.

4. DISCUSSION

The limit equation (1.6) appears to play a central role in the solution theory of the
conformal method, at least for mean curvatures that do not change sign. In the cases
where we could show that there is no solution of the limit equation with the symmetry
of the data (S1-dependent seed data on S1 ×M2), we were also unable to find behavior
that was any different from the near-CMC theory. For the remaining cases where we
investigated constant-sign mean curvatures τ = ξa, there was a singular value a∗. For
a > a∗ we found differences from the near-CMC theory: multiple solutions or non-
existence of solutions were the general rule, with exceptions occuring only at transitions
such as folds. As a → a∗ from above, we found solutions of the constraint equations
with volumes that appeared to approach infinity; in particular, it was always possible to
find such solutions with σ ≡ 0 We conjecture that at a = a∗ there is a solution of the
limit equation with α = 1, in which case for each a > a∗ there is also a solution of the
limit equation with α = a/a∗ < 1. That is, far-from-CMC behavior appears to occur
precisely when a solution to the limit equation exists for some α ∈ (0, 1].

For sign changing mean curvatures, we found a corresponding transition to far-from-
CMC phenomena once the mean curvature changed sign. This was certainly true for
the Yamabe-negative and Yamabe-null data we examined, and at least weakly so for the
Yamabe-positive data of Figure 3 where narrow folds occurred, but unique solutions were
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FIGURE 18. Multiplicity of solutions found on an S2 ×H2 with scalar
curvatures R = −0.5 Seed data: τ = (2
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solid blue indicates a fold, whereas the red dashed line indicate locations
where blowup is inferred.

more typical. In any event, in these examples, non-standard behaviour only occurred for
conformal seed data where the mean curvature changed sign. In may be a that a better
parameterization for sign-changing mean curvatures, different from τ = 1 + aξ, would
provide a sharper, more definitive transition.

Although Theorem 1.1 does not apply, strictly speaking, to our examples (as they
possess nontrivial conformal Killing fields), our observations were consistent with it.
Whenever we worked with Yamabe-positive seed data we were able to find solutions of
the constraint equations, so long as σ 6≡ 0 was small enough: Figures 3, 7, 10, 12 and
17 (right-hand side). Conversely, except for cases where we could show that there was
not a solution of the limit equation, far-from-CMC Yamabe-negative seed data lead to
non-existence sufficiently far into the non-CMC zone: Figures 6, 15 (left-hand side) and
18. This was true even at σ ≡ 0, in stark contrast to the near-CMC theory.

The situation for Yamabe-null data is harder to characterize. Sometimes it behaved
like Yamabe-positive data (Figures 1 and 17, left-hand side), with solutions existing for
sufficiently small TT tensors. Sometimes it behaved like Yamabe negative data (Figure
15, right hand side), with solutions vanishing far enough into the far-from CMC zone.
Moreover, the analytical work of [42] shows that other variations are also possible.

The conclusions of Theorem 1.5 were found to hold generally, even for mean curva-
tures that violate inequality 1.7, so long as there appeared to be a solution of the limit
equation. That is, for far-from-CMC Yamabe positive data (with constant-sign mean cur-
vature), we found that there were at least two solutions when the TT tensor was small
enough (and that there was at least one corresponding nonzero solution at σ ≡ 0).

On the other hand, Theorem 1.4, which also describes non-existence for Yamabe-
positive far-from-CMC seed data when the TT tensor is large, was not found to hold
in general. Indeed, we found a hodge-podge of apparent non-existence phenomena on
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Yamabe-positive seed data. Sometimes there was an immediate onset of nonexistence
behavior in the far-from-CMC zone (Figure 7). Sometimes nonexistence was brought on
by scaling the TT by a large constant of one sign, but not for large constants of the other
sign (Figures 10 and 17 (right-hand side)). In one case (Figure 12) there appeared to be
certain far-from-CMC seed data that did not lead to nonexistence regardless of how large
the TT tensor was scaled. And in the sign-changing Yamabe-positive case we examined,
existence appeared to be pervasive (Figure 3). It is similarly hard to pin down precise
non-existence behavior for the Yamabe-null seed data we examined.

We saw no apparent rule to describe the profiles of the various folds we saw. That
is, we were unable to discern anything that might help concretely predict the threshold
of non-existence when scaling the TT tensor or the specific number of solutions corre-
sponding to given seed data; although zero, one or two solutions were typical, sometimes
there were more.

5. CONCLUSION

Our numerical work suggests that the conformal method appears to suffer from per-
vasive drawbacks as a parameterization of vacuum, non-CMC solutions of the constraint
equations. At least among the data we considered, the general rule was multiple solutions
or no solutions at all once the conformal seed data was sufficiently far-from-CMC. Be-
cause of the limitations of AUTO, we were only able to examine highly symmetric seed
data, and we therefore only probed a select few, very special examples. Nevertheless, it
is difficult to imagine that the many cases of multiple solutions we found are not stable
under small perturbations of the metric that violate symmetry.

Our results suggest a couple of theorems that might be reasonable targets for fu-
ture efforts. For example, can non-existence of solutions for sufficiently far-from-CMC
Yamabe-negative seed data be established? However, we caution that it is possible that
describing the details of the conformal method for far-from-CMC data will lead to a
fuller understanding of the conformal method, but also to nothing useful about general
relativity. Unless there is some physics associated with to the multiplicity of solutions or
the various shapes of the folds, it may simply be that the conformal method is an excel-
lent parameterization of the CMC solutions of the constraints that breaks down as a chart
on the larger constraint manifold. Since the conformal method is the only general tool
available for constructing solutions of constraint equations de novo, it raises the ques-
tion of whether a suitable alternative parameterization for non-CMC initial data exists.
One potential was proposed in [38] and examined for near-CMC constructions in [25],
but its properties in the far-from-CMC setting are unknown and the broader question of
finding a well-behaved global parameterization of solutions of the constraint equations
is essentally open.
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APPENDIX A. A CONSTANT NORM TT TENSOR ON S1 × S2

In this section we construct a transverse-traceless tensor on S1 × S2 that has con-
stant norm and is pointwise orthogonal to LW when W is an S1-dependent vector field
pointing along S1.

Consider normal (polar) coordinates (r, θ) on the unit round sphere S2 centered at the
north pole, so that the metric has the form g = dr2 + sin2(r)dθ2. Let ω = sin(r)dθ. It
is clear that ω fails to be continuous at the north and south poles of S2, but is otherwise
smooth. A straightforward computation shows that |∇ω| = cot(r). The singularity at
r = 0 is O(r−1), with similar remarks holding at r = π. Hence ω ∈ W 1,p(S2) for any
p < 2. Moreover, divω = 0 in the region where ω is smooth (i.e. almost everywhere)
and therefore ω is weakly divergence free.

Now let s denote a unit speed parameter on S1 and set

σ̂ = ω ⊗ ds+ ds⊗ ω
on S1×S2. Clearly σ is trace-free. Moreover since ω and ds are both divergence free, σ
is a transverse-traceless tensor on S1 × S2. Finally,

|σ|2 = 2 |ω|2 |dz|2 + 4 〈ω, dz〉 = 2 |ω|2 = 2 sin2(r) |dθ|2 = 2 sin2(r)(sin(r))−2 = 2,

except at r = 0 and r = π. That is, |σ|2 = 2 almost everywhere. Hence σ̂ is a constant-
norm W 1,p transverse-traceless tensor on S1 × S2 for any p < 2. Although this level of
regularity is not ideal, it falls within the a category of regularity easily handled for the
conformal method (e.g. [8]).

If W = w(s)∂s then LW = 2w′(2
3
ds⊗ds− 1

3
g◦), where g◦ is the round metric on the

sphere. Since σ̂ only has ds⊗ dθ and dθ ⊗ ds components, it is pointwise orthogonal to
any such LW .
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