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Abstract. We present a new approach to the use of parallel computers with adaptive finite
element methods. This approach addresses the load balancing problem in a new way, requiring
far less communication than current approaches. It also allows existing sequential adaptive PDE
codes such as PLTMG and MC to run in a parallel environment without a large investment in
recoding. In this new approach, the load balancing problem is reduced to the numerical solution of a
small elliptic problem on a single processor, using a sequential adaptive solver, without requiring any
modifications to the sequential solver. The small elliptic problem is used to produce a posteriori error
estimates to predict future element densities in the mesh, which are then used in a weighted recursive
spectral bisection of the initial mesh. The bulk of the calculation then takes place independently on
each processor, with no communication, using possibly the same sequential adaptive solver. Each
processor adapts its region of the mesh independently, and a nearly load-balanced mesh distribution
is usually obtained as a result of the initial weighted spectral bisection. Only the initial fan-out of
the mesh decomposition to the processors requires communication. Two additional steps requiring
boundary exchange communication may be employed after the individual processors reach an adapted
solution, namely, the construction of a global conforming mesh from the independent subproblems,
followed by a final smoothing phase using the subdomain solutions as an initial guess. We present
a series of convincing numerical experiments that illustrate the effectiveness of this approach. The
justification of the initial refinement prediction step, as well as the justification of skipping the two
communication-intensive steps, is supported by some recent [J. Xu and A. Zhou, Math. Comp., to
appear] and not so recent [J. A. Nitsche and A. H. Schatz, Math. Comp., 28 (1974), pp. 937–958;
A. H. Schatz and L. B. Wahlbin, Math. Comp., 31 (1977), pp. 414–442; A. H. Schatz and L. B.
Wahlbin, Math. Comp., 64 (1995), pp. 907–928] results on local a priori and a posteriori error
estimation. This revision of the original article [R. E. Bank and M. J. Holst, SIAM J. Sci. Comput.,
22 (2000), pp. 1411–1443] updates the numerical experiments, and reflects the knowledge we have
gained since the original paper appeared.
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PII. S0000000000000000

1. Introduction. One of the most difficult obstacles to overcome in making
effective use of parallel computers for adaptive finite element codes such as PLTMG [5]
and MC [24] is the load balancing problem. As an adaptive method adjusts the mesh
according to the features of the solution, elements in some areas are refined, whereas
others are not. If an initial mesh is distributed quite fairly among a number of
processors, a very good error estimator (coupled with adaptive refinement) quickly
produces a very bad work load imbalance among the processors.

A number of static and dynamic load balancing approaches for unstructured
meshes have been proposed in the literature [21, 22, 23, 27, 40, 43]; most of the
dynamic strategies involve repeated application of a particular static strategy. One of
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the difficulties in all of these approaches is the amount of communication that must
be performed both to assess the current load imbalance severity, and to redistribute
the work among the processors once the imbalance is detected and an improved distri-
bution is calculated. The calculation of the improved work distribution can be quite
inexpensive (such as geometric or inertia tensor-based methods), or it may be a costly
procedure, with some approaches requiring the solution of an associated eigenvalue
problem or evolution of a heat equation to near equilibrium [44]. These calculations
may themselves require communication if they must be solved in parallel using the
existing (poor) distribution.

In recent years, clusters of fast workstations have replaced the more traditional
parallel computer of the past. While this type of parallel computer is now within
reach of an organization with even a modest hardware budget, it is usually difficult to
produce an efficient parallel implementation of an elliptic PDE solver; this is simply
due to the fact that elliptic continuum mechanics problems necessarily lead to tightly
coupled discrete problems, requiring substantial amounts of communication for their
solution. The load balancing problem is also more pronounced on workstation clusters:
even at 100 Mbit/sec speed, the cluster communication speeds are quite slow compared
to modern workstation CPU performance, and the communication required to detect
and correct load imbalances results in severe time penalties.

1.1. A new approach to parallel adaptive finite element methods. In this
work, we present an alternative approach that addresses the load balancing problem in
a new way, requiring far less communication than current approaches. This approach
also allows existing sequential adaptive PDE codes such as PLTMG and MC to run in
a parallel environment without a large investment in recoding.

Our approach has three main components:
1. We solve a small problem on a coarse mesh, and use a posteriori error es-

timates to partition the mesh. Each subregion has approximately the same
error, although subregions may vary considerably in terms of numbers of
elements or grid points.

2. Each processor is provided the complete coarse mesh and instructed to se-
quentially solve the entire problem, with the stipulation that its adaptive
refinement should be limited largely to its own partition. The target number
of elements and gridpoints for each problem is the same.

3. A final mesh is computed using the union of the refined partitions provided
by each processor. This mesh is regularized and a final solution computed
using a standard domain decomposition or parallel multigrid technique.

The above approach has several interesting features. First, the load balancing
problem (step 1) is reduced to the numerical solution of a small elliptic problem on
a single processor, using a sequential adaptive solver such as PLTMG or MC, without
requiring any modifications to the sequential solver. Second, the bulk of the calcula-
tion (step 2) takes place independently on each processor and can also be performed
with a sequential solver such as PLTMG or MC with no modifications necessary for
communication. (In PLTMG, one line of code was added, that artificially multiplied a
posteriori error estimates for elements outside a processor’s partition by 10−6. In MC,
two lines were added to prevent elements outside the processor’s partition from en-
tering the initial refinement queue.) Step 2 was motivated by recent work of Mitchell
[30, 31, 32] on parallel multigrid methods. A similar approach appeared recently
in [18]. The use of a posteriori error estimates in mesh partitioning strategies has also
been considered in [36].
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Fig. 1. A typical element.

The only parts of the calculation requiring communication are (1) the initial fan-
out of the mesh distribution to the processors, once the decomposition is determined
by the error estimator; (2) the mesh regularization, requiring local communication
to produce a global conforming mesh; and (3) the final solution phase, that might
require local communication (boundary exchanges). Note that a good initial guess
for step 3 is provided in step 2 by taking the solution from each subregion restricted
to its partition. Note also that the initial communication step to fan-out the mesh
decomposition information is not actually required, since each processor can compute
the decomposition independently (with no communication) as a preprocessing step.

1.2. Justification. Perhaps the largest issue arising in connection with this pro-
cedure is whether it is well founded, particularly in light of the continuous dependence
of the solution of an elliptic equation on data throughout the domain. To address this
issue, we first note that the primary goal of step 2 above is adaptive mesh generation.
In other words, the most important issue is not how accurately the problem is solved
in step 2 of this procedure, but rather the quality of the (composite) adaptively gener-
ated mesh. These two issues are obviously related, but one should note that it is not
necessary to have an accurate solution in order to generate a well adapted mesh. In-
deed, the ability to generate good meshes from relatively inaccurate solutions explains
the success of many adaptive methods.

A secondary goal of step 2 is the generation of an initial guess for the solution on
the final composite mesh. This aspect of the algorithm will be addressed in section
4. Here we focus on the primary issue of grid generation, and in particular on a
posteriori error estimates, as such estimates provide the link between the computed
solution and the adaptive meshing procedure. Here we consider in detail the schemes
used in PLTMG and MC, but similar points can be made in connection with other
adaptive algorithms.

PLTMG uses a discretization based on continuous piecewise linear triangular fi-
nite elements. The error is approximated in the subspace of discontinuous piecewise
quadratic polynomials that are zero at the vertices of the mesh. In particular, let
u−uh denote the error and let t denote a generic triangle in the mesh. In its adaptive
algorithms, PLTMG approximates the error in triangle t using the formula

||∇(u− uh)||2t ≡
∫

t

|∇(u− uh)|2 dx ≈ vtBv, (1.1)
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where (see Figure 1)

νi =
(
xi

yi

)
for 1 ≤ i ≤ 3, (1.2)

`i = νj − νk for (i, j, k) a cyclic permutation of (1, 2, 3), (1.3)

v =

 `t1Mt`1
`t2Mt`2
`t3Mt`3

 , Mt = −1
2

(
uxx uxy

uxy uyy

)
, (1.4)

B =
1

48|t|

 `t1`1 + `t2`2 + `t3`3 2`t1`2 2`t1`3
2`t2`1 `t1`1 + `t2`2 + `t3`3 2`t2`3
2`t3`1 2`t3`2 `t1`1 + `t2`2 + `t3`3

 .

Equations (1.1)–(1.5) are derived by comparing the approximation error for linear
and quadratic interpolation on t. See [5, 11] for details. The second derivatives in
the 2× 2 matrix Mt are taken as constants on t. The values of the second derivatives
are extracted as a postprocessing step from the a posteriori error estimates. The
remaining information needed to compute the right-hand side of (1.1) is generated
directly from the geometry of element t.

To be effective, the approximation of the derivatives need not be extremely ac-
curate. Many adaptive algorithms, and in particular those in PLTMG, are directed
toward creating meshes in which the errors in all elements are equilibrated. Typi-
cally, adaptive algorithms develop refined meshes starting from rather coarse meshes.
For reasons of efficiency, often many elements are refined between recomputing the
approximate solution uh.

MC also discretizes the solution over piecewise linear triangular or tetrahedral
elements, and as in PLTMG, error estimates for each element are produced by solving
a local problem using the edge-based quadratic bump functions. However, while these
local problems involve inverting 3 × 3 matrices for scalar problems in 2D, the local
problems are substantially more costly in 3D. In particular, for 3D elasticity, the local
problems require the inversion of 18×18 matrices (6 bump functions and 3 unknowns
per spatial point). Therefore, MC also provides an alternative less-expensive error
estimator, namely, the residual of the strong form of the equation, following, e.g., [42].
In this paper, the numerical results involving MC are produced using the residual-
based estimator.

While there is considerable theoretical support for the a posteriori error bounds
that form the foundation for adaptive algorithms (see, e.g., the book of Verfürth
[42] and its references), the adaptive algorithms themselves are largely heuristic, in
particular, those aspects described above. However, there is a large and growing
body of empirical evidence that such algorithms are indeed robust and effective for
a wide class of problems. In particular, they are effective on coarse meshes, and on
highly nonuniform meshes. The types of meshes likely to be generated in our parallel
algorithm are qualitatively not very different from typical meshes where a posteriori
error estimates are known to perform quite well.

In our procedure, we artificially set the errors to be very small in regions outside
the subregion assigned to a given processor, so the standard refinement procedure is
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“tricked” into equilibrating the error on just one subregion. Since the target size of
all problems solved in step 2 is the same, and each subregion initially has approxi-
mately equal error, we expect the final composite mesh to have approximately equal
errors, and approximately equal numbers of elements, in each of the refined subre-
gions created in step 2. That is, the composite mesh created in step 3 should have
roughly equilibrated errors in all of its elements. This last statement is really just
an expectation, since we control only the target number of elements added in each
subregion and do not control the level of error directly. This and other assumptions
forming the foundation of our load balancing algorithms are discussed in more detail
in section 3.2.

We note the standard adaptive procedures in PLTMG and MC have additional
refinement criteria to insure conforming and shape regular meshes. Thus, some ele-
ments outside the given subregion but near its interface are typically refined in order
to enforce shape regularity; the result is a smooth transition from the small elements
of the refined region to larger elements in the remainder of the domain. If the target
number of elements is large in comparison with the number of elements on the coarse
mesh, this should be a relatively small effect.

To summarize, we expect that for any given problem, our algorithm should per-
form comparably to the standard algorithm applied to the same initial mesh in terms
of the quality of the adaptive local mesh refinement.

2. Examples. In this section, we present some simple examples of the algorithm
presented in section 1.

2.1. A convection-diffusion equation. In this example, we use PLTMG to
solve the convection-diffusion equation

−∇ · (∇u+ βu) = 1 in Ω, (2.1)
u = 0 on ∂Ω,

where β = (0, 105)t, and Ω is the region depicted in Figure 2. This coarse triangulation
has 1676 elements and 1000 vertices.

We partitioned the domain into four subregions with approximately equal error
using the recursive spectral bisection algorithm, described in more detail in section 3.
Then four independent problems were solved, each starting from the coarse grid and
coarse grid solution. In each case the mesh is adaptively refined until a mesh with
approximately 4000 unknowns (located at triangle vertices) is obtained. The mesh
for one subdomain and the corresponding solution is shown in Figure 3. Notice
that the refinement is largely confined to the given region, but some refinement in
adjacent regions is needed in order to maintain shape regularity. We emphasize that
these four problems are solved independently, by the standard sequential adaptive
solver PLTMG. The only change to the code used for problem k (1 ≤ k ≤ 4) was to
multiply a posteriori error estimates for elements in regions j 6= k by 10−6, causing the
adaptive refinement procedure to rarely choose these elements for refinement, except
to maintain shape regularity.

The meshes from these four subproblems are combined to form a globally refined
mesh with 24410 triangles and 12808 vertices. This mesh is shown in Figure 4. The
final global solution generated by our domain decomposition/multigraph solver [9, 8,
12] is also shown in Figure 4.

We next repeated this experiment but in a more realistic setting. This time
the coarse mesh had 15153 triangles and 8000 vertices, and was partitioned into
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The initial triangulation, partitioned into four subregions with approximately equal error.

Fig. 2. The coarse grid solution.
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The refined mesh for problem 3.

Fig. 3. The solution for problem 3.
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The global refined mesh.

Fig. 4. The final global solution.
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16 subregions. Each processor then adaptively solved the problem with a target
value of 100000 vertices. The composite fine grid solution had 2883660 elements and
1467973 vertices. The final global solution required 5 iterations of our parallel domain
decomposition/multigraph procedure.

With approximately 2.9 million elements, one can not display the mesh with
triangle edges drawn (indeed we could not even collect the entire mesh on one processor
for graphics processing). Thus we rely on color to indicate element size. In Figure 5,
we show the original load balance partition and the final mesh. Here we see that the
initial load balance created partitions of widely differing size. However, in the final
mesh we note that elements along interfaces appear to vary smoothly in size, indicating
that the meshes generated on each processor were largely compatible despite the lack
of communication.

In Figure 7, we show the final solution and the a posteriori error estimate. The
uniformity of color in the a posteriori error graph indicates that our strategy did a
reasonable job of globally equilibrating the error despite the lack of communication
in the mesh generation phase.

2.2. An elliptic variational inequality. For our second example, we use
PLTMG to solve the variational inequality

min
u∈K

∫
Ω

|∇u|2 − 2f(x)u dx (2.2)

where

Ω = (0, 1)× (0, 1),

K =
{
u ∈ H1

0(Ω) : |u| ≤ 1
4
− 1

10
sin(πx1) sin(πx2) for x ∈ Ω

}
,

f(x) = −∆(sin(3πx1) sin(3πx2)).

In the absence of the obstacle, this is a simple elliptic equation with exact solution
u = sin(3πx1) sin(3πx2). This problem was solved using an interior point method. In
this case, the interior point iteration systematically replaces the simple linear system
solves of the previous example. However, the linear systems for each iteration step
of the interior point method formally have the same structure as the unconstrained
elliptic PDE, and are solved using the same multigraph technique as the first example.
See [6] for details.

In this example, we began with a uniform 3× 3 mesh, and adaptively generated
a mesh with 8000 vertices and 15676 elements. This calculation was done on a single
processor, and corresponds to Step 1 of our paradigm. The mesh with 8000 vertices
was then partitioned into 16 subregions on the basis of equal error. Each processor
then continued with Step 2 of the paradigm, with a target value of 100000 vertices,
as in the first example. The global fine mesh had 2838746 elements and 1429325
vertices. The final global solve was also an interior point iteration, with the domain
decomposition/multigraph solver used for the resulting linear systems. The final
global solve required 4 interior point iterations, starting from the initial guess provided
by Step 2.

In Figure 8, we show the initial partition in to 16 subregions and the final global
refined mesh. Here again the mesh matches very well along the interfaces, even where
the interfaces cross the contact zones. We also note that the smallest elements appear
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The initial partition into 16 regions with approximately equal error.

Fig. 5. The final mesh. Color indicates element size.

to resolve the details of the free boundary that defines the contact zones, and the
largest elements appear in the centers of the contact zones.

In Figure 9, we show plots of the error and solution. The uniformity in color in
the error shows the procedure did a reasonable job of equilibrating the error, although
we again see evidence of the extra attention the adaptive procedure (automatically!)
paid to the boundaries of the contact zones.
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Fig. 6. A posteriori error estimate for the final solution.

Fig. 7. The final global solution.
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The initial partition into 16 regions with approximately equal error.

Fig. 8. The final mesh. Color indicates element size.
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A posteriori error estimate for the final solution.

Fig. 9. The final global solution.
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2.3. A 3D elasticity problem. The two previous examples demonstrated the
effectiveness of the parallel algorithm for linear and nonlinear scalar problems and
variational inequalities in 2D. To illustrate that the parallel algorithm works equally
well for coupled elliptic systems and for 3D problems, for our third example we will
use MC to solve the elasticity equations:

−∇ · T (∇u) = f inΩ ⊂ R3, (2.3)
n · T (∇u) = g on Γ1, (2.4)

u = 0 on Γ0, ∂Ω = Γ0 ∪ Γ1, ∅ = Γ0 ∩ Γ1. (2.5)

The stress tensor T is a function of the gradient ∇u of the unknown displacement
u, and the corresponding deformation mapping ϕ and deformation gradient ∇ϕ are
given by

ϕ = id+ u : Ω 7→ R3, ∇u : Ω 7→M3, ∇ϕ = I +∇u : Ω 7→M3.

We will use a linearized strain tensor and a linear stress-strain relation:

E(∇u) =
1
2
(∇u+∇uT ) : Ω 7→ S3, T (∇u) = λ(trE)I + 2µE,

where the Lamé constants λ and µ are taken to be those of steel (λ ≈ 10.4403,
µ ≈ 8.20312). The solid object forming the domain is depicted in Figure 10. We
apply a load to the top of each letter in downward direction, through the traction
force function g above. The bottom surface of the common foundation is held fixed
through the essential boundary condition above, leaving the rest of the solid structure
to deform under the vertical load. No volume forces are present so that the function
f above is zero. We then solve the resulting equations (2.3)–(2.5) adaptively using
MC.

Fig. 10. Coarse tetrahedrialization is on the left; on the right is the solution (as a deformation),
showing the sixteen subdomains after four steps of weighted spectral bisection.

The initial coarse mesh in the left picture of Figure 10 has 524 tetrahedral elements
and 265 vertices. As in the previous examples, we partition the domain into sixteen
subdomains with approximately equal error using the recursive spectral bisection
algorithm described in section 3 below. The sixteen subdomain problems are then
solved independently by MC, starting from the complete coarse mesh and coarse mesh
solution. In this example, the mesh is adaptively refined in each subdomain until a
mesh with about 10,000 vertices is obtained, giving about 30,000 degrees of freedom
(the three coordinate deformations) on each processor. The union of the disjoint
refined partitions then totals more than one million degrees of freedom.

The resulting refined subdomain mesh for each subdomain and the corresponding
solution (plotted as a deformation of the solid) is shown in Figures 11–12. (The
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Fig. 11. Solutions (as deformations) on the final adapted meshes, for subdomains 1 through 8
(left-to-right, then top-to-bottom).

deformation is taken to be larger than the range of validity of the linear elasticity
equations for visualization purposes.) As in the PLTMG examples, the refinement
performed by MC is confined primarily to the given region, with some refinement
into adjacent regions due to the closure algorithm that maintains conformity and
shape regularity. The sixteen problems are solved completely independently by the
sequential adaptive code MC.

2.4. A 3D nonlinear elliptic system arising in gravitation. The fourth
and final example involves the use of MC to solve a coupled nonlinear elliptic system
in R3, namely, the elliptic constraints in the Einstein equations (cf. [48]):

γ̂abD̂aD̂bφ =
1
8
R̂φ− 1

8
φ−7(Â∗ab + (l̂W )ab)2 +

1
12

(trK)2φ5 − 2πρ̂φ−3, (2.6)

D̂b(l̂W )ab =
2
3
φ6D̂atrK + 8πĵa. (2.7)
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Fig. 12. Solutions (as deformations) on the final adapted meshes, for subdomains 9 through 16
(left-to-right, then top-to-bottom).

Fig. 13. An adapted mesh and solution (as a deformation), illustrating the adaptivity pattern
generated by a normal global (sequential, conforming) approach on a single processor for comparison.
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The unknowns are the “conformal factor” φ and the vector potential W b. The (l̂W )ab

operator above is a certain symmetrized gradient operator for tensors:

(l̂W )ab = D̂aW b + D̂bW a − 2
3
γ̂abD̂cW

c. (2.8)

The Einstein summation convention is used above, so that all repeated symbols in
products imply a sum over that index. The gradient operator D̂a is covariant, meaning
that its application requires the use of Christoffel symbols due to the curvilinear nature
of the coordinate system required to represent the underlying domain manifold. The
Christoffel symbols are formed with respect to an underlying background metric γ̂ab,
so that the left-hand side of the first equation for the conformal factor φ is essentially
a covariant Laplace operator.

To use MC to calculate the initial bending of space and time around two massive
black holes separated by a fixed distance by solving the above constraint equations,
we place two spherical objects in space, the first object having unit radius (after
appropriate normalization), the second object having radius 2, separated by a distance
of 20. Infinite space is truncated with an enclosing sphere of radius 100. (This outer
boundary may be moved further from the objects to improve the accuracy of boundary
approximations.) Physically reasonable functions for remaining parameters appearing
in the equations are used to completely specify the problem (cf. [26] for details).

We then generate an initial (coarse) mesh of tetrahedra inside the enclosing
sphere, exterior to the two spherical objects within the enclosing sphere. The mesh is
generated by adaptively bisecting an initial mesh consisting of an icosahedron volume
filled with tetrahedra. The bisection procedure simply bisects any tetrahedron that
touches the surface of one of the small spherical objects. When a reasonable approx-
imation to the surface of the spheres is obtained, the tetrahedra completely inside
the small spherical objects are removed, and the points forming the surfaces of the
small spherical objects are projected to the spherical surfaces exactly. This projection
involves solving a linear elasticity problem (nearly identical to the problem solved in
Example 3 above), together with the use of a shape-optimization-based smoothing
procedure. The smoothing procedure locally optimizes the following shape measure
function for a given d-simplex s, in an iterative fashion, similar to the approach in [11]:

η(s, d) =
22(1− 1

d )3
d−1
2 |s| 2d∑

0≤i<j≤d |eij |2
.

The quantity |s| represents the (possibly negative) volume of the d-simplex s, and |eij |
represents the length of the edge that connects vertex i to vertex j in the simplex. For
d = 2, this is the shape-measure used in [11], with a slightly different normalization.
For d = 3, this is the shape-measure given in [28], again with a slightly different
normalization. Unlike Laplace smoothing, this local shape optimization approach is
guaranteed to improve the shape of elements locally at each step, and always maintains
a mesh of simplices with positive volumes.

The initial coarse mesh in Figures 14 and 15, generated using the procedure
described above, has 31786 tetrahedral elements and 5809 vertices. We partition the
domain into four subdomains (shown in Figure 16 with approximately equal error
using the recursive spectral bisection algorithm described in section 3 below. The
four subdomain problems are then solved independently by MC, starting from the
complete coarse mesh and coarse mesh solution. The mesh is adaptively refined
in each subdomain until a mesh with roughly 25000 vertices is obtained (yielding
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Fig. 14. The coarse binary black hole mesh (5809 vertices and 31786 simplices).

Fig. 15. Exploded view of the coarse binary black hole mesh showing the two interior hole
boundaries.
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Fig. 16. Subdomains 1 (green), 2 (red), 3 (blue), and 4 (yellow) from spectral bisection of the
coarse binary black hole mesh. Exterior boundary and interior hole boundaries are depicted in gray.
Each of the small subdomains 1 and 2 are sliced open to reveal the inner holes they enclose.
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Fig. 17. Refined mesh for subdomain 1 (28999 vertices and 150607 simplices) and subdomain 2
(25732 vertices and 133886 simplices); only faces of tetrahedra on the boundary surfaces are shown.

subdomains with about 130000 simplices each), so that the subdomain problems each
involve roughly 100000 degrees of freedom.

The resulting refined subdomain meshes are shown in Figure 17. As in the pre-
vious examples, the refinement performed by MC is confined primarily to the given
region, with some refinement into adjacent regions due to the closure algorithm that
maintains conformity and shape regularity. The four problems are solved completely
independently by the sequential adaptive code MC. One component of the solution
(the conformal factor φ) of the elliptic system is depicted in Figure 18 (the subdomain
1 solution) and in Figure 19 (the subdomain 2 solution).

3. Computational considerations.

3.1. A spectral bisection algorithm. In this section we describe the algo-
rithm we use for partitioning the coarse mesh so that each subregion has approxi-
mately equal error. This algorithm is a variant of the recursive spectral bisection
algorithm [19, 37, 41]. While this particular mesh partitioning algorithm is among
the more expensive possibilities, we emphasize that it is used in our algorithm only
once, on a small coarse grid problem. As a result, the initial partitioning cost is typi-
cally much smaller than the solve time for a single subdomain problem (see Tables 1
and 2 below).

Let T denote a triangulation of the domain Ω with triangular elements ti ∈ T ,
1 ≤ i ≤ N , and let ei denote the a posteriori error estimate for ti,

ei ≈ ||∇(u− uh)||2ti
.

Define the N ×N symmetric, positive semidefinite M -matrix A by

Aij =


−1, i 6= j and ti and tj share a common edge,

0, i 6= j and ti and tj do not share a common edge,
si, i = j, si = −

∑
k 6=iAik,

.
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Fig. 18. The conformal factor φ from the adapted subdomain 1 solve.

Fig. 19. The conformal factor φ from the adapted subdomain 2 solve.
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A typical row of A will have three nonzero off-diagonal elements and Aii = 3; this
is the so-called discrete Laplacian for the dual graph for the triangulation. (The
triangles themselves are the nodes of the dual graph, and the edges are defined by the
adjacency relation.) We consider the eigenvalue problem

Aψ = λψ. (3.1)

Our approach is standard; by construction, the smallest eigenvalue for (3.1) is
λ1 = 0 and ψ1 = (1, 1, . . . , 1)t. Our interest is in the second eigenvector ψ2, known as
the Fiedler vector.

Let p denote the number of processors; we do not require p = 2`. We use a
standard binary tree with 2p− 1 nodes (p leaves and p− 1 internal nodes). The root
is labeled i = 1 and node i has children 2i and 2i+ 1, 1 ≤ i ≤ p− 1. Associated with
each node is a weight ωi denoting the number of leaves contained in its subtree. In
particular, ωi = 1, i = 2p− 1, . . . , p and ωi = ω2i + ω2i+1 for i = p− 1, . . . , 1.

The entire mesh is assigned to root, and it is partitioned among its two children
as follows. We first approximately solve the eigenvalue problem (3.1) for the whole
mesh, and then create a permutation of the elements {qi} such that

ψ2,i ≤ ψ2,j if and only if qi < qj .

We then find the index k that provides the best partition of the form

1
ω2

∑
qi≤k

ei ≈
1
ω3

∑
qi>k

ei. (3.2)

The corresponding submeshes are assigned to the children nodes. This is similar to
the strategy suggested by Chan, Ciarlet, and Szeto [19].

As usual, we apply this approach recursively, at each level dividing each group
of elements into two smaller sets by solving an eigenvalue problem of the type (3.1)
restricted to that group of elements. Thus after p−1 steps, we have created a partition
of the elements into p sets of roughly equal error.

We now briefly describe some details of our procedure for computing the second
eigenvector of (3.1). Our procedure is essentially a classical Rayleigh quotient iteration
[35], modified both to bias convergence to λ2, and to account for the fact that the
linear systems arising in the inverse iteration substep are solved (approximately) by an
iterative process. To simplify notation and avoid multiple subscripts, we let φk ≈ ψ2,
where k now denotes the iteration index.

We suppose that we have a current iterate φk that satisfies

φt
kφk = 1 and ψt

1φk = 0. (3.3)

Using φk we compute the approximate eigenvalue σk ≈ λ2 from the Rayleigh quotient
σk = φt

kAφk, form the residual vector rk, and approximately solve the linear system

Aδ̃k = rk ≡ σkφk −Aφk. (3.4)

Note that by construction ψt
1rk = φt

krk = 0. From δ̃k, we form the vector δk satisfying

δt
kδk = 1 and ψt

1δk = φt
kδk = 0.

In the inverse iteration step (3.4), the residual appears as right-hand side, since this
system is solved by iteration rather than by direct Gaussian elimination. In this
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circumstance only a few iterations are used, and the effect is mainly to attenuate
unwanted eigenvectors rather than “blow up” the desired eigenvector. For the iterative
method, we use our multigraph iteration [12]. So far, this has proven to be simple
and effective, but the issue of the most efficient solver in this context is presently
open. Early versions of our algorithm employed an iteration-dependent diagonal shift
in (3.4), and a simple iterative scheme. Reinitializing the multigraph method at
each iteration to allow for such a shift is so costly it offsets the benefit of improved
convergence rate in the overall iteration.

Finally, we solve the 2× 2 eigenvalue problem

Âv = λv,

where

Â =
(
φt

k

δt
k

)
A

(
φk δk

)
.

If v = (α, β)t is an eigenvector corresponding to the smaller eigenvalue, we form

φ̃k+1 = αφk + βδk,

and then φk+1 is formed from φ̃k+1 by imposing conditions (3.3). The use of this
subspace-iteration–like calculation rather than a simple eigenvector update provides
a means to bias the overall Rayleigh quotient iteration towards convergence to ψ2.
This completes the description of a single Rayleigh quotient iteration. Note that
continually imposing orthogonality conditions with respect to ψ1 is mathematically
unnecessary, but is important in practice because this direction is reintroduced by
roundoff error. Without systematically and continually excluding this eigenvector,
the Rayleigh quotient iteration could easily converge to ψ1.

3.2. Load balancing. Partitioning the domain to achieve approximately equal
error in each subregion is not really the optimal approach. The optimal strategy is
to partition the domain such that each subregion requires equal work for the ensuing
calculation, and the errors are approximately equal in each element of the global
composite mesh. Estimating the work is problematic for many reasons, among them:

• The cost of function evaluations and numerical integration used in comput-
ing matrices, right-hand sides, and a posteriori error estimates might vary
significantly in various regions. Moreover, the number of such quadratures
depends on the number of elements, and the number of instances when such
assembly steps are required.
• The number of iterations of Newton’s method for nonlinear systems and lin-

ear iterative methods for linear systems may vary slightly from problem to
problem, even though all are derived from the same continuous problem. Be-
cause the number of iterations is usually small, the percentage change in the
work can be quite large (e.g., 3 rather than 2 multigrid cycles represents a
50% increase in the work for that part of the computation). It should also
be clear that such small differences are difficult to predict in advance of the
actual calculation. The cost per iteration will also vary due to differing orders
of the problems.
• The cost of grid management (refining, unrefining, moving the mesh points,

and maintaining the relevant data structures) will vary with the number of
elements involved and the particular mix of tasks.
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• The number of major iterations through the adaptive feedback loop may differ
from problem to problem, even if the final meshes all have about the same
number of unknowns.

Creating subregions of approximately equal error for the initial partition really
amounts to the fragile assumption that this corresponds to approximately equal work
for each processor. Although one can hope that more sophisticated models of work
will lead to improvement, it seems certain that the overall flexibility and complexity of
current adaptive solvers will still make this aspect of the initial load balancing phase
problematic.

Table 1
PLTMG cumulative execution times (seconds) for the convection-diffusion example (SIAM)

and the variational inequality example (OBSTACLE).

SIAM OBSTACLE
breakpoint average range average range
end of Step 1 4.6 4.6 – 4.6 6.3 6.3 – 6.3
end of Step 2 16.4 15.4 – 17.3 53.7 48.6 – 59.8
end of reconcile mesh (Step 3) 22.4 20.4 – 23.8 58.4 52.9 – 64.6
end of DD solve (Step 3) 63.2 59.3 – 66.4 92.8 84.4 – 99.0

Table 2
MC cumulative execution times (seconds) for the elasticity example (SIAM 3D) and the binary

black hole example (BLACK HOLE).

SIAM 3D BLACK HOLE
breakpoint average range average range
end of Step 1 5.2 5.2 – 5.2 31.3 31.0 – 32.3
end of Step 2 146.8 110.2 –198.3 1055.1 923.4 – 1206.3

On the positive side, despite all the dangers mentioned above, our load balanc-
ing procedure using a posteriori error estimates has empirically been observed to be
much better than one might at first expect, at least for the classes of problems we
address. For example, in Table 1, we give the accumulated execution execution times
(in seconds) for the two PLTMG example calculations described in section 2 (exam-
ples 1 and 2 in sections 2.1 and 2.2, respectively). These examples were run on a
small LINUX-based Beowulf cluster, consisting of 16 dual 1800 Athlon-CPU nodes
with 2GB of memory each, a dual Athlon file server, and a 100Mbit CISCO 2950G
Ethernet switch. This cluster runs the NPACI ROCKS version of LINUX (based on
RedHat 7.1), and employs MPICH as its MPI implementation. The computational
kernels of PLTMG are written in FORTRAN. The convection-diffusion example took
a total time of about a minute and the variational inequality less than two minutes.
The columns labeled “range” record the smallest and largest accumulated times at
each breakpoint; all 16 processors were equally and fully charged for Step 1, even
though the computation was actually done on only one processor.

In comparing the results in these two examples, the biggest difference occurred
in Step 2, which was about 4 times more costly for the variational inequality. This
largely reflects the difference between the simple linear system solves in the convection-
diffusion problem compared with the interior point iteration for the variational in-
equality. The latter required a linear system solve for each iteration step. The time
spent reconciling the mesh in Step 3 is perhaps a bit surprising (5-6 seconds of the
total time). This mostly reflects the computational cost of making the mesh con-
forming following the boundary exchange, rather than the communication cost itself
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(see section 4.1). Interestingly, the final global solve was faster for the variational
inequality. This is because the variational inequality global solve used 4 interior point
iterations, each requiring a domain decomposition/multigraph inner iteration. For
each of interior point iteration, we used just one inner DD iteration, for a grand total
of 4 domain decomposition/multigraph iterations. On the other hand, the convection
diffusion equation used 5 domain decomposition/multigraph iterations in the final
solve of its linear system, and this made the overall DD solve slightly more costly for
the convection diffusion example.

In Table 2, we give the execution times (in seconds) for the two MC example
calculations described in section 2 (examples 3 and 4 in sections 2.3 and 2.4, respec-
tively). These times are again from the 16-processor LINUX-based Beowulf cluster.
The first example used all 16 processors; the second example used 4 of the 16 pro-
cessors. The initialization time includes generating a coarse mesh from the geometry
description, solving the coarse mesh problem, computing a posteriori error estimates,
and partitioning the domain. In both examples, the initialization step was done iden-
tically on all of the processors; it could also have been done on a single processor, with
the results sent to the remaining processors. The times for each of the subproblems
include all aspects of the adaptive feedback loop, including matrix and right-hand
side assembly, solution of linear and nonlinear systems, a posteriori error estimation,
and adaptive refinement and mesh smoothing.

The MC implementation does not form a global problem; this can be justified
to some extent using the arguments in [24, 25], which are summarized briefly in
section 4.3. It is interesting to note that when it is possible to skip the global problem,
the overhead required to decompose the problem is amortized by the gain due to the
reduced subproblem sizes; solving the subproblems sequentially is actually faster than
solving a global problem of the same overall resolution. In other words, if the solution
quality of the decomposition algorithm is reliable, then the decomposition algorithm
actually reduces the sequential solution time when viewed purely as a sequential
algorithm. Note that if the decomposition algorithm is used in conjunction with
solvers with less favorable complexities than the O(N logN) complexities in PLTMG

and MC, then the decomposition algorithm would show an even larger gain over
solving the global problem. From Table 2 we see that although the mix of calculations
was different for each subproblem, the overall times do not vary too much. Since
these problems were solved completely independently, there was no time spent in
communication between processors, synchronization, etc. Thus to some extent, the
time potentially saved by not having the processor communicate during the bulk of
the computation offsets the time potentially lost by imperfect load balancing. Finally,
we note that the black hole calculation has a much larger initialization time than the
elasticity problem due to the size of the initial coarse mesh (265 vertices compared
with 5,809 vertices).

3.3. Scalability. We now consider some aspects of the scalability of our pro-
cedure. Let Nc denote in the size of the coarse grid problem (number of elements
or grid points). Let Nf denote the target size of the global fine grid problem, p de-
note the number of processors, and Np denote the target problem size for each of the
processors.

We have, approximately,

Np ≈ Nc +
Nf −Nc

p
. (3.5)
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Relation (3.5) does not take into account the fact that the processor given the task
of refining subregion Ωi will refine some elements not in Ωi. This will occur mainly near
the interface boundaries of Ωi, where the mesh will be graded in a smooth fashion
from the smaller elements of Ωi to larger elements that cover the remainder of Ω.
Such grading is necessary to maintain a conforming, shape regular mesh. In a typical
situation, one would expect this to be an effect of order O(N1/2

p ) in 2D, and of order
(N2/3

p ) in 3D. Nevertheless, in practical situations, choosing Np > Nc+(Nf−Nc)/p is
generally needed to achieve a fine grid problem size of Nf . For example, in the PLTMG

examples in Section 2, we had p = 16, Nc = 8000, and Np = 100000. Equation (3.5)
then predicts

Nf ≈ pNp − (p− 1)Nc = 1480000,

where the actual values were Nf = 1467973 and Nf = 1429325.
It seems clear that generally one should have

Nc � p. (3.6)

A requirement like (3.6) is important to give the partitioning algorithm enough flexi-
bility to construct regions of approximately equal error. For example, in the extreme
case where the number of elements and the number of processors are equal, then the
only partition is to provide one element to each processor, regardless of the error. This
would likely result in a very uneven distribution of the error and poor performance of
our adaptive refinement strategy.

It also is important to have

Np � Nc. (3.7)

This will marginalize the cost of redundant computations. For example, if Np = 2Nc,
then one could expect that about half of the computation on each processor would
be redundant, which is a significant fraction of the total cost. By solving the problem
on the entire domain, using a coarse mesh in all but one subregion, we are in effect
substituting computation for communication. This trade-off will be most effective in
situations where Np is much larger than Nc (e.g., Np > 10Nc) so that the redundant
computation represents a small fraction of the total cost.

Taken together (3.5)–(3.7) indicate that for good performance, the difficulty of
the problem must in some sense scale in proportion to the number of processors.
That is, “simple” problems with only a few significant features that need to be re-
solved through refinement can most efficiently be solved using a few processors. Such
problems could be handled on a small network of powerful workstations. Using our
procedure effectively with, say, p = 128, would require a more difficult problem that
could be decomposed into at least 128 regions, with most including some interesting
behavior to resolve.

In many realistic application problems, the features of the domain and/or the
equation coefficients provide more than enough complexity to lead to good scalability.
For example, several extremely large biomolecular modeling problems have now been
successfully solved through the use of the parallel algorithm on massively parallel
computers with hundreds of processors such as the Blue Horizon. This work, which
is described in detail in [3, 4], showed a very high degree of parallel efficiency even for
hundreds of processors, due to the lack of need for a final global solve (see Section 4.3).
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4. The global solution. In this section we discuss some options for combining
the independent calculations to form a global composite mesh and solution.

4.1. Conforming meshes and domain decomposition. Here we briefly de-
scribe our implementation of Step 3 of the paradigm in PLTMG. In the original paper
[7], we presented a scheme to collect the global fine mesh on one processor at the
conclusion of the calculation. However, it soon became clear that a more useful sce-
nario is to keep the global fine mesh and solution distributed across the processors.
Furthermore, the coarse parts of the mesh on each processor play an important role
in our domain decomposition global solver. Thus here we describe a procedure that
creates a distributed conforming fine mesh by updating the local mesh as it exists at
the conclusion of Step 2 of our paradigm.

In PLTMG, mesh refinement on interface edges is restricted to simple bisection,
although our adaptive refinement procedure generally allows the mesh points to move.
Our mesh regularization procedure has two substeps. Each step begins with interpro-
cessor communication, where information describing the interface edges is exchanged.
After the first communication step, boundary edges will not match if there is more
refinement in one side of the interface (see Figure 20, left).
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Fig. 20. The coarse side of a non matching interface (left) is refined to make the global mesh
conforming (right).

Using information from its neighbors, each processor creates a mapping of its
interface edges to those of its neighbors. Less refined edges on its side of the in-
terface are refined as necessary to be compatible with the neighbor. Less refined
edges on the neighbor’s side are refined by the neighbor. The boundary exchange
and edge matching procedures are repeated, and this time all processors will succeed
in matching all their interface edges to those of its neighbors (see Figure 20, right).
The resulting data structure (mappings of corresponding vertices deduced from the
matching edges) forms the basis of the interprocessor communication steps of our
domain decomposition solver.

If one uses a refined element tree data structure for the refinement process [10, 13],
as in previous versions of PLTMG, then this procedure is greatly simplified, since each
independent problem starts from the same element tree. A simple postprocessing step
can enforce equal (and hence conforming) levels of refinement for elements sharing an
interface edge.

To compute the global solution, one can of course simply assemble and solve the
global problem on a single processor. This was the original choice made in PLTMG.
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This was done to quickly obtain a working parallel code to validate Steps 1 and 2
of the paradigm, rather than for reasons of efficiency. Subsequently, we implemented
the domain decomposition approach described below. One could also apply parallel
multigrid or another parallel iterative method in this situation. Here the parallel
multigrid method of Mitchell [30, 31, 32] seems particularly appropriate. In any event,
by creating a good initial guess from the solutions of the independent problems, very
little work (e.g., few iterations) should be required to compute the global solution.

We now describe the domain decomposition algorithm presently implemented in
PLTMG. In many respects, this algorithm is motivated by and similar to the domain
decomposition algorithms described in [9, 8]. Consistent with our overall philosophy,
we wish to minimize communication and maximize the use of existing sequential
software.

For simplicity, we restrict attention to the case of just two subdomains. In our
scheme, each subregion contributes equations corresponding all fine mesh points, in-
cluding its interface. Thus in general there will be multiple unknowns and equations
in the global system corresponding to the interface grid points. This is handled by
equality constraints that impose continuity at all mesh points on the interface. The
result is a mortar-element like formulation, using Dirac δ functions for the mortar
element space. In any event, with a proper ordering of unknowns, the global system
of equations has the block 5× 5 form


A11 A1γ

Aγ1 Aγγ I
Aνν Aν2 −I
A2ν A22

I −I



δU1

δUγ

δUν

δU2

Λ

 =


R1

Rγ

Rν

R2

Uν − Uγ

 . (4.1)

Here A11 and A22 correspond to the fine grid points on processors 1 and 2, re-
spectively, that are not on the interface, while Aγγ and Aνν correspond to interface
points. The fifth block equation imposes continuity, and its corresponding Lagrange
multiplier is Λ. The identity matrix appears because the global fine mesh is conform-
ing. The introduction of the Lagrange multiplier and the saddle point formulation
(4.1) are only for expository purposes; indeed, Λ is never computed or updated.

On processor 1, we develop a similar but “local” saddle point formulation. That
is, the fine mesh subregion on processor 1 is “mortared” to the remaining course mesh
on processor 1. This leads to a linear system of the form

A11 A1γ

Aγ1 Aγγ I
Āνν Āν2 −I
Ā2ν Ā22

I −I



δU1

δUγ

δŪν

δŪ2

Λ

 =


R1

Rγ

Rν

0
Uν − Uγ

 , (4.2)

where quantities with a bar (e.g., Ā22) refer to the coarse mesh. A system similar to
(4.2) can be derived for processor 2. With respect to the right hand side of (4.2), the
interior residual R1 and the interface residual Rγ are locally computed on processor
1. We obtain the boundary residual Rν , and boundary solution Uν from processor 2;
processor 2 in turn must be sent Rγ and Uγ . The residual for the course grid interior
points is set to zero. This avoids the need to obtain R2 via communication, and to
implement a procedure to restrict R2 to the coarse mesh on processor 1. Given our
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initial guess, we expect R1 ≈ 0 and R2 ≈ 0 at all iteration steps. Rγ and Rν are not
generally small, but Rγ +Rν → 0 at convergence.

As with the global formulation (4.1), equation (4.2) is introduced mainly for
exposition. The goal of the calculation on processor 1 is to compute the updates δU1

and δUγ , that contribute to the global conforming solution. To this end, we formally
reorder (4.2) as

−I I
−I Āνν Āν2

A11 A1γ

I Aγ1 Aγγ

Ā2ν Ā22




Λ
δŪν

δU1

δUγ

δŪ2

 =


Uν − Uγ

Rν

R1

Rγ

0

 . (4.3)

Block elimination of the Lagrange multiplier Λ and δŪν in (4.3) leads to the block
3× 3 Schur complement systemA11 A1γ

Aγ1 Aγγ + Āνν Āγ2

Ā2ν Ā22

 δU1

δUγ

δŪ2

 =

 R1

Rγ +Rν + Āνν(Uν − Uγ)
Ā2ν(Uν − Uγ)

 . (4.4)

The system matrix in (4.4) is the matrix used in the final adaptive refinement step
on processor 1 (with possible modifications due to global fine mesh regularization).
Thus the final matrix and mesh from Step 2 of the paradigm can be reused once again
in the domain decomposition solver. In a sense Lagrange multipliers are introduced
and then eliminated as an algebraic device to derive the right hand side of (4.4). Other
than the right hand side, our algorithm is very similar to those analyzed in [9, 8].
To summarize, a single domain decomposition/multigraph iteration on processor 1
consists of:

1. locally compute R1 and Rγ .
2. exchange boundary data (send Rγ and Uγ ; receive Rν and Uν).
3. locally compute the right hand side of (4.4).
4. locally solve (4.4) via the multigraph iteration.
5. update U1 and Uγ using δU1 and δUγ .

In its most simple form, the update step could be U1 ← U1 + δU1, Uγ ← Uγ +
δUγ , which requires no communication. Standard acceleration procedures typically
require some global communication to compute parameters. We remark that the
global iteration matrix corresponding to this formulation is not symmetric, even if
all local system matrices are symmetric. Thus conjugant gradient acceleration can
not be used, although GMRES could be applied. In PLTMG, our solver is normally
used in the context of an approximate Newton method (using just one DD iteration
at each Newton step). A Newton line search technique that requires some global
communication is used for the update step. In particular, in addition to computing
several global norms and inner products, the line search produces the output for steps
1–3 above for the next Newton iteration.

4.2. Mortar elements. In the 3D case, producing a global conforming mesh
is much more problematic, in that face matching simply through bisection is not
achievable as it is in the 2D case. This is a well-known problem, and impacts adaptive
tetrahedral subdivision algorithms based on octasection of tetrahedra [49, 34, 17]. We
consider two approaches for dealing with this difficultly in the present context. The
first of these is the mortar elements, which is discussed here; the second approach is
described in the next section.
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One approach for making a global solution from subdomain solutions on non-
conforming subdomains is to simply use the global nonconforming mesh and es-
tablish weak continuity of the solution on the interface using so-called mortar ele-
ments [16, 15]. Although originally developed as a technique to couple spectral and
finite element methods, it can be used to couple finite element discretizations that are
conforming within subdomains but have nonmatching meshes at the interfaces of the
subdomains.

To keep the discussion simple, suppose that there are only two subregions with
a single interface Γ. Let u(1)

h and u
(2)
h denote the approximate solutions for the two

subregions. Rather than forcing the mesh along the interface to become conforming,
we impose continuity of the computed solution weakly, as∫

Γ

(u(1)
h − u

(1)
h )φdx = 0 for all φ ∈ V,

where V is some suitably chosen mortar space. See [16, 15, 1, 14] for details on the
selection of V. When assembled, the resulting system of linear equations will have the
classic saddle point structure A1 0 B1

0 A2 B2

Bt
1 Bt

2 0

  U1

U2

Λ

 =

 R1

R2

0

 , (4.5)

where, as usual, Ai correspond to individual subregions and Bi corresponds to the
coupling of the subregions through the mortar space V. The space V plays the role of
Lagrange multipliers in the saddle point problem, and the element of V corresponding
to the solution of (4.5) has a physical interpretation in terms of an approximation to
the normal component of ∇u on Γ.

From its structure, it is clear that one may apply classical domain decomposition
techniques to the solution of (4.5) (and the more general case of many subregions).
All of the information related to each subdomain is already present on the processor
responsible for adaptively creating that portion of the composite mesh. Communica-
tion between processors is necessary for coupling through the mortar elements, but
as usual, the required information is related to the solution and the structure of the
mesh only along the interface, generally a small amount of data in comparison with
the size of the subdomains.

4.3. Overlapping decompositions and interior estimates. The simplest
way to form a global solution is not to form one, meaning that the subdomain solutions
themselves are taken to be the final discrete solution represented subdomainwise. To
evaluate the solution at any point x ∈ Ω̄, one simply must determine which subdomain
contains the point x and then fetch the solution value from the particular subdomain.
While this approach seems naive, some recent [47] and not so recent [33, 38, 39]
theoretical results actually support this. In particular, it was shown in [24, 25] that
optimal approximation order in the H1-norm can be achieved by simply combining
the disjoint refined solutions using a partition of unity, without the solution of a global
problem. The argument in [25] uses the partition of unity framework of Babuška and
Melenk [2] to combine the local estimates from [47] into a global estimate. In many
applications (cf. [3, 4]), one is primarily interested in a high-quality approximation to
the derivatives of a function rather than the function itself; in some situations these
problems can be well-approximated without the final global solution phase.
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The principle idea underlying the key local estimates in [47] is that while elliptic
problems are globally coupled, this global coupling is essentially a “low-frequency”
coupling, and can be handled on a mesh that is much coarser than that required
for approximation accuracy considerations. This idea has been exploited for example
in [29, 46], and is, in fact, why the construction of a coarse problem in overlapping
domain decomposition methods is the key to obtaining convergence rates that are
independent of the number of subdomains (cf. [45]).

The key results in [47] for our purposes are the following a priori and a posteriori
error estimates. To explain, let Ωk be the collection of disjoint subregions of the
domain Ω defined by the weighted spectral bisection algorithm of the previous section,
and let Ω0

k to be an extension of the disjoint Ωk, such that Ωk ⊂⊂ Ω0
k, and so that

the sizes of the overlap regions Ω0
i

⋂
Ω0

j are on the order of the sizes of the regions
Ωk. Under some reasonable assumptions about the approximation properties of a
finite element space Sh

0 defined over Ω (existence of superapproximation, inverse, and
trace inequalities), the following a priori error estimate holds for the global Galerkin
solution uh to a Poisson-like linear elliptic equation:

‖u− uh‖H1(Ωk) ≤ C
(

inf
v∈Sh

0

‖u− v‖H1(Ω0
k) + ‖u− uh‖L2(Ω)

)
,

and the following a posteriori error estimate holds (where η(uh) is a locally computable
jump function):

‖u− uh‖H1(Ωk) ≤ C
(
‖hη(uh)‖L2(Ω0

k) + ‖u− uh‖L2(Ω)

)
.

The a priori result states that the error in the global Galerkin solution uh re-
stricted to a subdomain Ωk can be bounded by the error in the best approximation
from the finite element space Sh

0 measured only over the extended subdomain Ω0
k,

plus a higher-order global term (the global L2-norm of the error). In the context
of the algorithm in this paper, if the global coarse mesh is quasi-uniform and shape
regular with element diameter H, and if we assume that u ∈ H2(Ω), then standard
interpolation theory and L2-lifting can be used to bound the global term by an O(H2)
factor. Moreover, if the mesh produced by adaptivity in the extended subdomain Ω0

k

is again quasi-uniform and shape regular, but now has element diameter h, then the
local term can be bounded using standard interpolation theory by an O(h) factor.
If our adaptive method respects the relationship h = O(H2) between the coarse and
refined regions, then asymptotically the global term based on the much coarser mesh
outside Ω0

k does not pollute the accuracy of the adapted solution in the subdomain
Ωk. A similar argument can be applied in the less regular case of u ∈ H1+α(Ω).

The a posteriori estimate states that the error in the global Galerkin solution re-
stricted to a subdomain Ωk can be estimated in terms of a (computable) jump function
η(·) over the extended subdomain Ω0

k, plus a higher-order term (the global L2-norm
of the error). Through the same argument above, this means that asymptotically, the
global error can be controlled by the local computable jump function estimate in each
subdomain, so that reliable a posteriori error estimates can be computed in isolation
from the other subdomains.

The a priori and a posteriori estimates from [47] outlined above were derived for
self-adjoint linear problems in the plane, and as a result they do not apply directly to
the examples presented in this paper (nonlinear scalar problems and elliptic systems
in both 2D and 3D). Moreover, the local refinement strategy described here tends
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to produce very little overlap of the extended subdomains Ω0
k, and we also do not

explicitly enforce a refinement limitation such as h = O(H2). Small overlap violates
one of the basic assumptions in [47], and it also violates the stable partition of unity
assumption for using the framework in [25] to justify skipping the global problem.
However, the approach provides a very good initial approximation to an overlapping
domain decomposition procedure for solving the final global problem.

An alternative to a priori enforcing explicit large overlap for avoiding the solu-
tion of a global problem is to use duality indicators to determine the minimal overlap
automatically. This approach is described and analyzed in [25]; one computes the
solution to a linearized dual problem with a characteristic function for the subdomain
as the source term for the dual problem. The dual solution then weights a residual
indicator for driving adaptive refinement in the subdomain. Global estimates (for
a linear functional of the error) are established in [25] for the resulting global solu-
tion, recovered from local duality-driven adaptive solutions using only a partition of
unity. This approach to determining necessary subdomain overlap automatically is
investigated more thoroughly in [20], using the idea of generalized Green’s functions.
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