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Abstract

Results of the application of an adaptive �nite element (FE) based solution using the FETK

library of M. Holst to Density Functional Theory (DFT) approximation to the electronic structure

of atoms and molecules are reported. The severe problem associated with the rapid variation

of the electronic wave functions in the near singular regions of the atomic centers is treated by

implementing completely unstructured simplex meshes that resolve these features around atomic

nuclei. This concentrates the computational work in the regions in which the shortest length scales

are necessary and provides for low resolution in regions for which there is no electron density. The

accuracy of the solutions signi�cantly improved when adaptive mesh re�nement was applied, and it

was found that the essential di�culties of the Kohn-Sham eigenvalues equation were the result of the

singular behavior of the atomic potentials. Even though the matrix representations of the discrete

Hamiltonian operator in the adaptive �nite element basis are always sparse with a linear complexity

in the number of discretization points, the overall memory and computational requirements for the

solver implemented were found to be quite high. The number of mesh vertices per atom as a

function of the atomic number Z and the required accuracy ε (in atomic units) was esitmated to be

υ (ε, Z) ≈ 122.37 ∗ Z2.2346

ε1.1173 , and the number of �oating point operations per minimization step for a

system of NA atoms was found to be O
(
N3
A ∗ υ (ε, Z)

)
(e.g. Z = 26, ε = 0.0015 au, and NA=100,

the memory requirement and computational cost would be ~0.2 terabytes and ~25 peta�ops). It

was found that the high cost of the method could be reduced somewhat by using a geometric based

re�nement strategy to �x the error near the singularities.
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I. INTRODUCTION

Kohn-Sham Density Functional Theory (DFT) [32] has become a state of the art tool in

the calculation of the properties of solid state and molecular systems, predicting structures,

properties, and reactivity or a wide variety of systems. In many cases it can achieve chemical

accuracy at a smaller cost than other ab initio techniques. It is now routine at this level

of theory to perform simulations containing hundreds of atoms, and on today's parallel

supercomputers simulations containing over a thousand atoms are feasible; making realistic

descriptions of material surfaces and defects possible. While current implementations of

DFT are very e�cient and the results adequate for many cases [1, 2], there are limitations

to the much wider application of these approaches to the even more demanding systems

encountered in complex technology problems. The most important shortcoming is that the

parallel scaling of existing solution methods are not su�cient to exploit the performance of

the next generation parallel computers that are like to contain over 100K processors. Other

limitations of standard implementations of DFT are that they use basis sets [3, 4] and/or

pseudopotentials [5] that are highly engineered, scale as O(N3
A...N

4
A) in the number of atoms,

and the time scales of many interesting processes are orders of magnitude larger than can be

directly simulated. Hence, there is still a need to investigate other computational methods

for solving DFT.

Most popular solvers for DFT today are based on either the plane-wave method or the

Gaussian orbital method. Both these methods su�er from the use of basis functions that do

not have compact support, resulting in dense matrix operators and computationally intensive

transforms which are di�cult to implement e�ciently on massively parallel computers. The

limitations of these standard DFT solvers motivated the development of various real space

solutions to the DFT equations. There have been a number of e�orts to develop fast ab initio

solvers based on real space solutions to the DFT equations [6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,

18, 19, 20, 21, 22, 23, 24]. Uniform �nite di�erence gridding coupled with multilevel solvers

has led to signi�cant progress in the calculation of large systems [6, 7, 8, 9, 10, 11, 12] with

large numbers of processors (~10K processors) [8]. While these methods are often robust

enough for predicting structural properties they are not very e�cient for describing multiple

length scales and as a result do not have accurate description near the atomic centers.

In particular, when the interaction between the electron and the nucleous is described by
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the proper singular potential, − Ze

|~r−~RI |
, the singular behavior at |~r − ~RI | can cause trouble

with convergence. In fact, this kind of potential cannot be represented by uniform meshes

methods. Adaptive �nite element methods on the other hand, which can telescope down

to the sinularity, can in principle describe this kind of potential, and if used with a low

order elements (i.e. piecewise �nite elements) all the quantum mechanical operators can be

represented by O (N) sparse matrices, which can in principle limit the communications per

processor to be O (1).

Even though adaptive real space methods for DFT have shown some promise, these

methods have needed to use a large number of elements for high Z atoms to be described ac-

curately. Earlier work by Bylaska et al. [16], in which they developed a multilevel eigenvalue

solver based on structured adapted mesh re�nement and �nite di�erence gridding worked

well for simple systems such as H, and H+
2
. However, by Z=10 (i.e. Ne) errors as large as

1 Hartree were seen with this approach. These large errors led Kohn et al. to replace the

atomic singular potentials with pseudopotentials and replace the �nite di�erence solver with

an adaptive �nite element solver [17]. This new solver improved the accuracy somewhat,

but at the time it was too computationally intensive to be considered as a practical alterna-

tive to standard DFT solvers. Recently, Fattenburt et al. have revisited these solvers and

have shown them to be competitive with FFT solvers when very sti� pseudopotentials are

used [18], however this work still had to rely on using pseudopotentials. The recent work of

Harrison et al. using a multi-wavelet (high-order) basis [19, 20, 21], has also shown to be

computationally competitive with standard DFT solvers and in some cases surpass them.

However, in order to make their method e�cient they still had to rely on smoothing the

atomic singular potentials.

In this paper, we present an overview of our implementation of an unstructured adaptive

�nite element (FE) �rst principles solver and apply it to DFT equations which contain atomic

singular potentials to estimate its overall memory and computational requirements. This

solver is based on the FETK �nite element framework of Holst [25]. The implementation is

unique in that tetrahedral elements are used rather than parallelepipeds, and it also makes

use of completely unstructured simplex meshes that have the advantage of giving resolution

of the near singular features around atomic nuclei using minimal computational resources.

This type of solver is one of the more popular solvers for partial di�erential equations. This

method has several potential advantages over other popular solvers. It has compact support,
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it can be controlled systematically by increasing the number of the basis functions, produces

sparse matrices, it allows for the variable resolution in real space and can exactly represent

potentials with �Z/r� singularities, and it does not require the use of a computationally

intensive transform.

In section II, a concise review of the FE method is given, and in section III the for-

mulation of FE DFT equations is presented. In Section IV, by using test problems which

encorportate the critical issues of multiple length scales and the singular behavior of the po-

tential, the overall memory and computational requirements per atom needed by the solver

are estimated. The solver is then illustrated for several atoms and molecules including H,

He, Li, Ne, H+
2
, and Li2. Finally conclusions are given in section V.

II. BACKGROUND OF THE FINITE ELEMENT (FE) METHOD

In the FE procedure [26, 27, 28, 29, 30, 31], the solution domain W (e.g. Fig. 1) is divided

into a number of closed regions or elements, {el}Ll=1, where L is the number of elements. For

each element el, a set of Tl nodes is chosen.

{
~N el
t = (xel

t , y
el
t , z

el
t )
}Tl

t=1
(1)

From these nodes, a global set of nodes is de�ned from the union of the element nodes,{
~Nm

}M
m=1

= ∪Ll=1

{
~N el
t

}Tl

t=1
(2)

where M is the number of nodes in the �nite element mesh. Nodes may be located at an

element vertex, face, edge, or in its interior. A set of Tl basis functions, are then de�ned for

each element el. The basis functions are de�ned such that they are non-zero only inside the

element, represented as simple low order polynomials, and have a value of 1 at its associated

node, i.e.

φel
t (~x) = φel

t (x, y, z) =
∑
n1

∑
n2

∑
n3

at,n1,n2,n3x
n1yn2zn3 (3)

Using these basis functions any piecewise polynomial function may be expanded as follows

u (~x) =
L∑
l=1

Tl∑
t=1

c̃t,lφ
el
t (~x) (4)
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where c̃t,l are the expansion coe�cients. This expansion is somewhat intricate given that

neighboring elements share nodes with one another, which in turn results in certain expansion

coe�cients being equal to one another. For example, the expansion of a function using the

�nite element mesh shown on the left of Fig. 1 necessitates the following coe�cients being

equal

c1 = c̃11 = c̃12 = c̃13 = c̃14 = c̃15 = c̃16 = c̃17 = c̃18

c2 = c̃41 = c̃42 = c̃43 = c̃44

c3 = c̃45 = c̃46 = c̃47 = c̃48

c4 = c̃21 = c̃34 = c̃35 = c̃28

c5 = c̃22 = c̃31 = c̃36 = c̃25

c6 = c̃23 = c̃32 = c̃37 = c̃26

c7 = c̃24 = c̃34 = c̃38 = c̃27

(5)

To facilitate this mapping, a local to global index, m̃ (t, l), is de�ned which converts local

indexing to global indexing. By using this index the �nite element expansion can then

written as

u (~x) =
L∑
l=1

Tl∑
t=1

cm̃(t,l)φ
el
t (~x) (6)

Compared to Eqs. (5) and (6), this expansion is fairly uncomplicated. However, it can be

simpli�ed even further by introducing the following assembled �nite element basis.

ηm (~x) =
L∑
l=1

Tl∑
t=1

φel
t (~x) δm,m̃(t,l) (7)

With this assembled basis, the �nite element expansion is simply written as

u (~x) =
M∑
m=1

cmηm(~x) (8)

To facilitate the de�nition of the �nite elements el and the corresponding basis functions as

shown in Eq. 3, standard elements ẽ and their corresponding basis functions are introduced.

This is done so that basis functions and integrals for the elements of di�erent shapes can

be readily calculated, through a variable transformation, in terms of just basis functions

and integrals for the standard element. In this work 3D tetrahedral elements with nodes

at the vertices were used. The standard 3D tetrahedral element ẽ which covers the domain
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[x̃ = 0 : 1, ỹ = 0 : 1− x̃, z̃ = 1− x̃− ỹ], is shown in Fig. 2, and its standard local basis

functions are

φ̃1 (x̃, ỹ, z̃) = 1− x̃− ỹ − z̃

φ̃2 (x̃, ỹ, z̃) = x̃

φ̃3 (x̃, ỹ, z̃) = ỹ

φ̃4 (x̃, ỹ, z̃) = z̃

(9)

Integrals over the tetrahedral standard element,

I ẽ
(
f̃
)

=

ˆ
ẽ

f
(
~̃x
)
d~̃x =

ˆ 1

0

dz̃

ˆ 1−z̃

0

dỹ

ˆ 1−z̃−ỹ

0

dx̃f̃
(
~̃x
)

(10)

can readily be computed for polynomial functions

f̃
(
~̃x
)

= f̃ (x̃, ỹ, z̃) = x̃n1 ỹn2 z̃n3 (11)

using the following analytic formula,

I ẽ (x̃n1 ỹn2 z̃n3) =
´ 1

0
dz̃
´ 1−z̃

0
dỹ
´ 1−z̃−ỹ

0
x̃n1 ỹn2 z̃n3

= P̃ (n1, 0) P̃ (n2, n1 + 1) P̃ (n3, n1 + n2 + 2)
(12)

where

P̃ (a, b) =
b∑

k=0

 b

k

 (−1)k

(a+ k + 1)
(13)

Eqs. (12) and (13) are fairly straightforward to compute. However, the computation of

integrals of Eq. 11 can be further simpli�ed. Since the basis functions are only of a certain

polynomial order O (n), the integrals of Eq. (10) only need to be calculated to the same

order in the �nite element procedure. A numerical method for computing the integrals can

do this. In this work the following formula was used

I ẽ
(
f̃
)
≈

Q∑
q=1

wqf̃
(
~̃xq

)
(14)

where
{
~̃xq

}Q
q=1

and {wq}Qq=1are the integration point and weights respectively. Many di�erent

sets of integration points and weights can be constructed for use in Eq. (14), however the

computational procedure will be more e�cient for small Q. A 5-point formulation which

can be used to integrate the standard 3D tetrahedral element to second order is given in

TableI.
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To convert the basis function and integrals over an arbitrarily sized tetrahedral element

el with vertices ~xel
1 , ~x

el
2 , ~x

el
3 , and ~xel

4 in terms of a standard element ẽ the a�ne variable

transformation is used. This variable transformation is linear and invertible. It is de�ned

by

~x = F el~̃x (15)

or more explicity by

x = xel
(x̃, ỹ, z̃) = F el

11x̃+ F el
12ỹ + F el

13z̃ + bel
1

y = yel
(x̃, ỹ, z̃) = F el

21x̃+ F el
22ỹ + F el

23z̃ + bel
2

z = zel
(x̃, ỹ, z̃) = F el

31x̃+ F el
32ỹ + F el

33z̃ + bel
3

(16)

where the matrix F el is the Jacobian matrix and bel is location of the origin in the transfor-

mation.

F el =


(xel

2 − x
el
1 ) (xel

3 − x
el
1 ) (xel

4 − x
el
1 )

(yel
2 − y

el
1 ) (yel

3 − y
el
1 ) (yel

4 − y
el
1 )

(zel
2 − z

el
1 ) (zel

3 − z
el
1 ) (zel

4 − z
el
1 )

 (17)

bel =


xel

1

yel
1

zel
1

 (18)

The inverse a�ne transformation is then

~̃x = (F el)−1
(
~x− ~bel

)
~x (19)

or

x̃ = x̃el
(x, y, z) = (F el)−1

11 (x− bel
1 ) + (F el)−1

12 (y − bel
2 ) + (F el)−1

13 (z − bel
3 )

ỹ = ỹel
(x, y, z) = (F el)−1

21 (x− bel
1 ) + (F el)−1

22 (y − bel
2 ) + (F el)−1

23 (z − bel
3 )

z̃ = z̃el
(x, y, z) = (F el)−1

31 (x− bel
1 ) + (F el)−1

32 (y − bel
2 ) + (F el)−1

33 (z − bel
3 )

(20)

where
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(F el)−1
11 =

F
el
22F

el
33−F

el
32F

el
23

|F el |

(F el)−1
21 =

F
el
31F

el
23−F

el
21F

el
33

|F el |

(F el)−1
31 =

F
el
21F

el
32−F

el
31F

el
22

|F el |

(F el)−1
12 =

F
el
32F

el
13−F

el
12F

el
33

|F el |

(F el)−1
22 =

F
el
11F

el
33−F

el
31F

el
13

|F el |

(F el)−1
32 =

F
el
31F

el
12−F

el
11F

el
32

|F el |

(F el)−1
13 =

F
el
12F

el
23−F

el
22F

el
13

|F el |

(F el)−1
23 =

F
el
21F

el
13−F

el
11F

el
23

|F el |

(F el)−1
33 =

F
el
11F

el
22−F

el
21F

el
12

|F el |

(21)

Using this transformation, the global FE basis functions are written in terms of the standard

local basis functions by

φel
t (~x) =

φ̃t
(
(F el)−1 ~x

)
for ~x ∈ el

0 otherwise
(22)

and the gradients are written as

d

dx(i)
φel
t (~x) =


∑3

j=1 (F el)−1
ji

d
dx̃(j) φ̃t ((F el~x)) for ~x ∈ el

0 otherwise
(23)

With this tranformation, the integral of a function f over an element is then

Iel (f) =

ˆ
e

f (~x) d~x ≈ |F el |
Q∑
q=1

wqf
(
F el~̃xq

)
(24)

The following element integrals are also needed for our adaptive multilevel �nite element

(FE) �rst principles solver.

Gel
r (f) =

´
el
φel
r (~x) f (~x) d~x

≈ |F el |
∑Q

q=1 φ̃r

(
~̃xq

)
f
(
F el~̃xq

) (25)

M el
rs =

´
el
φel
r (~x)φel

s (~x) d~x

≈ |F el |
∑Q

q=1 wqφ̃r

(
~̃xq

)
φ̃s

(
~̃xq

) (26)

Kel
rs (f) =

´
el
φel
r (~x) f (~x)φel

s (~x) d~x

≈ |F el |
∑Q

q=1wqφ̃r

(
~̃xq

)
f
(
F el~̃xq

)
φ̃s

(
~̃xq

) (27)
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Kel
rs (u) =

´
el
φel
r (~x)

(∑L
l=1

)
f (~x)φel

s (~x) d~x

≈ |F el |
∑Q

q=1wqφ̃r

(
~̃xq

)
f
(
F el~̃xq

)
φ̃s

(
~̃xq

) (28)

Rel
rs (f, ρ) =

´
el
φel
r (~x) f (ρ (~x))φel

s (~x) d~x

≈ |F el |
∑Q

q=1wqφ̃r

(
~̃xq

)
f
(
ρ
(
F el~̃xq

))
φ̃s

(
~̃xq

) (29)

T el
rs =

´
el
∇φel

r (~x) · ∇φel
s (~x) d~x

≈ |F el |
∑Q

q=1 wq

[∑3
i=1

(∑3
j=1 (F el)−1

ji
d

dx̃(j) φ̃r

(
~̃xq

))(∑3
k=1 (F el)−1

ki
d

dx̃(k) φ̃s

(
~̃xq

))]
(30)

III. FORMULATION OF FE DFT EQUATIONS

The electronic wavefunctions in Density Functional Theory (DFT) in atomic units are

given by the solutions to the following Kohn-Sham eigenvalue problem [32]

Hψi (~x) =

(
−1

2
∇2 + Vext + VH + Vxc

)
ψi (~x) = εiψi (~x) (31)

ˆ
Ω

ψi (~x)ψj (~x) d~x = δij (32)

where εi is an eigenvalue, and the wavefunctions {ψi} satisfy the orthonormality constraints

of a symmetric operator. In general, we require the lowest Ne/2 eigenvalues and wavefunc-

tions, where Ne is the number of electrons in the system. The external potential represents

the external electrostatic �eld imposed on the system. For molecular systems Vext represents

the ion-electron interaction,

Vext (~x) =

NA∑
I=1

−ZI∣∣∣~x− ~RI

∣∣∣ (33)

where NA is the number atoms, ZI is the nuclear charge of atom I, and ~RI is location of

atom I. The Hartree potential, VH , and the exchange-correlation potential, Vxc, the e�ects

of electron-electron interactions. Both these potentials are functions of the electron density

ρ (~x) =

Ne/2∑
i=1

|ψi (~x)|2 (34)
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The exchange and correlation potentials Vxc , is a straightforward parameterized function of

the electron density, e.g. Dirac exchange formula [33],

Vxc (~x) = −
(

3

π
ρ (~x)

)1/3

= −

 3

π

Ne/2∑
i=1

|ψi (~x)|2
 (35)

and the Hartree potential VH is the solution to the Poisson equation

∇2VH (~x) = −4πρ (~x) = −4π

Ne/2∑
i=1

|ψi (~x)|2 (36)

Since both Vxc and VH are functions of ρ, the Kohn-Sham eigenvalue problem must be solved

self consistently by an iterative algorithm. The standard approach for these type of problems

is a Gummel-like iteration involving two computationally intensive kernels at each iteration:

1. Calculation of the Hartree potential through the solution of the Poisson equation.

2. Calculation of the eigenfunctions of the linearized generalized eigenvalue problem

where the updated Hartree and exchange-correlation potentials are taken to be frozen.

The FE Poisson and FE DFT eigenvalue equations are generated by representing the Hartree

potential and Kohn-Sham wavefunctions as a �nite element expansion,

VH (~x) =
M∑
m=1

vmηm (~x) (37)

ψi (~x) =
M∑
m=1

cimηm (~x) (38)

and de�ning the boundary conditions for Eqs. (31) and (36). Free-space boundary conditions

and periodic boundary conditions are the most common boundary conditions used for solving

the Kohn-Sham eigenvalue equations. In this work we chose to use free-space boundary

conditions, i.e.

VH (|~x| → ∞) = 0

ψi (|~x| → ∞) = 0
(39)

The problem with applying these boundary conditions is that the solution domain W does

not go out to ∞. For Eq. (31) this is not a problem since the wavefunctions for most

molecular systems decay exponentially and can readilly be set to zero at ∂Ω. However, for

11



Eq. (36) with free-space boundary conditons the potential decays ∝ 1/r, hence, we must

�rst calculate the boundary conditions on ∂Ω. To do this we use a high order multipole

expansion of the density to de�ne the following far �eld expansion of the Hartree potential

at the boundary,

VH (~x ∈ ∂Ω) =

LMAX∑
l=0

l∑
m=−l

NlmMlm
Tlm (x̂)

|~x|l+1
(40)

Nlm =

1 for m = 0

2 (l−|m|)!
(l+|m|)! for |m| > 0

(41)

Mlm =

ˆ
Ω

|~x′|l ρ (~x′)Tlm (x̂′) d~x′ (42)

Tlm (x̂) =


Pl|m| (cos θ) for m = 0

Pl|m| (cos θ) cos |m|ϕ for m > 0

Pl|m| (cos θ) sin |m|ϕ for m < 0

(43)

where x̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) and Plm (z) is an associated Legendre Polynomial

[34]. Using this boundary condition, the solution to expansion coe�cients for the Hartree

potential in Eq. (37) is then found by solving the following systems of linear equations,

Amnvn = fn (44)

where

Amn =
L∑
l=1

Tl∑
r=1

Tl∑
s=1

δm,m̃(r,l)δn,m̃(s,l) (−T el
rs) (45)

and

fn = −4π
L∑
l=1

Tl∑
r=1

δm,m̃(r,l)G
el
r

Ne/2∑
i=1

|ψi (~x)|2
 (46)

Similarly, substituting Eq.(38) into Eqs.(31) and (32)prodcues the following generalized

eigenvalue problem

Hmnc
i
n = εiSmnc

i
n (47)
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and orthonormality conditions

M∑
m=1

M∑
n=1

cimSmnc
j
n = δij (48)

where

Smn =

ˆ
Ω

ηm (~x) ηn (~x) d~x (49)

Hmn =

ˆ
Ω

ηm (~x)Hηn (~x) d~x (50)

A formula for the matrix Smn in terms of Eq. (26) can be readilly be obtained by substituting

Eq. (7) into Eq. (49).

Smn =

ˆ
Ω

{
L∑
l=1

Tl∑
t=1

φel
t (~x) δm,m̃(t,l)

}{
L∑
k=1

Ts∑
s=1

φel
t (~x) δn,m̃(s,k)

}
d~x (51)

Smn =
´

Ω

{∑L
l=1

∑Tl

r=1 φ
el
r (~x) δm,m̃(t,l)

}{∑L
k=1

∑Tk

s=1 φ
ek
s (~x) δn,m̃(s,k)

}
d~x

=
∑L

l=1

∑L
k=1

∑Tl

r=1

∑Tk

s=1 δm,m̃(r,l)δn,m̃(s,k)

´
Ω
φel
r (~x)φek

s (~x) d~x

=
∑L

l=1

∑L
k=1

∑Tl

r=1

∑Tk

s=1 δm,m̃(r,l)δn,m̃(s,k)δk,l
´
el
φel
r (~x)φel

s (~x) d~x

=
∑L

l=1

∑Tl

r=1

∑Tl

s=1 δm,m̃(r,l)δn,m̃(s,l)

´
el
φel
r (~x)φel

s (~x) d~x

=
∑L

l=1

∑Tl

r=1

∑Tl

s=1 δm,m̃(r,l)δn,m̃(s,l)M
el
rs

(52)

Similarily, a formula for the matrix Hmn in terms of Eqs. (30), (28), and (29) can also be

obtained.

Hmn =
L∑
l=1

Tl∑
r=1

Tl∑
s=1

δm,m̃(r,l)δn,m̃(s,l)

1

2
T el
rs +Kel

rs (Vext) +Kel
rs (VH) +Rel

rs

Vxc,Ne/2∑
i=1

|ψi (~x)|2


(53)

IV. ADAPTIVE FE DFT SOLUTIONS OF ATOMS AND MOLECULES

The Kohn-Sham DFT equations contains several length scales because of the steepness

of the atomic potentials. It is well known that uniform FE meshes are not very e�cient for

these types of problems. Ideally, a FE mesh could adaptively re�ned only in the regions

near the atom centers. However, in general generating adaptive meshes of good quality is

13



a di�cult problem. Straightforward adaptive re�nement procedures usually result in �non-

conforming� meshes or meshes with hanging nodes. A globally �conforming� FE mesh is

de�ned as a collection of elements which meet only at vertices and faces. While it is possible

to develop a FE method based on non-conforming meshes, in general, FE meshes need to

be conforming to ensure continuity of interpolated functions [27, 30]. A basic algorithm

to re�ne an existing conforming mesh is as follows. In the �rst step, the elements that

have been selected for re�nement are bisected. This step more then likely will produce a

non-conforming mesh. The next step in the algorithm is then to mark for re�nement the

elements which contain hanging nodes. These steps procede interatively until a conforming

mesh is produced [35, 36]. Many variants on this basic algorithm are possible. For example

the bisection could be along the longest edge or the newest vertex. In this work we used the

conforming adaptive mesh re�nement based on longest edge bisection. The exact algorithm

used in our calculations is given in Algorithm1.

The adaptive FE solver was intially tested on the hydrogen-like atom. The Hamiltonian

for this test problem has a deceptively simple form with only a single potential term.

H = −1

2
∇2 − Z

|~x|
(54)

The solutions to this eigenvalue problem are well known and analytical solutions are avail-

able. However, the singular behavior at the origin can cause signi�cant problems for nu-

merical methods. In the case of the FE solver, a mesh vertex must be at the atom center

(origin) inorder for the Hamiltonian matrix of the FE solver not to contain a sinularity in

any of its elements. The lowest energy solution and energy are ψ (~x) = Z
3
2√
π

exp (−Z |~x|)

and ε = −Z2

2
. Note that the severity of the singularity with increasing Z is re�ected in the

increasing localization of the solution.
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Algorithm 1 Conforming Adaptive FE Mesh Generation
1. Estimate the error γ (el) for each element el in the FE mesh using the following formula

γ (el) =
(

1
2
{ξ (~x2) + ξ (~x3) + ξ (~x4)− ξ (~x1)} − ξ (~xc)

)
∗ |F

el |
6

(55)

where ~x, ~x2, ~x3, ~x4 are the four vertices of the tetrahedral element el, ~xc is its geometric

center, and ξ (~x) is a user de�ned weight function.

2. Set re�nement queues Q1 = Q2 = ∅

3. Place elements with large errors (γ (el) > ε) in the re�nement queue Q1.

4. If Q1 = ∅ then go to step 9.

5. If Q1 > ∅ then procede to step 6, otherwise go to step 1.

6. Bisect the elements in Q1 (removing from Q1) using either q-q tetrahedral bisection or b-b

bisection using the longest edge as shown in Fig. 3 and place the non-conforming elements

created in re�nement queue Q2.

7. Set Q1 ← Q2.

8. Go to step 5.

9. Done with re�nement.

To de�ne the adaptive FE mesh for this problem, local adaptivity was carried out starting

from a uniform mesh using the geometric based re�nement strategy given in Algorithm1 with

the following weight function

ξ (~x) =
Z3

π
exp (−2Z |~x|) (56)

The initial uniform mesh used was generated by uniformly re�ning a 7 element tetrahedral

mesh 4 times using q-q re�nement (as shown in Fig. 3) with the boundary vertices set

to be at a radius of 10a0, resulting in mesh composed of 32,768 �nite elements with 6,017

vertices. For a given γ, the re�nement procedure was found to be nearly independent of Z.

Furthermore, the number of vertices grows very rapidly for small tolerances, since at the

lowest tolerance γ = 10−4 there are approximately 11,000 vertices in the FE mesh, whereas

15



at γ = 10−7 there are approximately 220,000 vertices in the FE mesh. The number of

vertices as a function of γ was found to be approximately,

υ (γ) ≈ 200 exp (− log10 (γ)) (57)

whereυ is the number of vertices.

In Fig. 4, the lowest eigenvalues and errors of the hydrogeon-like atoms (Z = 1 · · · 26)

are shown at increasing levels of re�nement. Not surprisingly, the accuracy of the solution

improved signi�cantly when adaptive re�nement was applied. For a given re�nement toler-

ance the error grew quadratically as a function of Z. For Z = 1, the errors were found to

be 0.0150 (γ = 10−4), 0.0069 (γ = 10−5), 0.0029 (γ = 10−6), and 0.0012 (γ = 10−7). When

the singularity was strengthened the errors were considerably larger. For Z = 26, the errors

were found to be 12.0348 (γ = 10−4), 4.9934 (γ = 10−5), 2.0517 (γ = 10−6), and 0.08194

(γ = 10−7). Even though accurate solutions can be obtained with the current adaptive FE

solver based on piecewise linear elements, extremely small adaptive tolerances (large FE

meshes) will be required. Based on least squares �tting, the error in terms of γ and Z was

found to be approximately given by the following relation.

ε (γ, Z) ≈ 0.64423 exp (0.89503 log10 (γ))Z2 (58)

Using Eqs. (57)and(58), one can estimate the number of vertices needed to obtain accu-

racies in the millihartree range.

υ (ε, Z) ≈ 122.37
Z2.2346

ε1.1173
(59)

For example, for Z = 26 and γ = 10−14, the error and number of vertices needed are

ε ≈ 0.0015 and υ ≈ 240, 520, 857. Hence, inorder for the current adaptive FE solver to obtain

chemical accuracies for molecules containing atoms with modest Z, the memory requirements

are expected to be quite large (>10Gb per atom). Given that the number of �oating point

operations per minimization step for a system of NA atoms will be O (N3
A ∗ v (ε, Z))the

overall memory requirement and computational cost of a simulation can be estimated. For

example, to calculate 100 Fe atoms (Z = 26) at an accuracy of ε = 0.0015au will require on

the order of 2 terabytes at a cost of 25 peta�ops per step.
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The next test cases for the adaptive FE solver was the H, He, Li, and Ne atoms at the

DFT level using the local density approximation (LDA) exchange-correlation functional [37].

Since the solutions to these equations are spherically symmetric, the accuracy of these FE

DFT solutions can be checked by comparing them to solutions of the 1d-radial Kohn-Sham

Equation.

(
−1

2

d2

dr2
+
l (l + 1)

2r2
− Z

r
+ 4π

ˆ
ρ (r′)

|r − r′|
r′2dr′ + Vxc (r)

)
ψil (r) = εilψil (r) (60)

This 1d-radial equation was solved with a Hermann-Skilman telescoping grid and an Adams

5th order predictor-correction method [5]. From solving this simpli�ed equation, the exact

LDA energies for H, He, Li, and Ne were found to be -0.47867 au, -2.83484 au, -7.34386 au,

and -128.2335 au respectively. For the adaptive FE solutions, the initial uniform FE mesh

and the adaptive FE meshes were generated in the same way as the hydrogen-like atoms

above, except that the weight functions were taken to be the all electron densities obtained

from the solutions to the 1d-radial Kohn-Sham equation.

The LDA energies and errors for H, He, Li, and Na are reported in TableII. As expected,

the accuracy of the solutions signi�cantly improved when adaptive mesh re�nement was ap-

plied. Just as for the non-self-consitent hydrogen-like problem, the error grew quadratically

as a function of Z for a given re�nement tolerance. The errors were also found to be of

the same order as with the non-self-consistent hydrogen-like problem, con�rming that the

essential di�culties of the Kohn-Sham eigenvalues equation are the result of the singular

behavior of the atomic potentials.

The next test case for the adaptive FE solver was for the simplest molecule, H+
2
. This

problem is very similar to the hydrogen atom in that there is only one electron, however,

unlike the hydrogen atom, there are now two centers with singularities located at ~R1 and

~R2. The Hamiltonian for this molecule is,

H = −1

2
∇2 − Z1∣∣∣~x− ~R1

∣∣∣ − Z2∣∣∣~x− ~R2

∣∣∣ (61)

where Z1 = Z2 = 1. Having more than one center complicates the FE mesh generation

considerably. To de�ne the adaptive FE mesh for this problem the the geometric based

re�nement strategy given in Algorithm1 was used with the following weight function,
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ξ (~x) =
Z3

1

π
exp

(
−2Z1

∣∣∣~x− ~R1

∣∣∣)+
Z3

2

π
exp

(
−2Z2

∣∣∣~x− ~R2

∣∣∣) (62)

The singularities at the ion centers were accomondated by modify the initial uniform mesh

(6,017 vertices, R=10a0) by moving the vertex nearest to each ion center to lie on top of

it. The adaptive solver produced solutions that were similar in accuracy to the hydrogen

atom. In Fig. 5, the binding energy curve for increasing levels of re�nement is shown. The

binding energy of H+
2
at a distance

∣∣∣~R1 − ~R2

∣∣∣ is de�ned as the total energy of molecule at this

distance minus the energy of the molecule at in�nite separation. Even though large errors

are seen with the uniform mesh, the agreement with the analytic result with, even low levels

of, adaptive re�nement is remarkably good, producing smooth binding energy curves.

As a �nal test case for the adaptive FE solver we chose to calculate the binding energy

curve for Li2. This seamingly simple molecule is di�cult to calculate. The ground state

solution has three molecular orbitals (1σg and 1σu, and 2σg) shown in Fig.6. The bottom two

molecular orbitals are very localized on the atoms. The top molecular orbital is considerably

more delocalized, but it also contains a localized part. To de�ne the To de�ne the adaptive

FE mesh for this problem the the geometric based re�nement strategy given in Algorithm1

was used with the following weight function,

ξ (~x) = ρLDALi atom

(∣∣∣~x− ~R1

∣∣∣)+ ρLDALi atom

(∣∣∣~x− ~R2

∣∣∣)
where, ρLDALi atom (r) was obtained by using a spline �t of the the solution to Eq.60 for the

Li atom. The same initial mesh as for the H+
2
molecule was used, and verticies nearest to

each ion center were moved to lie on top of them. In Fig. 7, the binding energy curve for

increasing levels of re�nement is shown.

In Fig. 7, the binding energy curve for increasing levels of re�nement is shown. Even

though a strategy very similar to what was used for the H+
2
molecule was used, very large

errors in the binding energy curves are seen with adaptive re�nement at γ = 1e − 6. In

analyzing the solution, it was found that the majority of error was from the the eigenvalues

of the 1σg and 1σu molecular orbitals. Since these orbitals are very localized on the atoms,

their eigenvalues are expected to be nearly constant as a function of
∣∣∣~R1 − ~R2

∣∣∣. However, it
was found that their eigevalues �uctuated by as much as 0.1 au for the uniform mesh down

to 0.01 au for the γ = 1e− 6 mesh. While these errors are slightly smaller than the absolute
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errors seen for the Li atom in TableII, it is still signifcant given that the LDA binding energy

for Li2 is rougly 0.04 au.

It was found that the errors in the binding energy for Li2 could be reduced further by

shifting a cloud of verticies near the ion center instead of just a single vertex nearest to

each ion center (~vnearest). To do this, for each ion each of the verticies in the mesh (~vi) were

moved by

~vi = ~vi +
(
~RI − ~vnearest

)
∗ f (|~vi − ~vnearest|) (63)

where f (r)is the screening function

f (r) = 1−
[
1− exp

(
−
( r
R

)N)]N
(64)

and N and R are adjustable parameters, chosen to be 8 and 1.5 au respectively, which

de�ne the atom center region. When this initial shifting procedure is used, it was found

that an accurate binding energy curve was obtained by the γ = 1e − 5 adaptive mesh

(adaptthresh(shifted)=1e-5 curve in Fig. 7). This result suggests that an overlapping grid

method can be used to reduce the errors (�cancellation of errors�) in structure and bond

energies of the system.

V. CONCLUSION

We have implemented an unstructed adaptive FE DFT program. The severe problem

associated with the rapid variation of the electronic wave functions in the near singular

regions of the atomic centers was treated by using unstructured simplex meshes that resolve

these features around atomic nuclei. This approach uses a minimal amount of computational

resources by concentrating the computational work in the regions in which the shortest length

scales are necessary and provides for low resolution in regions for which there is no electron

density. The matrix representations of the discrete Hamiltonian operator in the adaptive

�nite element basis are always sparse due to the local support nature of �nite element basis

functions. As a result, application of the Hamiltonian operator is O (N) in the number of

discretization points.

The overall memory and computational requirements for the solver implemented were

found to be quite high. By using the solution to the hydrogen-like atom, the overall memory
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and computational requirements per atom needed by the solver were estimated. The number

of mesh vertices per atom as a function of the atomic number Z and the required accuracy ε

was esitmated to be υ (ε, Z) ≈ 122.37 ∗ Z2.2346

ε1.1173 . These meshing requirements were also found

to hold for the full DFT solutions. The errors in the LDA energies of H, He, Li, and Ne

were found to be of the same order as the hydrogen-like atom, which con�rmed that the

essential di�culty of solving the Kohn-Sham eigenvalue equation is the result of the singular

behavior of the atomic potentials. This estimate can be used determine the overall memory

requirement and computational cost of a simulation, since the number of �oating point

operations per DFT minimization step for a system of NA atoms will be O (N3
A ∗ v (ε, Z))

(e.g. Z = 26, ε = 0.0015au, and NA = 100, the memory requirement and computational

cost would be ∼ 2 terabytes and ∼ 25 peta�ops).

Despite the high cost of the method, it was found that strategies for �xing the error near

the atomic potential singularities, such as a geometric-based re�nement strategy can be used

to reduce the errors in structure and bond energies of the system. In this work, to de�ne

the adaptive FE mesh for a problem, local adaptivity was carried out by starting from an

uniform mesh and adapting using a conforming adaptation procedure where the error was

determined by using a weight function composed of the sum of the atomic densities for the

problem. For the simple H+
2
molecule this strategy was found to work very well. However,

for the Li2 molecule very large errors in the binding energy curves were seen even when the

geomtric adaptive re�nement procedure. It was found that the errors in the binding energy

for Li2 could be reduced further by shifting a cloud of verticies near the ion center instead of

just a single vertex nearest to each ion center (~vnearest) in the the initial uniform mesh. When

this initial shifting procedure was used in combination with the geometric-based adapation

procedure, it was found that an accurate binding energy curve could be obtained. These

results showed that the placement of the mesh close to the atom centers is the main source

of error in the method, and it suggests that an overlapping grid method could be used to

reduce the errors (�cancellation of errors�) in structure and bond energies of the molecule.

At present, our adaptive FE DFT solver uses piece-wise linear elements which are O (h2)

accurate. It was shown at this low order of accuracy that very large FE meshes will be needed

to obtain the millihartree or better accuracy desired for molecules and materials with large Z

atoms. Unless very large machines are used, the memory requirements (and computational

cost) is unlikely to be competive with more standard solution methods. However, it is
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anticipated the memory requirements can be reduced by using higher-order FE elements.
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Tables

Formula Type Points Weight

5 pt formula (1/4, 1/4, 1/4) -2/15

(1/6, 1/6, 1/6) 3/40

(1/2, 1/6, 1/6) 3/40

(1/6, 1/2, 1/6) 3/40

(1/6, 1/6, 1/2) 3/40

Table I: 5-point Tetrahedral Integration points and weights.
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Re�nement ELDA(H) Error(H) ELDA(He) Error(He) ELDA(Li) Error(Li) ELDA(Ne) Error(Ne)

uniform -0.438492 4.02E-02 -2.383364 4.51E-01 -5.624508 1.72E+00 -75.145028 5.31E+01

γ=1e-2 -0.441826 3.68E-02 -2.602388 2.32E-01 -6.674924 6.69E-01 -117.391255 1.08E+01

γ=1e-3 -0.456391 2.23E-02 -2.731748 1.03E-01 -7.031348 3.13E-01 -123.228792 5.00E+00

γ=1e-4 -0.468855 9.82E-03 -2.789752 4.51E-02 -7.230246 1.14E-01 -126.047943 2.19E+00

γ=1e-5 -0.474739 3.93E-03 -2.817929 1.69E-02 -7.294580 4.93E-02 -127.367719 8.66E-01

γ=1e-6 -0.477234 1.44E-03 -2.830797 4.04E-03 -7.323754 2.01E-02 -127.917138 3.16E-01

γ=1e-7 -0.477879 7.91E-04 -2.833847 9.89E-04 -7.333440 1.04E-02 ��a ��a

γ=1e-8 -0.478194 4.77E-04 ��a ��a ��a ��a ��a ��a

Table II: LDA Energies and errors of H, He, Li, and Ne at increasing levels of re�nement. (arequired

more than 2 GB of memory).
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Figures

Figure 1: Examples of a 3D �nite element meshes. Left: tetrahedral domain containing 8 elements

and 7 vertex nodes. The elements are labeled el and the nodes are labeled (m) in this �gure. Right:

adaptive hemisphere domain containing 453,608 elements and 81,406 vertex nodes.
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Figure 2: Standard 3D piece-wise tetrahedral element.
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Figure 3: b-b tetrahedral bisection (left), and q-q tetrahedral bisection (right).
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Figure 4: Eigenvalues and errors for the hydrogen-like atom as a function Z.
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Figure 5: Binding energy curves for H+
2 obtained with adaptive gridding de�ned by the geometric

based re�nement strategy.

31



Figure 6: The ground state molecular orbitals (1σg, 1σu, and 2σg) of LDA for Li2obtained with the

FE DFT solver.
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Figure 7: Binding energy curves for Li2 obtained with adaptive gridding de�ned by the geometric

based re�nement strategy. The adaptthresh(shifted)=1e-5 curve was obtained with a γ = 1e − 5

adaptive mesh where the initial mesh was modi�ed by shifting procedure of Eq. 63. The PSPW

curve, shown for comparison, was obtained a NWChem pseudopotential plane-wave calculation [2].
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