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Abstract. In this article, we examine the Bramble-Pasciak-Xu (BPX) preconditioner in the
setting of local 3D mesh refinement. While the available optimality results for the BPX preconditioner
have been constructed primarily in the setting of uniformly refined meshes, a notable exception is the
2D result due to Dahmen and Kunoth, which established BPX optimality on meshes produced by a
local 2D red-green refinement. The purpose of this article is to extend this original 2D optimality
result to the local 3D red-green refinement procedure introduced by Bornemann-Erdmann-Kornhuber
(BEK). The extension is reduced to establishing that locally enriched finite element subspaces allow
for the construction of a scaled basis which is formally Riesz stable. This construction turns out to
rest not only on shape regularity of the refined elements, but also critically on a number of geometrical
properties we establish between neighboring simplices produced by the BEK refinement procedure.
We also show that the number of degrees of freedom used for smoothing is bounded by a constant
times the number of degrees of freedom introduced at that level of refinement, indicating that a
practical implementable version of the resulting BPX preconditioner for the BEK refinement setting
has provably optimal (linear) computational complexity per iteration, as well as having a uniformly
bounded condition number. The theoretical framework supports arbitrary spatial dimension d ≥ 1,
and we indicate clearly which geometrical properties established here must be re-established to show
BPX optimality for spatial dimension d ≥ 4. The proof techniques require no coefficient smoothness
assumptions beyond those required for well-posedness in H1.
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1. Introduction. In this article, we analyze the impact of local mesh refinement
on the stability of multilevel finite element spaces and on the optimality (linear space
and time complexity) of multilevel preconditioners. Adaptive refinement techniques
have become a crucial tool for many applications, and access to optimal or near-
optimal multilevel preconditioners for locally refined mesh situations is of primary
concern to computational scientists. The preconditioners which can be expected to
have somewhat favorable space and time complexity in such local refinement scenar-
ios are the hierarchical basis (HB) method, the Bramble-Pasciak-Xu (BPX) precon-
ditioner, and the wavelet modified (or stabilized) hierarchical basis (WHB) method.
While there are optimality results for both the BPX and WHB preconditioners in the
literature, these are primarily for quasiuniform meshes and/or two space dimensions
(with some exceptions noted below). In particular, there are few hard results in the
literature on the optimality of these methods for various realistic local mesh refine-
ment hierarchies, especially in three space dimensions. In this article, the first in a
series of three articles [2, 3] on local refinement and multilevel preconditioners, we
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assemble optimality results for the BPX preconditioner in local refinement scenarios
in three spacial dimensions. (The material forming this trilogy is based on the first
author’s Ph.D. dissertation [1].) The second article [3] builds on the BPX results we
present here to develop some analogous optimality results for the WHB method in
local refinement settings. The main results in both articles are valid for any spatial
dimension d ≥ 1, for nonsmooth PDE coefficients p ∈ L∞(Ω).

The problem class we focus on here and in [3] is linear second order partial
differential equations (PDE) of the form:

−∇ · (p ∇u) + q u = f, u ∈ H1
0 (Ω). (1.1)

Here, f ∈ L2(Ω), p, q ∈ L∞(Ω), p : Ω → L(Rd,Rd), q : Ω → R, where p is a symmetric
positive definite matrix function, and where q is a nonnegative function. Let T0 be
a shape regular and quasiuniform initial partition of Ω into a finite number of d
simplices, and generate T1, T2, . . . by refining the initial partition using red-green local
refinement strategies in d = 3 spatial dimensions. Denote as Sj the simplicial linear
C0 finite element space corresponding to Tj equipped with zero boundary values. The
set of nodal basis functions for Sj is denoted by Φ(j) = {φ(j)

i }Nj

i=1 where Nj = dim Sj

is equal to the number of interior nodes in Tj , representing the number of degrees of
freedom in the discrete space. Successively refined finite element spaces will form the
following nested sequence:

S0 ⊂ S1 ⊂ . . . ⊂ Sj ⊂ . . . ⊂ H1
0 (Ω). (1.2)

Let the bilinear form and the functional associated with the weak formulation
of (1.1) be denoted as

a(u, v) =
∫

Ω

p ∇u · ∇v + q u v dx, b(v) =
∫

Ω

f v dx, u, v ∈ H1
0 (Ω).

We consider primarily the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v), ∀v ∈ Sj . (1.3)

The finite element approximation in Sj has the form u(j) =
∑Nj

i=1 uiφ
(j)
i , where u =

(u1, . . . , uNj
)T denotes the coefficients of u(j) with respect to Φ(j). The resulting

discretization operator A(j) = {a(φ(j)
k , φ

(j)
l )}Nj

k,l=1 must be inverted numerically to
determine the coefficients u from the linear system:

A(j)u = F (j), (1.4)

where F (j) = {b(φ(j)
l )}Nj

l=1. Our task is to solve (1.4) with optimal (linear) complexity
in both storage and computation, where the finite element spaces Sj are built on
locally refined meshes.

Optimality of the BPX preconditioner with generic local refinement was shown
by Bramble and Pasciak [8], where the impact of the local smoother and the local pro-
jection operator on the estimates was carefully analyzed. The two primary results on
optimality of BPX preconditioner in the local refinement settings are due to Dahmen
and Kunoth [11] and Bornemann and Yserentant [6]. Both works consider only two
space dimensions, and in particular, the refinement strategies analyzed are restricted
2D red-green refinement and 2D red refinement, respectively. In this paper, we ex-
tend the framework developed in [11] to a practical, implementable 3D local red-green
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refinement procedure introduced by Bornemann-Erdmann-Kornhuber (BEK) [5]. We
will refer to this as the BEK refinement procedure.

There is one main and one side result of this article. The main one establishes that
the BPX preconditioner is optimal–both norm equivalence to H1-norm and computa-
tional complexity per iteration–for the resulting locally refined 3D finite element hier-
archy. The analysis here heavily relies on the techniques of the Dahmen-Kunoth [11]
framework and can be seen as an extension to three spatial dimensions with the
realistic BEK refinement procedure [5] being the application of interest.

The side result is the H1-stability of L2-projection onto finite element spaces
built through the BEK local refinement procedure. This question is currently under
intensive study in the finite element community due to its relationship to multilevel
preconditioning. The existing theoretical results, due primarily to Carstensen [10] and
Bramble-Pasciak-Steinbach [9] involve a posteriori verification of somewhat compli-
cated mesh conditions after local refinement has taken place. If such mesh conditions
are not satisfied, one has to redefine the mesh. However, an interesting consequence
of the BPX optimality results for locally refined 2D and 3D meshes established here
is H1-stability of L2-projection restricted to the same locally enriched finite element
spaces. This result, which is established in [3] based on the results here, appears to
be the first a priori H1-stability result for L2-projection on finite element spaces pro-
duced by practical and easily implementable 2D and 3D local refinement procedures.

Outline of the paper. In §2, we outline the BPX preconditioner in the local
refinement setting. In §3, we introduce the BPX and slice operator to make the
connection between the (implementable) BPX preconditioner and the corresponding
slice operator which is used in the norm equivalence to H1-norm. In §4, we introduce
some basic approximation theory tools used in the analysis such as Besov spaces and
Bernstein estimates. The framework for the main norm equivalence is also established
here. In §5, we list the BEK refinement conditions. We give several theorems about
the generation and size relations of the neighboring simplices, thereby establishing
quasiuniformity for the simplices in the support of a basis function. In §6, we explicitly
give an upper bound for the nodes introduced in the refinement region. This implies
that one application of the BPX preconditioner to a function has linear (optimal)
computational complexity. In §7, we use the geometrical results from §5 to extend
the 2D Dahmen-Kunoth results to the 3D BEK refinement procedure by establishing
the desired norm equivalence. The geometrical properties established in §5 lead to
quasiuniformity of the support which gives rise to an L2-stable Riesz basis; one can
then establish the Bernstein estimate. While it is not possible to establish a Jackson
estimate due to the nature of local adaptivity, in §8 the remaining inequality in the
norm equivalence is handled directly using approximation theory tools, as in the
original work [11]. We conclude in §9.

2. Preliminaries. In the uniform refinement setting, the parallelized or additive
version of the multigrid method, also known as the BPX preconditioner, is defined as
follows:

Xu :=
J∑

j=0

2j(d−2)

Nj∑
i=1

(u, φ(j)
i )φ(j)

i .

In the local refinement setting, in order to maintain optimal computational complexity,
the smoother is restricted to a local space S̃j , where typically

Sj \ Sj−1 ⊂ S̃j ⊂ Sj .
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The basic restriction on the refinement procedure is that it remains nested. In other
words, tetrahedra of level j which are not candidates for further refinement will never
be touched in the future. Let Ωj denote the refinement region, namely, the union
of the supports of basis functions which are introduced at level j. Due to nested
refinement Ωj ⊂ Ωj−1. Then the following hierarchy holds:

ΩJ ⊂ ΩJ−1 ⊂ · · · ⊂ Ω0 = Ω. (2.1)

The main ingredient in the local refinement setting for the analysis of the BPX pre-
conditioner is the local quasi-interpolant which will be explicitly given in (8.5):

Q̃j : L2(Ω) → Sj . (2.2)

In fact, in our construction this operator will turn out to be a projection, i.e. L2-
self-adjoint and Q̃2

j = Q̃j . For u ∈ SJ , the projection Q̃j will have the local property
that (Q̃j − Q̃j−1)u vanishes outside of Ωj . A detailed discussion on the vanishing
property is also presented by Oswald (see page 94 in [19]). Let the local smoother be
the following symmetric positive definite operator (examples of these are given in [7]):

R̃j : S̃j → S̃j , (2.3)

where S̃j := (Q̃j − Q̃j−1)SJ . This choice for S̃j indicates that the smoother acts
on a local collection of degrees of freedom (DOF) which will give rise to optimal
computational complexity per iteration. Nodes–equivalently, DOF–corresponding to
S̃j and their cardinality will be denoted Ñj and Ñj , respectively. We now define the
BPX preconditioner for the local refinement setting as:

Xu :=
J∑

j=0

2j(d−2)
∑
i∈Ñj

(u, φ(j)
i )φ(j)

i . (2.4)

The multilevel splitting of u ∈ SJ using (2.2) is then

u =
J∑

j=0

(Q̃j − Q̃j−1)u, (2.5)

with Q̃−1 = 0 and Q̃J the identity on SJ . If Q̃j is a local projection such as a local
quasi-interpolant, then the individual terms in this splitting are locally supported.
The main difference in the analysis between the local and uniform refinement cases
lies in the choice of the projection. Namely, in the uniform refinement case, the L2-
projection Qj is used for the splitting in (2.5). But since (Qj − Qj−1)u has global
support, it is not a practical choice that will lead to an optimal method. Therefore, in
the local refinement case, we employ the local projection Q̃j which allows for optimal
computational complexity. While the analysis throughout the paper will be based on
the use of Q̃j , with the exception of the optimal computational complexity result in
(6.1), all results also hold for projections which are globally supported such as Qj . In
particular, the main optimal norm equivalence results (4.1) and (8.12) hold for Qj as
well as Q̃j . This fact will be used in [3] for the analysis of H1-stability of Qj .
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3. The BPX and slice operators. Throughout this article we use the following
standard notation: for x, y ∈ R+ and universal constants c1, c2 ∈ R+, we write:

x h y if c1y ≤ x ≤ c2y.

We first move to a general analysis framework where (2.4) becomes a special case.
From this point on, the following operator will be referred as the BPX preconditioner
for u ∈ SJ .

Bu :=
J∑

j=0

R̃j(Q̃j − Q̃j−1)u, (3.1)

Utilizing the splitting (2.5), one can write u =
∑J

j=0 u
(j)f

, where u(j)f

:= (Q̃j −
Q̃j−1)u. Note that B can be written as a diagonal operator using (2.5):

B = diag(R̃0Q̃0, R̃1(Q̃1 − Q̃0), . . . , R̃J(Q̃J − Q̃J−1)).

Using the projection properties, one can observe that

R̃j(Q̃j − Q̃j−1)R̃−1
j (Q̃j − Q̃j−1)u(j)f

= u(j)f

.

Then,

B−1 = diag(R̃−1
0 Q̃0, R̃

−1
1 (Q̃1 − Q̃0), . . . , R̃−1

J (Q̃J − Q̃J−1)).

The ultimate goal is the prove the following norm equivalence

(B−1u, u) h (Au, u), (3.2)

which will give κ(BA) h 1. To reach this goal, we use the slice operator induced by
the splitting (2.5):

Cu :=
J∑

j=0

22j(Q̃j − Q̃j−1)u. (3.3)

The following assumption (which naturally holds) will be enforced on the local
smoothing operator R̃j :

2−2j‖v‖2 h (R̃jv, v), v ∈ S̃j . (3.4)

Now, we can link the two operators by using (3.4).

(B−1u, u) =
J∑

j=0

(R̃−1
j (Q̃j − Q̃j−1)u, (Q̃j − Q̃j−1)u)

h
J∑

j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

= (Cu, u). (3.5)

Therefore, we focus entirely on establishing the following norm equivalence:

(Cu, u) h (Au, u). (3.6)

The flow of this article is as follows. The proof of the main norm equivalence
(3.6) will be given in Theorem 4.1.

c1
ṽ2

J

(Cu, u) ≤ (Au, u) ≤ c2(Cu, u), u ∈ SJ .

The missing crucial result of this article, i.e. ṽJ = O(1) as J → ∞, will be shown in
(8.12) so that (3.6) holds.
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4. Main norm equivalence. Let Ω ⊂ Rd be open, for arbitrary k = 1, 2, . . .
and h ∈ Rd, and define the subset

Ωk,h =
{
x ∈ Rd : [x, x+ kh] ⊂ Ω

}
.

Define the directional k-th order difference of f ∈ Lp(Ω) as

(
∆k

hf
)
(x) :=

k∑
r=0

(
k
r

)
(−1)k−rf(x+ rh), x, h ∈ Rd.

A finer scale of smoothness than differentiability, modulus of smoothness, is a central
tool in the analysis. This will be used in the definition of Besov spaces. Lp-modulus
of smoothness is defined as

ωk(f, t,Ω)p := sup
|h|≤t

‖∆k
hf‖Lp(Ωk,h).

Then, Besov spaces are defined to be the collection of functions f ∈ Lp(Ω) with a
finite Besov norm defined as follows:

‖f‖q
Bs

p,q(Ω) := ‖f‖q
Lp(Ω) + |f |qBs

p,q(Ω),

where the seminorm is given by

|f |Bs
p,q(Ω) := ‖{2sjωk(f, 2−j ,Ω)p}j∈N0‖lq ,

and k is any fixed integer larger than s.
Besov space becomes the primary function space setting by realizing the Sobolev

space as a Besov space:

Hs(Ω) ∼= Bs
2,2(Ω), s > 0.

The analysis needed for functions in Sobolev space is done in the Besov space. The
primary motivation for employing the Besov space stems from the fact that the charac-
terization of functions which have a given upper bound for the error of approximation
sometimes calls for a finer scale of smoothness.

The Bernstein estimate is defined as:

ωk+1(u, t)p ≤ c (min{1, t2J})β‖u‖Lp
, u ∈ SJ , (4.1)

where c is independent of u and J . Usually k = degree of the element and in the case
of linear finite elements k = 1. Here β is determined by the global smoothness of the
approximation space as well as p. For Cr finite elements, β = min{1 + r + 1

p , k + 1}.
Let ṽJ be defined as follows.

ṽj,J := sup
u∈SJ

‖u− Q̃ju‖L2

ω2(u, 2−j)2
, ṽJ := max {1, ṽj,J : j = 0, . . . , J} . (4.2)

Following [11] we have then
Theorem 4.1. Suppose the Bernstein estimate (4.1) holds for some real number

β > 1. Then, for each 0 < s < min{β, 2}, there exist constants 0 < c1, c2 < ∞
independent of u ∈ SJ , J = 0, 1, . . ., such that the following norm equivalence holds:

c1
ṽ2

J

(Cu, u) ≤ ‖u‖2
B1

2,2
≤ c2(Cu, u), u ∈ SJ . (4.3)
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Proof. Adding and subtracting u gives

(Cu, u) ≤ c (‖u‖2
L2

+
J∑

j=0

22j‖Q̃ju− u‖2
L2

).

Using the definition of ṽJ we have

‖Q̃ju− u‖2
L2
≤ c ṽJ ω2(u, 2−j)2,

and thus

(Cu, u) ≤ cv2
J (‖u‖2

L2
+

J∑
j=0

22jω2(u, 2−j)22) ≤ cv2
J‖u‖2

B1
2,2
.

For the upper bound, we use the splitting (2.5) where uj := (Q̃j − Q̃j−1)u. By (4.1),

ω2(u, 2−n)2 ≤ c
∞∑

j=0

ω2(uj , 2−n)2 ≤ c (
n∑

j=0

2(j−n)γ‖uj‖L2 +
∞∑

j=n+1

‖uj‖L2),

which gives

∞∑
n=0

22nω2(u, 2−n)22 ≤ c (
∞∑

n=0

22n{2−nγ
n∑

j=0

2jγ‖uj‖L2 +
∞∑

j=n+1

‖uj‖L2}2)

≤ c (
∞∑

n=0

22n(1−γ){
n∑

j=0

2jγ‖uj‖L2}2 +
∞∑

n=0

22n{
∞∑

j=n+1

‖uj‖L2}2)

≤ c (
∞∑

n=0

22n‖un‖2
L2

),

with the last step due to a Hardy inequality (cf. [11]). This gives ‖u‖2
B1

2,2
≤ c (Cu, u).

5. The BEK refinement procedure. Our interest is to show optimality of the
BPX preconditioner for the local 3D red-green refinement introduced by Bornemann-
Erdmann-Kornhuber [5]. This 3D red-green refinement is practical, easy to imple-
ment, and numerical experiments were presented in [5]. A similar refinement pro-
cedure was analyzed by Bey [4]; in particular, the same green closure strategy was
used in both papers. While these refinement procedures are known to be asymp-
tocially non-degenerate (and thus produce shape regular simplices at every level of
refinement), shape regularity is insufficient to construct a stable Riesz basis for fi-
nite element spaces on locally adapted meshes. To construct a stable Riesz basis we
will need to establish patchwise quasiuniformity as in [11]; as a result, d-vertex adja-
cency relationships that are independent of shape regularity of the elements must be
established between neighboring tetrahedra as done in [11] for triangles.

We first list a number of geometric assumptions we make concerning the underly-
ing mesh. Let Ω ⊂ R3 be a polyhedral domain. We assume that the triangulation Tj

of Ω at level j is a collection of tetrahedra with mutually disjoint interiors which cover
Ω =

⋃
τ∈Tj

τ . We want to generate successive refinements T0, T1, . . . which satisfy the
following conditions:
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Assumption 5.1. Nestedness: Each tetrahedron (son) τ ∈ Tj is covered by
exactly one tetrahedron (father) τ ′ ∈ Tj−1, and any corner of τ is either a corner or
an edge midpoint of τ ′.

Assumption 5.2. Conformity: The intersection of any two tetrahedra τ, τ ′ ∈ Tj

is either empty, a common vertex, a common edge or a common face.
Assumption 5.3. Nondegeneracy: The interior angles of all tetrahedra in the

refinement sequence T0, T1, . . . are bounded away from zero.
A regular (red) refinement subdivides a tetrahedron τ into 8 equal volume sub-

tetrahedra. We connect the edges of each face as in 2D regular refinement. We then
cut off four subtetrahedra at the corners which are congruent to τ . An octahedron
with three parallelograms remains in the interior. Cutting the octahedron along the
two faces of these parallelograms, we obtain four more subtetrahedra which are not
necessarily congruent to τ . We choose the diagonal of the parallelogram so that the
successive refinements always preserve nondegeneracy [1, 4, 17, 22].

If a tetrahedron is marked for regular refinement, the resulting triangulation vi-
olates conformity A.5.2. Nonconformity is then remedied by irregular (green) refine-
ment. In 3D, there are altogether 26 = 64 possible edge refinements, of which 62 are
irregular. One must pay extra attention to irregular refinement in the implementation
due to the large number of possible nonconforming configurations. Bey [4] gives a me-
thodical way of handling irregular cases. Using symmetry arguments, the 62 irregular
cases can be divided into 9 different types. To ensure that the interior angles remain
bounded away from zero, we enforce the following additional conditions. (Identical
assumptions were made in [11] for their 2D refinement analogue.)

Assumption 5.4. Irregular tetrahedra are not refined further.
Assumption 5.5. Only tetrahedra τ ∈ Tj with L(τ) = j are refined for the

construction of Tj+1, where L(τ) = min {j : τ ∈ Tj} denotes the level of τ .
One should note that the restrictive character of A.5.4 and A.5.5 can be elimi-

nated by a modification on the sequence of the tetrahedralizations [4]. On the other
hand, it is straightforward to enforce both assumptions in a typical local refinement
algorithm by minor modifications of the supporting datastructures for tetrahedral
elements (cf. [14]). In any event, the proof technique (see (8.8) and (8.9)) requires
both assumptions hold. The last refinement condition enforced for the possible 62
irregularly refined tetrahedra is stated as the following.

Assumption 5.6. If three or more edges are refined and do not belong to a
common face, then the tetrahedron is refined regularly.

We note that the d-vertex adjacency generation bound for simplices in Rd which
are adjacent at d vertices is the primary result required in the support of a basis
function so that (7.1) holds, and depends delicately on the particular details of the local
refinement procedure rather than on shape regularity of the elements. The generation
bound for simplices which are adjacent at d − 1, d − 2, . . . vertices follows by using
the shape regularity and the generation bound established for d-vertex adjacency. We
provide rigorous generation bound proofs for all the adjacency types mentioned in the
lemmas to follow when d = 3. The 2D version appeared in [11]; the 3D extension is
as described below without any additional framework.

Lemma 5.1. Let τ and τ ′ be two tetrahedra in Tj sharing a common face f . Then

|L(τ)− L(τ ′)| ≤ 1. (5.1)
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Proof. If L(τ) = L(τ ′), then 0 ≤ 1, there is nothing to show. Without loss
of generality, assume that L(τ) < L(τ ′). Proof requires a detailed and systematic
analysis. To show the line of reasoning, we first list the facts used in the proof:

1. L(τ ′) ≤ j because by assumption τ ′ ∈ Tj . Then, L(τ) < j.
2. By assumption τ ∈ Tj , meaning that τ was never refined from the level it was

born L(τ) to level j.
3. Let τ ′′ be the father of τ ′. Then L(τ ′′) = L(τ ′)− 1 < j.
4. L(τ) < L(τ ′) by assumption, implying L(τ) ≤ L(τ ′′).
5. By (2), τ belongs to all the triangulations from L(τ) to j, in particular τ ∈
TL(τ ′′), where by (3) L(τ ′′) < j.

f is the common face of τ and τ ′ on level j. If τ ′ is obtained by regular refinement
of its father τ ′′, then f is still the common face of τ and τ ′′. By (5) both τ, τ ′′ ∈ TL(τ ′′).
Then, A.5.2 implies that f is the common face of τ and τ ′′. Hence, τ ′ must have been
irregular.

On the other hand, L(τ) ≤ L(τ ′) − 1 = L(τ ′′). Next, we proceed by eliminating
the possibility that L(τ) < L(τ ′′). If so, we repeat the above reasoning, and τ ′′

becomes irregular. τ ′′ is already the father of the irregular τ ′, contradicting A.5.4 for
level L(τ ′′). Hence L(τ) = L(τ ′′) = L(τ ′)− 1 concludes the proof.

By A.5.4 and A.5.5, every tetrahedron at any Tj is geometrically similar to some
tetrahedron in T0 or to a tetrahedron arising from an irregular refinement of some
tetrahedron in T0. Then, there exist absolute constants c1, c2 such that

c1 diam(τ̄) 2−L(τ) ≤ diam(τ) ≤ c2 diam(τ̄) 2−L(τ), (5.2)

where τ̄ is the father of τ in the initial mesh.
Lemma 5.2. Let τ and τ ′ be two tetrahedra in Tj sharing a common edge (two

vertices). Then there exists a finite number E depending on the shape regularity such
that

|L(τ)− L(τ ′)| ≤ E. (5.3)

Proof. Start with τ = τ1, obtain the face-adjacent neighbor τ2 (either of the two
faces), and then obtain the face-adjacent tetrahedron τ3 of τ2, repeat this process δ
times until you reach τ ′ = τδ. After you pick one of the two faces, the direction of
the face-adjacent tetrahedra is determined. δ is always a finite number due to shape
regularity. Lemma follows by face-adjacent neighbor relation (5.1).

Lemma 5.3. Let τ and τ ′ be two tetrahedra in Tj sharing a common vertex. Then
there exists a finite number V depending on the shape regularity such that

|L(τ)− L(τ ′)| ≤ V. (5.4)

Proof. Take one edge from τ and τ ′ where the edges meet at the common vertex.
By shape regularity, there exist η (a bounded number) many edge-adjacent tetrahedra
between τ1 = τ and τη = τ ′. By the above construction in Lemma 5.2, there exist
δ1,2 many face-adjacent tetrahedra between τ1 and τ2. We repeat this process until
we place δη−1,η many tetrahedra between τη−1 and τη. Hence, there exist

∑η−1
i=1 δi,i+1

face-adjacent tetrahedra between τ and τ ′. Again, face-adjacent neighbor relation
(5.1) concludes the lemma with V =

∑η−1
i=1 δi,i+1.
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Consequently, simplices in the support of a basis function are comparable in size
as indicated in (5.5). This is usually called patchwise quasiuniformity. Furthermore, it
was shown in [1] that patchwise quasiuniformity (5.5) holds for 3D marked tetrahedron
bisection by Joe and Liu [15] and for 2D newest vertex bisection by Sewell [20] and
Mitchell [16]. Due to restrictive nature of the proof technique (see (8.8) and (8.9)),
we focus on refinement procedures which obey A.5.4 and A.5.5.

Lemma 5.4. There is a constant depending on the shape regularity of Tj and the
quasiuniformity of T0, such that

diam(τ)
diam(τ ′)

≤ c, ∀τ, τ ′ ∈ Tj , τ ∩ τ ′ 6= ∅. (5.5)

Proof. τ and τ ′ are either face-adjacent (d vertices), edge-adjacent (d−1 vertices),
or vertex-adjacent, and are handled by (5.1), (5.3), (5.4), respectively.

diam(τ)
diam(τ ′)

≤ c 2|L(τ)−L(τ ′)| diam(τ̄)
diam(τ̄ ′)

(by (5.2))

≤ c 2max{1,E,V } γ(0) (by (5.1), (5.3), (5.4) and quasiuniformity of T0)

6. Local smoothing computational complexity. The following result from [5]
establishes a bound for the number of nodes used for smoothing (those created in the
refinement region by the BEK procedure) so that the BPX preconditioner has prov-
ably optimal (linear) computational complexity per iteration.

Lemma 6.1. The total number of nodes used for smoothing satisfies the bound:

J∑
j=0

Ñj ≤
5
3
NJ −

2
3
N0. (6.1)

Proof. See [5].
A similar result for 2D red-green refinement was given by Oswald (see page 95

in [19]). In the general case of local smoothing operators which involve smoothing
over newly created basis functions plus some additional set of local neighboring basis
functions, one can extend the arguments from [5] and [19] using shape regularity.

7. Establishing optimality of the BPX preconditioner. In this section,
we extend the Dahmen-Kunoth framework of to three spatial dimensions and the
extension closely follows the original work. However, the general case for d ≥ 1
spatial dimensions is not in the literature, and therefore we present it below.

Our motivation is to form a stable basis in the following sense [19].

‖
∑

xi∈Nj

uiφ
(j)
i ‖L2(Ω) h ‖{volume1/2(supp φ(j)

i ) ui}xi∈Nj
‖l2 . (7.1)

The basis stability (7.1) will then guarantee that the Bernstein estimate (4.1) holds,
which is the first step in establishing the norm equivalence. For a stable basis, func-
tions with small supports have to be augmented by an appropriate scaling so that
‖φ(j)

i ‖L2(Ω) remains roughly the same for all basis functions. This is reflected in
volume(supp φ(j)

i ) by defining:

Lj,i = min{L(τ) : τ ∈ Tj , xi ∈ τ}. (7.2)
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Then

volume(supp φ(j)
i ) h 2−dLj,i .

We prefer to use an equivalent notion of basis stability; a basis is called L2-stable
Riesz basis (cf [3]) if:

‖
∑

xi∈Nj

ûiφ̂
(j)
i ‖L2(Ω) h ‖{ûi}xi∈Nj‖l2 , (7.3)

where φ̂(j)
i denotes the scaled basis, and the relationship between (7.1) and (7.3) is

given as follows:

φ̂
(j)
i = 2d/2Lj,i φ

(j)
i , ûi = 2−d/2Lj,i ui, xi ∈ Nj . (7.4)

Remark 7.1. Our construction works for any d-dimensional setting with the
scaling (7.4). However, it is not clear how to define face-adjacency relations for d > 3.
If such relations can be defined through some topological or geometrical abstraction,
then our framework naturally extends to d-dimensional local refinement strategies, and
hence the optimality of the BPX preconditioner can be guaranteed in Rd, d ≥ 1. The
analysis is done purely with basis functions, completely independent of the underlying
mesh geometry.

For linear g, the element mass matrix gives rise to the following useful formula.

‖g‖2
L2(τ) =

volume(τ)
(d+ 1)(d+ 2)

(
d+1∑
i=1

g(xi)2 + [
d+1∑
i=1

g(xi)]2), (7.5)

where, i = 1, . . . , d+ 1 and xi is a vertex of τ , d = 2, 3. In view of (7.5), we have that

‖φ̂(j)
i ‖2

L2(Ω) = 2dLj,i
volume(supp φ̂(j)

i )
(d+ 1)(d+ 2)

.

Since the min in (7.2) is attained, there exists at least one τ ∈ supp φ̂
(j)
i such

that L(τ) = Lj,i. By (5.2) we have

2Lj,i h
diam(τ)
diam(τ̄)

. (7.6)

Also,

volume(supp φ̂(j)
i ) h

M∑
i=1

diam3(τi), τi ∈ supp φ̂(j)
i . (7.7)

By (5.5), we have

diam(τi) h diam(τ). (7.8)

Combining (7.7) and (7.8), we conclude

volume(supp φ̂(j)
i ) h Mdiam3(τ). (7.9)
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Finally then, (7.6) and (7.9) yield

2dLj,ivolume(supp φ̂(j)
i ) h M

1
diam3(τ̄)

.

M is a uniformly bounded constant by shape regularity. One can view the size of any
tetrahedron in T0, in particular size of τ̄ , as a constant. The reason is the following:
A.5.4 and A.5.5 force every tetrahedron at any Tj to be geometrically similar to some
tetrahedron in T0 or to a tetrahedron arising from an irregular refinement of some
tetrahedron in T0, hence, to some tetrahedron of a fixed finite collection. Combining
the two arguments above, we have established that

‖φ̂(j)
i ‖L2(Ω) h 1, xi ∈ Nj . (7.10)

Let g =
∑

xi∈Nj
ûiφ̂

(j)
i ∈ Sj . For any τ ∈ Tj we have that

‖g‖2
L2(τ) ≤ c

∑
xi∈Nj,τ

|ûi|2‖φ̂(j)
i ‖2

L2(Ω), (7.11)

where Nj,τ = {xi ∈ Nj : xi ∈ τ}, which is uniformly bounded in τ ∈ Tj and
j ∈ N0. By the scaling (7.4), we get equality in the estimate below. The inequality
is a standard inverse estimate where one bounds g(xi) using formula (7.5) and by
handling the volume in the formula by (5.2):

|ûi|2 = 2−dLj,i |g(xi)|2 ≤ c 2−dLj,i2dLj,i‖g‖2
L2(τ). (7.12)

We sum up over τ ∈ Tj in (7.11) and (7.12), and by using (7.10) we achieve stability
(7.3). This allows us to establish the Bernstein estimate (4.1).

Lemma 7.1. For the scaled basis (7.4), the Bernstein estimate (4.1) holds for
β = 3/2

Proof. (7.10) with (7.11) and (7.12) assert that the scaled basis (7.4) is stable
in the sense of (7.3). Hence, (4.1) holds by Theorem 4 in [19]. Note that the proof
actually works independently of the spatial dimension.

8. Lower bound in the norm equivalence. The Jackson estimate for Besov
spaces is defined as follows:

inf
g∈SJ

‖f − g‖Lp ≤ c ωα(f, 2−J)p, f ∈ Lp(Ω), (8.1)

where c is a constant independent of f and J , and α is an integer. In the uniform
refinement setting, (8.1) is used to obtain the lower bound. However, in local the
refinement setting, (8.1) holds only for functions whose singularities are somehow
well-captured by the mesh geometry. For instance, if a mesh is designed to pick up
the singularity at x = 0 of y = 1/x, then on the same mesh we will not be able to
recover a singularity at x = 1 of y = 1/(x − 1). Hence the Jackson estimate (8.1)
cannot hold in a general setting, i.e. for f ∈W k

p . In order to get the lower bound, we
focus on estimating vJ directly, as in [11] for the 2D setting.

To begin we borrow the quasi-interpolant construction from [11]. Let τ ∈ Tj

be a tetrahedron with vertices x1, x2, x3, x4. Clearly the restrictions of φ̂(j)
i to τ are

linearly independent over τ where xi ∈ {x1, x2, x3, x4}. Then, there exists a unique
set of linear polynomials ψτ

1 , ψ
τ
2 , ψ

τ
3 , ψ

τ
4 such that∫

τ

φ̂
(j)
k (x, y, z)ψτ

l (x, y, z)dxdydz = δkl, xk, xl ∈ {x1, x2, x3, x4}. (8.2)
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For xi ∈ Nj and τ ∈ Tj , define a function for xi ∈ τ

ξ
(j)
i (x, y, z) =

{
1

Mi
ψτ

i (x, y, z), (x, y, z) ∈ τ
0, (x, y, z) 6∈ supp φ̂(j)

i

, (8.3)

where Mi is the number of tetrahedra in Tj in supp φ̂(j)
i . By (8.2) and (8.3), we obtain

(ξ(j)k , φ̂
(j)
l ) =

∫
Ω

ξ
(j)
k (x, y, z)φ̂l(x, y, z)dxdydz = δkl, xk, xl ∈ Nj . (8.4)

We can now define a quasi-interpolant, in fact a projection onto Sj , such that

(Q̃jf)(x, y, z) =
∑

xi∈Nj

(f, ξ(j)i )φ̂(j)
i (x, y, z). (8.5)

As remarked earlier, due to (8.3) the slice operator term Q̃j−Q̃j−1 will vanish outside
the refined set Ωj defined in (2.1), which is critical for enforcing optimal (linear)
complexity of the smoother. One can easily observe by (7.10) and (8.4) that

‖ξ(j)i ‖L2(Ω) h 1, xi ∈ Nj , j ∈ N0. (8.6)

Letting Ωj,τ =
⋃
{τ ′ ∈ Tj : τ ∩ τ ′ 6= ∅}, we can conclude from (7.10) and (8.6)

that

‖Q̃jf‖L2(τ) = ‖
∑

xk∈Nj,τ

(f, ξ(j)l )φ̂(j)
k ‖L2(τ) ≤ c‖f‖L2(Ωj,τ ). (8.7)

We define now a subset of the triangulation where the refinement activity stops,
meaning that all tetrahedra in T ∗

j , j ≤ m also belong to Tm:

T ∗
j = {τ ∈ Tj : L(τ) < j, Ωj,τ ∩ τ ′ = ∅, ∀τ ′ ∈ Tj with L(τ ′) = j}. (8.8)

Due to the local support of the dual basis functions ξ(j)i and the fact that Q̃j is a
projection, one gets

‖g − Q̃jg‖L2(τ) = 0, τ ∈ T ∗
j . (8.9)

Since Q̃j is a projection onto linear finite element space, it fixes polynomials of
degree at most 1 (i.e. Π1(R3)). Using this fact and (8.7), we arrive:

‖g − Q̃jg‖L2(τ) ≤ ‖g − P‖L2(τ) + ‖Q̃j(P − g)‖L2(τ)

≤ c ‖g − P‖L2(Ωj,τ ), τ ∈ Tj \ T ∗
j . (8.10)

We would like to bound the right hand side of (8.10) in terms of a modulus of
smoothness in order to reach a Jackson-type estimate. Following [11], we utilize a
modified modulus of smoothness:

ω̃k(f, t,Ω)p
p = t−s

∫
[−t,t]s

‖∆k
hf‖

p
Lp(Ωk,h) dh.
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They can be shown to be equivalent:

ω̃k+1(f, t,Ω)p h ωk+1(f, t,Ω)p.

The equivalence in the one-dimensional setting can be found in Lemma 5.1 in [12].
For τ a simplex in Rd and t = diam(τ), a Whitney estimate shows that [13, 18, 21]

inf
P∈Πk(Rd)

‖f − P‖Lp(τ) ≤ cω̃k+1(f, t, τ)p, (8.11)

where c depends only on the smallest angle of τ but not on f and t. The reason why
Q̃j works well for tetrahedralization in 3D is the fact that the Whitney estimate (8.11)
remains valid for any spatial dimension. Tj \ T ∗

j is the part of the tetrahedralization
Tj where refinement is active at every level. Then, in view of (5.5)

diam(Ωj,τ ) h 2−j , τ ∈ Tj \ T ∗
j .

Taking the inf over P ∈ Π1(R3) in (8.10) and using the Whitney estimate (8.11) we
conclude

‖g − Q̃jg‖L2(τ) ≤ cω̃2(g, 2−j ,Ωj,τ )2.

Recalling (8.9) and summing over τ ∈ Tj \ T ∗
j gives rise to

‖g − Q̃jg‖L2(Ω) ≤ cω̃2(g, 2−j ,Ω)2 ≤ c̃ ω2(g, 2−j ,Ω)2,

where we have switched from the modified modulus of smoothness to the standard
one. With (4.2) one then has

vJ = O(1), J →∞. (8.12)

9. Conclusion. In this article, we examined the Bramble-Pasciak-Xu (BPX)
preconditioner in the setting of local 3D mesh refinement. In particular, we extended
the 2D optimality result for BPX due to Dahmen and Kunoth to the local 3D red-
green refinement procedure introduced by Bornemann-Erdmann-Kornhuber (BEK).
The extension involved establishing that the locally enriched finite element subspaces
produced by the BEK procedure allow for the construction of a scaled basis which
is formally Riesz stable. This in turn rested entirely on establishing a number of
geometrical relationships between neighboring simplices produced by the local refine-
ment algorithms. We remark again that shape regularity of the elements produced
by the refinement procedure is insufficient to construct a stable Riesz basis for finite
element spaces on locally adapted meshes. The d-vertex adjacency generation bound
for simplices in Rd is the primary result required to establish patchwise quasiunifor-
mity for stable Riesz basis construction, and this result depends delicately on the
particular details of the local refinement procedure rather than on shape regularity of
the elements. We also noted in §5 that these geometrical properties have been estab-
lished in [1] for purely bisection-based refinement procedures that have been shown
to be asymptotically non-degenerate, and therefore also allow for the construction of
a stable Riesz basis.

To address the practical computational complexity of an implementable version
of BPX, we showed that the number of degrees of freedom used for smoothing is
bounded by a constant times the number of degrees of freedom introduced at that
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level of refinement. This indicates that a practical implementable version of the
BPX preconditioner for the local 3D refinement setting considered here has provably
optimal (linear) computational complexity per iteration, as well as having a uniformly
bounded condition number.

The theoretical framework established here supports arbitrary spatial dimension
d ≥ 1; we indicated clearly which geometrical properties must be re-established to
show BPX optimality for spatial dimension d ≥ 4. All of the results contained in
this article require no smoothness assumptions on the PDE coefficients beyond those
required for well-posedness in H1.
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