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ABSTRACT. In this article, we develop goal-oriented error indicators to drive adaptive
refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the sol-
vation free energy linear functional demonstrate that goal-oriented indicators are not suf-
ficient on their own to lead to a superior refinement algorithm. To remedy this, we pro-
pose a problem-specific marking strategy using the solvation free energy computed from
the solution of the linear regularized Poisson-Boltzmann equation. The convergence of
the solvation free energy using this marking strategy, combined with goal-oriented re-
finement, compares favorably to adaptive methods using an energy-based error indicator.
Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning
in order to maintain optimal computational complexity. We use variants of the classi-
cal multigrid method, which can be viewed as generalizations of the hierarchical basis
multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.
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1. INTRODUCTION

The Poisson-Boltzmann equation (PBE) is a widely used model for electrostatic inter-
actions of charged bodies in dielectric media, such as molecules, ions, and colloids, and
thus is of importance in many areas of science and engineering, including biochemistry,
biophysics, and medicine. (See the classical texts [65, 74] for a derivation of the PBE.)
The importance of the PBE model is reflected by the popularity of software packages
such as APBS [9], CHARMM [34], DelPhi [70], and UHBD [64], within the molecular
modeling communities. It provides a high fidelity mean-field description of electrostatic
interactions and ionic distributions of solvated biomolecular systems in equilibrium. The
partial differential equation itself is challenging to solve numerically due to singulari-
ties of different orders at the positions of permanent point charges and the presence of a
dielectric interface.

In this article, we develop an adaptive multilevel finite element method for the PBE
using goal-oriented a posteriori error indicators. This adaptive algorithm, which is a
variant of that studied for the PBE in [55, 8, 9], deviates substantially from previous work
in that the error indicator is based on a user defined quantity of interest or goal. This is
in contrast to traditional residual-based adaptive refinement algorithms (like those devel-
oped for the PBE in [39]) that drive-refinement to minimize the global error measured in
an energy-norm. The goal-oriented refinement methodology has been successfully em-
ployed in a wide range of application areas, including fluids, elasticity, and fluid structure
interaction [11]. Despite these successes, we show that this methodology applied directly
to the PBE does not necessarily lead to a successful adaptive algorithm. To remedy this
issue we propose a novel marking strategy which recovers the performance commonly
seen in other applications. This is the first time that this particular goal-oriented re-
finement strategy has been applied to the PBE specifically, and molecular biophysics in
general.

At the core of any adaptive finite element approach are the iterative methods used to
solve the discretized equation. However, due to the ill-conditioning of the linear systems
arising from the discretization of the PBE, the convergence rate of traditional iterative
solvers is significantly deteriorated. To remedy this, we combine modern Bramble-
Pasciak-Xu (BPX)-type multilevel preconditioners with the goal-oriented adaptive al-
gorithm mentioned above. When applied to the PBE, our results demonstrate that the
overall algorithm is accurate, highly efficient and scalable with respect to the number of
levels in the adaptive hierarchy.

An outline of the article is as follows. In section 2, we give a brief overview of the
Poisson-Boltzmann equation, and describe the most useful formulations for modeling
and numerical simulation, such as the regularized formulations described in [39, 56, 37].
We also discuss the solvation free energy functional corresponding to a given reaction po-
tential, which will form the basis of our goal-oriented error indicators developed later in
the article. We describe adaptive finite element methods in section 3, including weak for-
mulation of the regularized PBE, discretization by finite element methods, and adaptive
algorithms driven by a posteriori error indicators. In section 4, we describe a particular
class of error indicators known as goal-oriented indicators, and describe several indi-
cators designed for the PBE. In section 5, we discuss a local multigrid algorithm used
to precondition an iterative Krylov method for solving the linear systems arising from
adaptive mesh refinement. With some care, these methods enable an algorithm whose
complexity is close to optimal. The results from a sequence of numerical experiments
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FIGURE 1. Debye-Hückel model of a charged biological structure im-
mersed in a solvent containing mobile ions

using the Finite Element ToolKit (FETK) are presented in section 6. These results high-
light the efficacy of the goal-oriented error indicator for the Poisson-Boltzmann problem,
as well as the utility of the linear solver strategy combined with the adaptive algorithm,
driven by the goal-oriented error indicator. We draw some conclusions in section 7.

2. THE POISSON-BOLTZMANN EQUATION

The Poisson-Boltzmann equation (PBE) is a second-order nonlinear partial differen-
tial equation whose solution gives the electrostatic potential, φ(x), for a solute molecule
immersed in an implicitly defined solvent. Using a mean-field approximation, the sol-
vent is treated as a bulk medium where ions are distributed according to the Boltzmann
distribution. Figure 1 is a schematic representation of the domain of the PBE, denoted by
Ω. The innermost region, Ωm, contains the explicitly represented solute molecule. The
outer region, Ωs, is the bulk solvent and contains the implicit solvent ions. Between Ωs

and Ωm is the ion exclusion layer, which separates the solute from the solvent ions, and
has a width dependent on the size of the solvent ions. For simplicity, we will assume the
solvent ions are small and the ion exclusion layer can be neglected. Hence, the interface
between the solute and solvent is a surface, denoted by Γ = Ω̄m ∩ Ω̄s. The shape of the
surface is governed by the short-range repulsive van der Waals interactions, which pre-
vent the solvent from penetrating the solute. The precise definition of the surface varies
depending on the model [10].

The PBE for a 1:1 electrolyte (e.g., sodium chloride) is

−∇ · ε(x)∇u(x) + κ̄2(x) sinh (u(x)) =
4πec
kBT

P∑
i=1

qiδ(x− xi), x ∈ Ωm ∪ Ωs,

u(∞) = 0,[[
ε(x)

∂u(x)

∂n

]]
= 0, x ∈ Γ,

(2.1)

where u(x) = ecφ(x)/kBT is the dimensionless potential, ec is the charge of an electron,
kB is Boltzmann’s constant, and T is the temperature. Here,

[[
·
]]

denotes the jump
across the interface [[

f(x)

]]
= lim

ζ→0
f(x+ ζn)− f(x− ζn) (2.2)
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and n is the outward pointing normal of ∂Ωm. The dielectric function ε(x) jumps one
or two orders of magnitude at the interface Γ. For example, commonly used values are
ε(Ωm) = εm = 2 and ε(Ωs) = εs = 80. The modified Debye-Hückel parameter, κ̄, has
a similar discontinuity, with κ̄(Ωm) = 0 and κ̄(Ωs) = κ̄s > 0. The fixed ions within the
solute are represented by a sum of Dirac delta distributions, with fixed charge centers,
xi, and charges ecqi. This charge distribution induces singularities in the electrostatic
potential and has, until recently, proved to be difficult to treat numerically.

To address this issue the PBE is reformulated so that the singularities are explicitly
removed [48, 86]. Following [39, 56, 37], this is accomplished by writing the potential
as a sum of a singular term uc and a nonsingular remainder ur. The singular term is the
Coulomb potential

uc(x) =
ec

εmkBT

P∑
i=1

qi
|x− xi|

, (2.3)

which satisfies the Poisson equation

−∇ · εm∇uc(x) =
4πec
kBT

P∑
i=1

qiδ(x− xi) for x ∈ Ω,

uc(∞) = 0.

(2.4)

There are numerous fast algorithms (with linear or near linear complexity) for evaluating
uc on a set of quadrature points, such as fast multipole [49], multilevel summation [72,
51] and particle mesh Ewald [46].

Substituting u = ur + uc into the PBE (Eq. 2.1) gives a modified form of the PBE,
which was termed in [39] as the Regularized PBE (RPBE):

−∇ · ε(x)∇ur(x)+κ̄2(x) sinh (ur(x) + uc(x))

= ∇ · (ε(x)− εm)∇uc(x), x ∈ Ωm ∪ Ωs,

ur(∞) = 0,[[
ε(x)

∂ur(x)

∂n

]]
= (εm − εs)

∂uc(x)

∂n
, x ∈ Γ.

(2.5)

Note that, because both κ̄(x) and (ε(x) − εm) are zero for x ∈ Ωm and the centers of
the atoms in the solute are well separated from Γ, the singular function, uc, is never
evaluated near the singularities. This formulation was used in [39] to develop continuous
a prioriL∞ estimates of solutions, and subsequently to show existence and uniqueness of
solutions of the PBE. Furthermore, the authors established discrete a priori L∞ estimates
for Galerkin solutions, making possible quasi-optimal a priori error estimates, as well as
a provably convergent adaptive finite element method for the RPBE.

Recently, an alternative 3-term splitting of the PBE has been proposed in [56] which
addresses the inherit subtractive cancellation in the reconstruction of the electrostatic po-
tential used by the RPBE. In this article, the authors establish mathematical results for the
alternative splitting, including continuous and discrete a priori L∞ estimates, existence
and uniqueness of solutions, quasi-optimal a priori error estimates, and a convergent
adaptive finite element method (AFEM). (Whereas in [39] only AFEM convergence was
shown, it was shown in [56] that AFEM is a contraction for the RPBE, using a new
AFEM convergence framework for nonlinear problems developed in [57].) The 3-term
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splitting decomposes the electrostatic potential into

u(x) =

{
u3(x) + uc(x) + uh(x) in Ωm

u3(x) in Ωs
, (2.6)

where uc is the Coulomb potential, but here it is restricted to the subdomain Ωm. The
harmonic term, uh, is defined as the solution to

−∇2uh(x) = 0 in Ωm (2.7)

uh(x) = −uc(x) on Γ. (2.8)

Applying the definitions of uc, uh and substituting into the PBE (Eq. 2.1), one obtains an
equation for u3,

−∇ · (ε(x)∇u3(x)) + κ̄2(x) sinh(u3(x)) = 0 in Ω, (2.9)[[
ε(x)

∂u3(x)

∂n

]]
= εm

∂(uc(x) + uh(x))

∂n
on Γ, (2.10)

u3(∞) = 0. (2.11)

In contrast to the RPBE, this formulation avoids the subtractive cancellation since u3 =
u in Ωs, and the Coulomb term is not used to reconstruct the potential in the solvent
subdomain.

For systems which are not highly charged, the variation in the potential is relatively
small, and the hyperbolic sine term is well approximated by its linearization. This
approximation, which replaces sinh(u) with u, results in what is known as the lin-
ear Poisson-Boltzmann equation (LPBE), or the linear regularized Poisson-Boltzmann
equation (LRPBE) in case of the RPBE. Although this approximation reduces the ionic
response of the solvent [10, 47], it can significantly reduce the complexity of many nu-
merical algorithms (e.g., boundary element and boundary integral methods) [63, 25, 62].

One important use for the solution to the PBE is in the calculation of solvation free en-
ergies. This quantity measures the thermodynamic work of moving the solute molecule
from a vacuum to a solvent environment. The solvation free energy can be written as a
sum of nonpolar and polar contributions. The nonpolar term depends on the solvent ac-
cessible surface area, excluded volume, and nonpolar forces which are typically assumed
to be independent of the electrostatic potential [60, 78]. The polar term, S, is a linear
functional of the solution to the RPBE, ur, (also known as the reaction potential) [60]
and can be expressed as

S(ur) =
1

2

∫
Ω

ur(x)
P∑
i=1

ec qiδ(x− xi) dx. (2.12)

For the 3-term splitting, the reaction potential is the sum of u3 and uh.

3. ADAPTIVE FINITE ELEMENT METHODS

The finite element approach provides a natural framework for dealing with the com-
plex molecular surfaces which arise in the PBE. Although there are modified finite dif-
ference methods which address this difficulty [83], finite element methods provide an
attractive alternative when paired with an adaptive unstructured mesh designed to con-
form to the shape of the solute molecule [62]. In this section, we present a general
adaptive finite element method for the regularized PBE, including the weak formulation,
discretization, solution using an inexact global Newton iteration, and adaptive refinement
procedure. For more details on the finite element method, see [73, 32, 26, 45].
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3.1. Weak Forms. To give a well-defined weak formulation, the nonlinearity involving
exponentials must be controlled; in [39, 56], a priori L∞ estimates are obtained for any
solution to the RPBE, giving almost everywhere pointwise bounds of the form: α 6
ur 6 β. This leads to working with a well-defined solution space that consists of a
non-empty, topologically closed, convex subset of H1(Ω):

Me := { v ∈ H1(Ω) : α 6 v 6 β a.e. in Ω, v = u− uc on ∂Ω }. (3.1)

It is shown in [39, 56] that there exists a unique solution to either regularized form of the
RPBE in Me ⊂ H1(Ω). The weak formulation is: Find ur ∈Me such that

a(ur, v) + b(ur + uc, v) = L(v) ∀v ∈ H1
0 (Ω) (3.2)

where

a(u, v) = (ε∇u,∇v) (3.3)

b(u, v) = (κ̄2 sinh(u), v) (3.4)

L(v) = (−(ε− εm)∇uc,∇v). (3.5)

The linear functional L(·) is defined by integrating the right hand side of Eq. 2.5 by parts
and applying the jump condition to eliminate the interface terms.

The weak form for the 3-term split regularized PBE requires solving two problems:
first for the harmonic term on Ωm and second for the split potential on the whole domain
Ω. Define the solution space to the harmonic problem as Mh := {v ∈ H1(Ωm) : v(x) =
−uc(x) ∀x ∈ ∂Ωm}. Then the weak form of Eqns. 2.7-2.11 is: Find (uh, u3) ∈Mh×Me

such that

a(u3, v) + b(u3, v) + am(uh, w) = 〈g(uh), v〉 ∀(w, v) ∈ H1
0 (Ωm)×H1

0 (Ω) (3.6)

where am(·, ·) is the restriction of the bilinear form to the Ωm subdomain and

〈g(uh), v〉 =

∫
∂Ωm

εm
∂(uc + uh)

∂n
vdx. (3.7)

3.2. Solving. Due to the hyperbolic sine, the RPBE has a strong nonlinearity. The dis-
cretized nonlinear problems defined in Eqns. 3.2 and 3.6 can be solved using an inexact-
Newton method [44]. For brevity, we give details for Eq. 3.2. Define the weak residual
functional to be

〈R(uhr ), v〉 = L(v)−
(
a(uhr , v) + b(uhr + uhc , v)

)
. (3.8)

Here uhr is the discrete solution satisfying the system of nonlinear equations

〈R(uhr ), v〉 = 0 ∀v ∈ V h (3.9)

where V h is the space of piecewise linear functions defined by the tetrahedral mesh.
Linearizing Eq. 3.9 around uhr results in

Jwh := 〈DR(uhr )w
h, v〉

=
d

dε

(
〈R(uhr + εwh), v〉

∣∣
ε=0

= −a(wh, v)− b′(uhr + uc;w
h, v) ∀v ∈ V h. (3.10)

In the linear RPBE, sinh(u) is replaced by u, and b′(u, v) = (κ̄2u, v). Newton’s method
defines the nonlinear update vector sh as the solution to

Jsh = −R(uhr ). (3.11)
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Given an initial guess uhr ≈ u0, the updated solution is defined as u1 = u0 + sh. This
process can be repeated until a desired level of convergence is achieved. An inexact-
Newton method uses an iterative solve to find an approximate solution to Eq. 3.11, with
a relatively large tolerance for the linear solve when far from the nonlinear solution.
However, as the exact solution to Eq. 3.9 is approached, the linear solver tolerance is
tightened so that quadratic convergence is achieved.

The computational complexity of the Newton solver is dominated by the method used
to solve the N linear algebraic equations [15, 50] within each iteration. Multilevel meth-
ods provide an advantage in that they are provably optimal or nearly optimal methods
for solving these systems [13, 50, 80]. The presence of geometrically complex discon-
tinuities in the dielectric ε and in the Debye-Hückel parameter κ̄ in the PBE destroy
classical multilevel method efficiency, and can even cause divergence. This is analyzed
at length for the PBE in [53, 58, 59], and various techniques based on coefficient av-
eraging and algebraic enforcement of variational (Galerkin) conditions are examined.
Algebraic multilevel methods have been used successfully for many similar problems;
cf. [16, 17, 30, 36, 35, 31, 71, 76, 77]. A fully unstructured algebraic multilevel ap-
proach is taken in FETK, more details are provided in Section 5.

Starting from an initial mesh T0, the adaptive mesh refinement procedure builds a se-
quence of conforming meshes T0, T1, . . . , Tl [39, 56, 43]. This procedure is divided into
four steps: SOLVE, ESTIMATE, MARK, and REFINE. In the SOLVE step, a solution is
computed on the current mesh. Using this result, the ESTIMATE step computes elemen-
twise error indicators and an estimate of the global error. In a production environment,
the procedure terminates if the global error estimate is below some prescribed tolerance.
Otherwise, the MARK step selects elements for refinement. This step is crucial to the
convergence of the method. Finally, REFINE subdivides the marked elements possibly
subdividing additional unmarked elements in order to produce a conforming mesh. The
refinement technique used in this article is longest edge bisection [69].

4. ERROR INDICATORS

In this section we present a posteriori error indicators for use in adaptive refinement.
These estimators are typically developed by considering the residual of the weak form.
For example, given a finite element solution uhr ∈ V h, the weak residual for the linear
RPBE is (compare to Eq. 3.8)

〈R(uhr ), v〉 = L(v)− (κ̄2uc, v)−
(
a(uhr , v) + (κ̄2uhr , v)

)
(4.1)

for a given v ∈ V . For the remainder of this article, we restrict our attention to two
classes of error indicators: energy-based and goal-oriented. The first class estimates the
error in the energy norm, although this idea can be generalized to other norms, (e.g., the
H1 norm). The second class, called goal-oriented, focuses on estimating the error in a
user specified quantity of interest or goal functional. In the following sections, we derive
error indicators from both classes for the linear RPBE. For the goal-oriented indicator,
the solvation free energy is used as the target functional.

4.1. Energy Norm Indicators. A standard a posteriori error indicator is based on bound-
ing the error in the energy norm. It is easily derived by breaking the weak residual into its
elementwise components and integrating by parts over each element [1]. This technique
was used in [40] to derive the following estimator for the linear RPBE

η2
K(uh) = h2

K‖rK‖2
L2(K) +

1

4
h∂K‖r∂K‖2

L2(∂K), (4.2)
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where

rK(x) =(∇ · (ε(x)− εm)∇uc(x)− κ̄2(x)uc(x))

− (−∇ · ε(x)∇uhr (x) + κ̄2(x)uhr (x)) ∀K ∈ T
(4.3)

and

r∂K(x) = nK ·
[[

(ε(x)− εm)∇uc(x) + ε(x)∇uhr (x)

]]
nK

∀K ∈ T . (4.4)

This indicator gives a bound on the error measured in the energy norm (|||v|||2 := a(v, v)+
(κ̄2v, v)) ∣∣∣∣∣∣ur − uhr ∣∣∣∣∣∣2 ≤∑

K∈T

η2
K(uhr ). (4.5)

Bounding the error in other norms is possible. For example, in [39, 56] a similar a
posteriori error indicator for the RPBE was shown to bound the error measured in the
H1 norm. Other efforts have focused on formulating the RPBE as a first-order system
least squares (FOSLS) problem, which has a natural error estimate [22, 38].

4.2. Goal-Oriented Indicators. Key to the development of goal-oriented error indica-
tors is relating the weak residual to the error in the goal functional. For symmetric linear
problems, a direct application of the Riesz representation theorem shows that there exists
a dual function that when paired with the weak residual gives the error in the goal [21].
The challenge is to approximate this function and utilize that approximation to develop
error indicators. However, for nonlinear problems, like Eq. 2.5, the definition of the dual
function is not so clear. The first part of this section discusses a strategy for defining the
dual function for both the nonlinear RPBE and the three term splitting. Using this def-
inition of the dual, two goal-oriented error indicators are proposed for the linear RPBE
utilizing the solvation free energy as the quantity of interest.

Following [21], a dual function for the nonlinear RPBE can be defined by considering
the constrained minimization problem

ur = arg min
u∗r∈Me

S(u∗r) subject to a(ur, v) + b(ur +uc, v) = L(v) ∀v ∈ H1
0 (Ω), (4.6)

where a(·, ·), b(·, ·) and L(·) are specified in Eq. 3.5, and S is the goal functional. Note
that because the RPBE constraint determines the solution uniquely, the minimization
problem has the same solution. However, specifying the minimization provides an ad-
ditional mathematical framework to define the dual function. To see this, consider the
Lagrangian associated with the minimization problem

Θ(ur, w) = S(ur) +
(
L(w)− (a(ur, w) + b(ur + uc, w))

)
, (4.7)

where the Lagrange multiplier, w ∈ H1
0 (Ω), is also the dual function. Taking the first

variation of Θ with respect to u gives the dual problem:

Find w ∈ H1
0 (Ω), such that 〈DR(ur)v, w〉 = −S(v), ∀v ∈ H1

0 (Ω), (4.8)

where 〈DR(·)·, ·〉 was defined in Eq. 3.10. As discussed above, if b(·, ·) is linear in the
first argument then Eq. 4.8 simplifies to a(v, w) + (κ̄2v, w) = S(v) ∀v ∈ H1

0 (Ω). For
the linear problem the error in a goal functional S(·), like the solvation free energy, is
simply expressed in terms of the weak residual

S(ur − uhr ) = a(ur − uhr , w) + (κ̄2(ur − uhr ), w)

= L(w)− a(uhr , w)− (κ̄2(uhr + uc), w). (4.9)
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Thus, if w is known, the error in S(·) is easily calculated. In the nonlinear case the error
in the goal satisfies

S(ur − uhr ) = L(w)− a(uhr , w)− b′(uhr + uc;u
h
r , w) + E, (4.10)

where E is quadratic in the error in uhr [21].
For the three term splitting of the PBE, again we setup a constrained minimization

problem to define the dual. Using the notation from the weak form in Eq. 3.6, the corre-
sponding Lagrangian is

Θ3-term(u3, uh;w3, wh) = S(u3) + Sm(uh)+

〈g(uh), w3〉 − (a(u3, w3) + b(u3, w3) + am(uh, wh)) (4.11)

where w3 ∈ H1
0 (Ω) and wh ∈ H1

0 (Ωm) are dual functions. The functional Sm(·) is a
restriction of the original goal functional to the Ωm domain. Taking the first variation of
Θ3-term with respect to u3 and uh gives the dual problem

a(v, w3) + b′(u3; v, w3) = S(v) ∀v ∈ H1
0 (Ω),

am(v, wh) = Sm(v) + 〈g′(uh; v), w3〉 ∀v ∈ H1
0 (Ωm)

(4.12)

where

〈g′(uh; v), w3〉 =

∫
∂Ωm

εm
∂v

∂n
w3dx. (4.13)

4.2.1. Goal-Oriented Error Indicators for the Linear RPBE. To make the application
of the dual functions in error indicators more concrete, we present two goal-oriented
indicators for the linearized RPBE. As an example we will focus on accurate computation
of the solvation free energy (see Eq. 2.12). Unfortunately, S(·) is not bounded on H1

0 (Ω)
due to the inclusion of delta distributions. A common approach to circumventing this
issue is to use a mollified version of the functional [1, 11]. In this case, the mollified
solvation free energy is

S(ur) ≈ Sσ(ur) =
1

2

∫
ur(x)

P∑
i=1

ec qiθ(|x− xi|, σ) dx, (4.14)

where θ is a locally supported function defined such that

lim
σ→0

∫
θ(|x|, σ)f(x) dx =

∫
δ(x)f(x) dx = f(0). (4.15)

One possible choice for θ is the step function

θ(r, σ) =

{
B−1
σ r ≤ σ,
0 r > σ,

(4.16)

where Bσ is the volume of a ball of radius σ.
A simple error indicator suggested by Eq. 4.9 is to first solve the dual problem using

the same approximation space as the primal. This approximate dual could then be sub-
stituted for w in Eq. 4.9 to compute the value of the indicator. However, if the same finite
dimensional space is used for solving both the dual problem and the primal problem,
then, because of Galerkin orthogonality, Eq. 4.9 will be zero (see [11]). A remedy is to
instead solve the dual problem using a finer approximation space, Uh ⊂ H1

0 (Ω). One
convenient choice is to maintain the same mesh and use higher order polynomials for
Uh. In the examples below, V h is the space of piecewise linear polynomials and Uh is
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the space of piecewise quadratics. Let the finer resolution solution of the dual problem
be denoted wh,2. Substituting w ≈ wh,2 into Eq. 4.9 yields

Sσ(ur − uhr ) ≈ L(wh,2 − P h
h,2w

h,2)

−
(
a(uhr , w

h,2 − P h
h,2w

h,2) + (κ̄2(uhr + uc), w
h,2 − P h

h,2w
h,2)
)

(4.17)

Where P h
h,2 is a convenient projection (e.g., nodal injection) of the fine space Uh onto

V h. The choice of the projection operator will affect the quality of the indicator. Decom-
posing the error into its elementwise contributions gives

Sσ(ur − uhr ) ≈
∑
K

LK(wh,2 − P h
h,2w

h,2)− aK(uh, wh,2 − P h
h,2w

h,2)

− (κ̄2(uhr + uc), w
h,2 − P h

h,2w
h,2)K ≤

∑
K

ηK(uh, wh,2), (4.18)

where the subscript K indicates the restrictions of the linear functional, bilinear func-
tional or inner product to element K and

ηK(uh, wh,2) =

∫
K

∣∣∣∣−(ε(x)− εm)∇uc(x) · ∇(wh,2(x)− wh(x))

− κ̄2(x)uc(x)(wh,2(x)− wh(x))

− ε(x)∇uhr (x) · ∇(wh,2(x)− wh(x))

− κ̄2(x)uhr (x)(wh,2(x)− wh(x))

∣∣∣∣ dx.
(4.19)

Here, the absolute value of the integrand in Eq. 4.18 has been taken over each element. In
the numerical experiments in section 6, Eq. 4.19 is referred to as the the “goal-quadratic”
error estimator used by the various adaptive refinement marking strategies.

The error indicator in Eq. 4.19 requires solving a dual problem which is substantially
larger than the primal problem. To alleviate this issue, we develop a second goal-oriented
error estimator that finds an approximation to the dual in V h (which is the same space
as the primal problem). The error in the goal is estimated by solving many local el-
ementwise boundary value problems. The technique proposed here is similar to the
development of the equilibrated residual method for computing goal-oriented estima-
tors [66, 67]. However, the less accurate but simpler element residual method (ERM), as
discussed in [1], is used. Using the parallelogram law, the error in the linear functional
can be rewritten [1, 66, 67] as

Sσ(ur − uhr ) = a(ur − uhr , w − wh) + (κ̄2(ur − uhr ), w − wh)

=
1

4

∣∣∣∣∣∣(ur − uhr ) + (w − wh)
∣∣∣∣∣∣2 − 1

4

∣∣∣∣∣∣(ur − uhr )− (w − wh)
∣∣∣∣∣∣2 (4.20)

where again |||v|||2 = a(v, v) + (κ̄2v, v) is the square of the energy norm. Define element-
wise error functions φK = ur−uhr |K and ψK = w−wh|K to be computed by the element
residual method. The error in the primal problem on element K is approximated by the
solution to

aK(φK , v) + (κ̄2φK , v)K = 〈R(uhr ), v〉K +

∫
∂K

fuKv(x) ds ∀v ∈ H1(K), (4.21)

where
〈R(uhr ), v〉K = LK(v)− aK(uhr , v)− (κ̄2(uhr + uc), v)K , (4.22)
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and
fuK =

(
ε(x)∇uhr (x) + (ε(x)− εm)∇uc(x)

)
· nK . (4.23)

Similarly, the error in the dual problem on element K is approximated by the solution to

aK(v, ψK) + (κ̄2v, ψK)K = SσK(v)− aK(v, wh)− (κ̄2v, wh)K

+

∫
∂K

fwKv(x) ds ∀v ∈ H1(K),
(4.24)

where
fwK = ε(x)∇wh(x) · nK . (4.25)

For a derivation of these equations see [40]. Explicitly stated, the “goal-linear” error
estimator used in the numerical experiments in section 6 is given by

ηK(uhr , w
h) =

1

4
|||φK + ψK |||2K −

1

4
|||φK − ψK |||2K . (4.26)

5. MULTILEVEL PRECONDITIONING

As the mesh is refined, the conditioning of the linear system deteriorates, and precondi-
tioning is necessary to accelerate the convergence of iterative solvers (e.g., the conjugate
gradient method). The challenge in designing an efficient preconditioner is balancing the
cost of applying the preconditioner with its effectiveness in improving the conditioning
of the underlying system.

In a given finite element mesh, at level j, we denote the set of nodes and its cardinality
by Nj and Nj , respectively. We call the set of nodes introduced precisely at level j
the fine nodes, and denote them N f

j . As the mesh is refined, N f
j is appended to Nj−1,

leading to the following hierarchy of nodes:

Nj = Nj−1

⋃
N f
j , j = 1, . . . , J,

where NJ = N .
In the local mesh refinement setting, the way the coarse and fine nodes are processed

plays a central role in determining the overall efficiency of a preconditioner. If the com-
putational cost per level can be maintained proportional to Nj −Nj−1, or slightly larger,
then total cost will be order N , and the resulting preconditioner is said to have opti-
mal computational complexity per iteration. If the resulting preconditioned system has
a bounded condition number (independent of problem size), a solution can be obtained
using an iterative method with a bounded number of iterations. Hence, the combination
of optimal per iteration complexity with a bounded condition number leads to a solver
with optimal overall complexity.

In this article, we restrict the presentation of local multilevel preconditioning to a
purely geometric (node based) perspective because the computational complexity is ex-
actly governed by the number of nodes processed by the preconditioner at each level. The
local multilevel preconditioners of interest can be classified into two groups: multiplica-
tive local multigrid (MG) [18, 20, 28, 68] and additive local MG [28, 29]. The additive
local MG preconditioner is often called the Bramble-Pasciak-Xu (BPX) preconditioner
in the literature. In this article, we report on only the multiplicative variants. We use the
term “classical” to refer to the application of a preconditioner in the uniform refinement
setting. There is abundant literature on MG preconditioners [33, 75, 80, 81] and local
MG (e.g., see [19, 79] for a review).

Proofs demonstrating the optimality of classical MG and classical additive MG pre-
conditioners rely on a geometric increase in the number of nodes per level. This is
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because the cost per iteration of these classical preconditioners is proportional to Nj (not
Nj−Nj−1 ) per level, which results in suboptimal complexity if

∑J
j=1 cj Nj is notO(N).

This occurs frequently in the local refinement setting due to the slow increase in the num-
ber of nodes between levels.

The family of hierarchical basis (HB) preconditioners, developed by Bank, Dupont,
and Yserentant [12, 14, 82], maintain a per-level cost proportional to Nj−Nj−1, by only
processing (smoothing) the fine nodes at each level. Although the cost per iteration is
optimal, HB preconditioners do not achieve a uniformly bounded condition number, and
suffer from O(J2) and O(2J) iterations in two- and three-dimensions, respectively. To
address this deficiency, we investigate local MG preconditioners which process a larger
set of nodes, Xj , but still maintain a cost which is proportional to Nj − Nj−1 at each
level. Hence, we seek a set Xj such that

N f
j ⊂ Xj ⊂ Nj,

with cardinality, Xj , which is proportional to Nj − Nj−1. At the same time, Xj , should
be large enough that the resulting system has a bounded condition number, leading to
a solver with optimal overall complexity. Aksoylu and Holst [6] showed that this is
possible even for three-dimensional local refinement routines.

In the local mesh refinement setting, Aksoylu, Bond, and Holst [2] studied the imple-
mentation and algebraic aspects (e.g., matrix representations) of multilevel precondition-
ers. Subsequent articles provide a comprehensive overview of local MG preconditioners
with various emphases: for a theoretical treatment, see [3, 4, 5]; for optimality analysis
in three-dimensional local refinement routines, see [6]; for surface mesh applications in
computer graphics, see [7].

5.1. Local multigrid preconditioners. As mentioned in the previous section, the fun-
damental difference between classical and local MG preconditioners is the smoothing
operation. In classical MG, the smoother acts on all degrees of freedom on every level.
In contrast, local MG only smooths a small subset, typically a neighborhood, of the fine
degrees of freedom. Pseudo-code for a local MG V-cycle is provided in Algorithm 5.1.

Algorithm 5.1. Local multigrid V-Cycle:
u[j] = Vcycle(u[j], f[j], j)
0) If j = 1, solve A[j]u[j] = f[j] coarsest level solve

and return u[j];
1) u[j] = Smooth(u[j], A[j], f[j],Xj, s1); smooth s1 times on Xj
2) r[j−1] = I

[j−1]
[j]

(
f[j] − A[j]u[j]

)
; restrict residual

3) e[j−1] = 0; set e[j−1] to zero
4) e[j−1] = Vcycle(e[j−1], r[j−1], j − 1); coarse-grid recursion
5) u[j] = u[j] + I

[j]
[j−1]e[j−1]; add interpolated correction

6) u[j] = Smooth(u[j], A[j], f[j],Xj, s2); smooth s2 times on Xj
7) return u[j]

The set of nodes used by the underlying method’s smoothing operation defines the type
of preconditioner. In this article, we introduce three different sets of nodes to be used in
the local MG preconditioner. On a given refinement level, the marked region is the set of
elements which have been marked for refinement. The refinement region is union of the
newly introduced elements as a result of the refinement and closure procedure. Figure 2
depicts a two-dimensional refinement region formed by a local refinement routine which
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consists of quadrasection closed by bisection (the so-called red-green refinement). The
sets of nodes used to define the preconditioners are as follows:

HB: ◦.
BPX: ◦, �.
BEK: ◦, �, +.
ONERING: ◦, �, +, 4.

FIGURE 2. An example of red-green refinement (quadrasection-
bisection) in two dimensions. On the left, the mesh before refinement,
with the marked region shaded in gray. On the right, the mesh after re-
finement (red edges) and closure (green edges), with the refinement region
shaded in gray. The labels indicate which nodes are assigned to each of
the preconditioner smoothing sets, Xj .

• Xj-HB: The set of fine nodes on level j, i.e., N f
j [12, 14, 82].

• Xj-BPX: The set of nodes whose corresponding basis functions have support
entirely contained in the refinement region [28].
• Xj-BEK: The set of nodes whose corresponding basis functions have non-empty

intersection with the marked region. This set is named after the Bornemann-
Erdmann-Kornhuber type refinement [23] routine. It consists of fine nodes and
their immediate neighboring coarse nodes in the marked region. For P1 elements,
this set can be inferred from the nonzero pattern of the prolongation operator.
• Xj-ONERING: The set of nodes whose corresponding basis functions have non-

empty intersection with the refinement region [2, 24, 27, 41]. This set consists
of fine nodes and their immediate neighboring coarse nodes in the refinement
region. For P1 elements, this set can be inferred from the nonzero pattern of the
coarse-fine subblock of the stiffness matrix.

As an example, we have labeled the nodes in Figure 2 to show which nodes are in each
of the sets described above. The set corresponding to the classical multigrid precondi-
tioner contains all of the nodes on each level.

We should note that the practical implementation of the various local MG precon-
ditioners varies significantly depending on the particular preconditioner. Special care
must be taken in order to achieve optimal computational as well as storage complexities.
The implementation aspects of how to construct optimal complexity preconditioners are
studied in more detail in [2].

6. NUMERICAL EXPERIMENTS

6.1. Adaptive Refinement. In this section, the effectiveness of goal-oriented mesh re-
finement is compared to refinement using the energy-based error indicator. Of interest is
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FIGURE 3. Convergence of the solvation free energy for Fasciculin-1
with both goal-oriented and energy-based indicators using the global
marking strategy.

computing the solvation free energy of the 921-atom Fasciculin-1 protein [61], using the
solution of the linear RPBE. All tests were performed using FETK [54].

In order to solve the RPBE, a definition of the molecular surface and a mesh con-
forming to that surface is needed. Various definitions of the molecular surface have been
proposed in the literature, and the particular value obtained for the solvation free energy
will depend strongly on the surface geometry [10]. However, the performance of the
algorithms proposed here are insensitive to the choice of molecular surface, as long as it
is sufficiently smooth, and the underlying mesh is conforming. Historically, generation
of the mesh conforming to the surface was a great impediment to using finite elements
for solving the PBE, and only recently, with the development of tools like PDB2PQR
and GAMer, has molecular meshing become a routine task. The first step is to prepare
the structure using PDB2PQR [42], which adds missing hydrogens, assigns charges, and
specifies a radius for each atom in the protein. Next, the resulting PQR file is passed to
GAMer [56, 52, 84, 85], which produces a tetrahedral mesh conforming to the shape of
the protein. Finally, this mesh is used by FETK to solve the linear RPBE, and compute
the solvation free energy.

6.1.1. Global Marking Strategy. The adaptive refinement algorithm creates a sequence
of grids T0, T1, . . . Tl . . . based on an error indicator. Critical to this algorithm is the third
step MARK. The goal of this step is to select elements for refinement. There are several
different choices for marking strategies [1, 11]. The strategy used here is to mark all
elements in the lth refinement level that satisfy

ηK > γ max
T∈Tl

ηT ∀K ∈ Tl, (6.1)

where γ ∈ (0, 1). This criteria yields no refinement for γ = 1 and uniform refinement
for γ = 0.

The convergence of the solvation free energy for Fasciculin-1 using the global mark-
ing strategy with both energy-based (Eq. (4.2)) and goal-oriented indicators (Eq. (4.19))
can be seen in Fig. 3. The figure shows the relative error in the solvation free energy as
a function of the number of unknowns in the primal problem. The error in the solvation
free energy is estimated by computing a high resolution solution to the PBE using uni-
form mesh refinement. The vertical line near 1.5× 106 unknowns marks the size of this
reference solution. Notice that this figure differs from traditional finite element conver-
gence plots which show error as a function of element radius. Since the resolution of
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Energy-Based Goal-Oriented

FIGURE 4. A cut-away of the 3D mesh surrounding Fasciculin-1. The
colors indicate the distribution of marked elements using the global mark-
ing strategy with either the energy-based indicator (left) or the goal-
oriented indicator (right). Red and blue are marked elements in the sol-
vent and solute subdomains, respectively.

an adaptively refined mesh can greatly vary over the spatial domain, the element radius
is not an appropriate measure of the resolution of the mesh. Furthermore, the order of
accuracy of the approximation is based on the type of basis functions used, and thus is
the same for both uniform and adaptive refinement. The benefit of adaptive refinement
is that the mesh can be refined in regions that heavily contribute to the error, resulting in
higher accuracy with fewer total degrees of freedom.

In Fig. 3, the lower line shows the convergence of the solvation free energy for several
levels of adaptive refinement using the energy-based indicator with the global marking
strategy. This scheme makes steady progress to the correct solvation free energy. On
the other hand, the upper line shows the results using goal-oriented indicators with the
global marking strategy. This scheme performs very poorly.

The reason for the poor performance can be explained by looking at Fig. 4. The images
are cut-aways of the 3D mesh, colored to indicate the distribution of marked elements.
The left image shows elements selected by the global marking strategy using the energy-
based indicator. While the image on the right uses the goal-oriented indicator. The white
elements are unmarked elements in the solvent subdomain and the gray elements are
unmarked elements in the solute subdomain. Elements colored red are marked solvent
elements, while blue elements are marked solute elements. Notice for the energy-based
indicator only elements in the solvent subdomain are marked. This indicates that the
reaction potential in the solute domain is relatively well approximated compared to the
solution in the solvent subdomain. The distribution of the elements marked using a goal-
oriented indicator is focused on a few locations in the inner subdomain around the solute
atoms. This explains the poor convergence for the goal-oriented indicator in Fig. 3. Since
the strategy does not indicate there is error in the solvent domain, no refinement takes
place.

To gain further insight into why the global goal-oriented strategy only marks elements
in the solute domain, we refer the reader to Fig. 5. This image shows a cut-away with
elements colored by their approximate signed contribution to the error in the goal. This
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FIGURE 5. A cut-away of the 3D mesh surrounding Fasciculin-1. The
colors indicate the positive (green) and negative (orange) estimated ele-
mentwise contributions to the error in the solvation free energy (see
eq. (4.17)).

is constructed using a quadratic approximation of the dual and the signed elementwise
contributions from Eq. (4.17). Note that because these are error contributions and not in-
dicators, they take both positive and negative values. The element contributions range in
value between −0.6928 and 1.2779. In the figure, positive element contributions greater
than 0.005 are colored green and negative contributions less than −0.005 are colored
orange. From the image it is clear that the contributions in the solute subdomain have
relatively large magnitude, and they oscillate in sign. The result of this oscillation is that
the majority of these contributions cancel when integrated over the entire solute domain.
However, the error estimator in Eq. (4.18) uses the absolute value, which results in an
overestimation of the error attributed to the solute domain. As a result, the solute do-
main is over refined, unless steps are taken to modify the marking (or error estimation)
strategy.

6.1.2. Split Marking Strategy. To improve on the convergence of goal-oriented refine-
ment, a second marking strategy is employed. This is a domain dependent marking
strategy that attempts to spread the refinement over solvent and solute regions of the do-
main. The strategy relies on splitting the mesh into two subsets T sl ⊂ Tl and T ml ⊂ Tl,
where T sl and T ml contain the elements in the solvent and solute domains respectively.
Stated concisely, the marking strategy is

Mark all K ∈ T sl
K ∈ T ml

such that
ηK > γ max

T∈T s
l

ηT

ηK > γ max
T∈T m

l

ηT
(6.2)

where γ ∈ (0, 1).
The split-marking strategy marks a significantly different group of elements, especially

for the goal-oriented indicators. The color coding of Fig. 6 is the same as in Fig. 4.
Again the energy-based refinement selects elements primarily in the solvent subdomain.
However, because split-marking forces refinement in both subdomains, a few elements
along the interface in the solute domain are also selected. In contrast, split-marking
using a goal-oriented indicator marks a few elements in the solvent subdomain, while
also marking elements surrounding the solute atoms.
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Energy-Based Goal-Oriented

FIGURE 6. A cut-away of the 3D mesh surrounding Fasciculin-1. The
colors indicate the distribution of marked elements using the split marking
strategy with either the energy-based indicator (left) or the goal-oriented
indicator (right). Red and blue are marked elements in the solvent and
solute subdomains, respectively.
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FIGURE 7. Convergence of the solvation free energy for Fasciculin-1
with both goal-oriented and energy-based indicators using the split mark-
ing strategy. The convergence measured against the size of the pri-
mal/dual problem is on the left/right.

Figure 7 shows the relative error of the solvation free energy in Fasciculin-1 as a
function of problem size for several indicators using the split-marking strategy. In the
figure, there are two plots. The plot on the left shows the relative error in the solvation
free energy as a function of the number of unknowns in the primal problem. The second
plot, with the exception of the energy-based refinement strategy, shows the relative error
as a function of the size of the dual problem. For energy-based refinement, since no dual
is needed, the horizontal axis is the size of the primal problem.

In the figure, the split marking strategy using the energy-based indicator converges
steadily. This is similar to the convergence of energy-based refinement using global
marking. On the other hand, there is a dramatic improvement in the convergence of
both the linear and quadratic goal-oriented refinement techniques, with the rate even
increasing slightly as the size of the problem increases. Compare this with the poor
results for goal-oriented refinement with the global marking strategy from Fig. 3. The
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FIGURE 8. Number of primal unknowns as a function of the number of
levels of refinement. The reference line grows proportional to 2r.

improvement comes from the split marking strategy explicitly taking into account the
error in the solvent and trying to control where it is large.

The second plot in Fig. 7 shows that solving the dual problem using piecewise qua-
dratic elements has substantial additional cost. Although, it is likely that this cost would
be mitigated by the additional work needed when solving the nonlinear RPBE (see
Eq. 2.5). In contrast, the goal-oriented strategy using an indicator constructed from a
linear dual problem (and split marking) does not suffer from the same problem, and is
the most efficient method when the total cost is taken into account.

6.2. Performance of Preconditioners. As was discussed in section 5, classical multi-
grid (MG) preconditioners perform best in the uniform refinement setting, where there is
a rapid geometric growth in the number of unknowns as the mesh is refined. In the lo-
cal refinement setting, this growth is much slower, and is frequently subgeometric when
the refinement is concentrated in the neighborhood of a low dimensional feature (e.g., a
point or a line). As a result, the per-iteration complexity of classical MG may fail to scale
linearly (or suffer from a large scaling constant) as the number of unknowns increases. In
contrast, many local MG preconditioners do not have the same restriction, and maintain
optimal per-iteration complexity in both the local and uniform refinement settings.

In Figure 8, the number of primal unknowns is shown as a function of the refinement
level for three different refinement strategies. For the energy-based marking/refinement
strategy, the growth in the number of unknowns is geometric, but subuniform. For goal-
oriented refinement the growth is even slower, but still geometric. The dashed reference
line shows a geometric growth rate proportional to 2r.

As a measure of the relative locality of each preconditioner, we compute the ratio of
the number of unknowns processed by the smoother, shown in Figure 9. Classical MG is
a global method, so the ratio of smoothed to total unknowns is 1 in both the energy based
and goal oriented refinement cases. As expected, the BEK preconditioner consistently
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FIGURE 9. Ratio of the number smoothed unknowns, Xj , to total un-
knowns, Nj , on each level for different multilevel preconditioners

FIGURE 10. Conjugate gradient method iteration counts for the precon-
ditioners used.

smooths more unknowns than HB, but fewer than MG. This is because the set processed
by the BEK is a superset of the set processed by HB.

By design, the local multilevel preconditioners considered here maintain an optimal
per-iteration complexity in both the local and global refinement settings. The primary
challenge for these preconditioners is achieving a bounded condition number, indepen-
dent of problem size. It can be shown that for a given tolerance, the number of conjugate
gradient (CG) iterations can be bounded by a function of the condition number. Hence,
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if the condition number is bounded, so is the number of CG iterations. In Figure 10, we
report the number of CG iterations as a function of refinement level for MG, BEK, and
HB. As predicted by theory, application of the HB preconditioner leads to a slow growth
in the number of CG iterations as the mesh is refined regardless of indicator type. In con-
trast, for both goal-oriented and energy-based refinement the iteration count is bounded
for both the classical MG and BEK preconditioners. The iteration counts for BEK are
modestly higher than classical MG, but the work per level is reduced, since BEK smooths
only a fraction of the unknowns smoothed by classical MG. For this reason, BEK is a
compelling alternative to classical MG and HB.

7. CONCLUSION

In this article, we developed goal-oriented error indicators for accurate computation
of the solvation free energy from solutions of the regularized Poisson-Boltzmann equa-
tion. We found that due to oscillations and imbalanced cancellation in the error contribu-
tions, global marking strategies based on goal-oriented error indicators were not viable
for driving adaptive mesh refinement. To address this problem, we developed a split
marking strategy based on considering each subdomain individually. In numerical ex-
periments, we calculated the solvation free energy for a 921-atom Fasciculin-1 protein.
Through these experiments, we showed that the new marking strategy, combined with
goal-oriented refinement, is more efficient than energy-based refinement in the context
of solvation free energy calculations.

The use of adaptive mesh refinement puts a greater burden on the preconditioner to
maintain optimal runtime efficiency. To address this issue, we investigated the use of lo-
cal multigrid methods, which have a lower per-iteration complexity compared to classical
global multigrid. In particular, the BEK variant proved to be a compelling alternative to
classical multigrid since it has optimal per-iteration complexity, while still maintaining
a bounded iteration count as the mesh is refined. The result is an iterative solver with an
optimal overall complexity, scaling linearly with problem size.
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[21] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite

element methods. Acta Numerica, 10:1–102, 2001.
[22] S. D. Bond, J. H. Chaudhry, E. C. Cyr, and L. N. Olson. A first-order systems least-squares finite

element method for the Poisson-Boltzmann equation. J. Comput. Chem., 31(8):1625–1635, 2010.
[23] F. Bornemann, B. Erdmann, and R. Kornhuber. Adaptive multilevel methods in three space dimen-

sions. Internat. J. Numer. Methods Engrg., 36:3187–3203, 1993.
[24] F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel methods.

Numer. Math., 64:455–476, 1993.
[25] A. H. Boschitsch and M. O. Fenley. Hybrid boundary element and finite difference method for solving

the nonlinear Poisson-Boltzmann equation. J. Comput. Chem., 25(7):935–955, 2004.
[26] D. Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge

University Press, second edition, 2001.
[27] J. H. Bramble and J. E. Pasciak. New estimates for multilevel algorithms including the V-cycle. Math.

Comput., 60(202):447–471, 1993.
[28] J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu. Convergence estimates for product iterative methods

with applications to domain decomposition. Math. Comput., 57:1–21, 1991.
[29] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comput.,

55(191):1–22, 1990.
[30] A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comp., 19:23–56, 1986.
[31] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equations. In

D. J. Evans, editor, Sparsity and its Applications. Cambridge Univ. Press, 1984.



22 B. AKSOYLU, S. BOND, E. CYR, AND M. HOLST

[32] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag,
Berlin, second edition, 2002.

[33] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM Books, Philadelphia,
second edition, 2000.

[34] B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won,
G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer,
J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor,
C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang,
D. M. York, and M. Karplus. CHARMM: The biomolecular simulation program. J. Comput. Chem.,
30(10):1545–1614, 2009.

[35] T. F. Chan, S. Go, and L. Zikatanov. Lecture notes on multilevel methods for elliptic problems on
unstructured meshes. Technical report, Dept. of Mathematics, UCLA, 1997.

[36] T. F. Chan, B. Smith, and J. Zou. Overlapping Schwarz methods on unstructured meshes using non-
matching coarse grids. Technical Report CAM 94-8, Department of Mathematics, UCLA, 1994.

[37] J. H. Chaudhry, S. D. Bond, and L. N. Olson. Finite element approximation to a finite-size modified
Poisson-Boltzmann equation. J. Sci. Comput., 47(3):347–364, 2011.

[38] J. H. Chaudhry, S. D. Bond, and L. N. Olson. A weighted adaptive least-squares finite element method
for the Poisson-Boltzmann equation. 2011. submitted.

[39] L. Chen, M. Holst, and J. Xu. The finite element approximation of the nonlinear Poisson-Boltzmann
Equation. SIAM J. Numer. Anal., 45(6):2298–2320, 2007.

[40] E. C. Cyr. Numerical Methods for Computing the Free-Energy of Coarse-Grained Molecular Sys-
tems. PhD thesis, University of Illinois at Urbana-Champaign, 2008.

[41] W. Dahmen and A. Kunoth. Multilevel preconditioning. Numer. Math., 63:315–344, 1992.
[42] T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker. PDB2PQR: an automated pipeline

for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res., 32:W665–W667,
2004.

[43] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.,
33(3):1106–1124, 1996.

[44] S. C. Eisenstat and H. F. Walker. Globally convergent inexact newton methods. SIAM J. Optim.,
4(2):393–422, 1994.

[45] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathe-
matical Sciences. Springer, Berlin, first edition, 2004.

[46] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. A smooth particle
mesh Ewald method. J. Chem. Phys., 103(19):8577–8593, 1995.

[47] F. Fogolari, P. Zuccato, G. Esposito, and P. Viglino. Biomolecular electrostatics with the linearized
Poisson-Boltzmann equation. Biophys. J., 76(1):1–16, January 1999.

[48] M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon. Computationn of electrostatic forces
on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem., 97:3591–3600, 1993.

[49] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–
348, 1987.

[50] W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag, Berlin, Germany, 1985.
[51] D. J. Hardy. Multilevel Summation for the Fast Evaluation of Forces for the Simulation of

Biomolecules. PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2006.

[52] T. Hayashi, M. E. Martone, Z. Yu, A. Thor, M. Doi, M. Holst, M. H. Ellisman, and M. Hoshijima.
Three-dimensional reconstruction reveals new details of membrane systems for calcium signaling in
the heart. J. Cell. Sci., 122(7):1005–1013, April 2009.

[53] M. Holst. The Poisson-Boltzmann equation: Analysis and multilevel numerical solution (Monograph
based on the Ph.D. Thesis: Multilevel Methods for the Poisson-Boltzmann Equation). Technical re-
port, Applied Mathematics and CRPC, California Institute of Technology, 1994.

[54] M. Holst. Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational
Mathematics, 15(1–4):139–191, 2001.

[55] M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution of the Poisson-
Boltzmann equation I: algorithms and examples. J. Comput. Chem., 21:1319–1342, 2000.

[56] M. Holst, J. A. McCammon, Z. Yu, Y. C. Zhou, and Y. Zhu. Adaptive finite element modeling tech-
niques for the Poisson-Boltzmann equation. Comm. Comput. Phys., 11:179–214, 2012.



GOAL-ORIENTED ADAPTIVITY AND MULTILEVEL PRECONDITIONING FOR THE PBE 23

[57] M. Holst, G. Nagy, and G. Tsogtgerel. Rough solutions of the Einstein constraints on closed mani-
folds without near-CMC conditions. Comm. Math. Phys., 288(2):547–613, 2009.

[58] M. Holst and F. Saied. Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem.,
14(1):105–113, 1993.

[59] M. Holst and F. Saied. Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing
more robust and efficient methods. J. Comput. Chem., 16(3):337–364, 1995.

[60] W. Im, D. Beglov, and B. Roux. Continuum solvation model: computation of electrostatic forces from
numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Comm., 111:59–75, 1998.

[61] M. H. le Du, P. Marchot, P. E. Bougis, and J. C. Fontecilla-Camps. 1.9-Å resolution structure of
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