ON THE SPACE OF LOCALLY SOBOLEV-SLOBODECKI]J FUNCTIONS
A. BEHZADAN AND M. HOLST

ABSTRACT. The study of certain differential operators between Sobolev spaces of sec-
tions of vector bundles on compact manifolds equipped with rough metric is closely
related to the study of locally Sobolev functions on domains in the Euclidean space.
In this paper we present a coherent rigorous study of some of the properties of locally
Sobolev-Slobodeckij functions that are especially useful in the study of differential op-
erators between sections of vector bundles on compact manifolds with rough metric.
Results of this type in published literature generally can be found only for integer order
Sobolev spaces W™ P or Bessel potential spaces [/ °. Here we have presented the rele-
vant results and their detailed proofs for Sobolev-Slobodeckij spaces W *P where s does
not need to be an integer. We also develop a number of results needed in the study of
differential operators on manifolds that do not appear to be in the literature.
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2 A. BEHZADAN AND M. HOLST

1. INTRODUCTION

It is well-known that Sobolev spaces play a key role in the study of elliptic partial
differential equations (PDEs) on domains in R™. There are many resources for properties
of integer order Sobolev spaces of functions and their applications in PDEs (see e.g., [1,
25, 13]). Also, there are variety of resources for properties of real order Sobolev spaces of
functions and their applications, see e.g., classical references such as [23, 31, 15, 28, 20]
or more recent works such as [21, 17, 22, 34]. Likewise, the study of elliptic PDEs on
manifolds naturally leads to the study of Sobolev spaces of functions and more generally
Sobolev spaces of sections of vector bundles on manifolds. As it turns out, the study
of certain differential operators between Sobolev spaces of sections of vector bundles
on manifolds equipped with rough metric and the study of low regularity geometry on
Riemannian and semi-Riemannian manifolds is closely related to the study of spaces of
locally Sobolev functions on domains in the Euclidean space (see e.g., [14, 5, 7]).

In this paper we focus on certain properties of spaces of locally Sobolev functions
that are particularly useful in the study of differential operators on manifolds. Our work
can be viewed as a continuation of the excellent work of Antonic and Burazin [2]; their
work is mainly concerned with the properties of spaces of locally Sobolev functions with
integer smoothness degree. In particular, they study the following fundamental questions
for Sobolev spaces with integer smoothness degree:

e Topology, metrizability

e Density of smooth functions

e Reflexivity, the nature of the dual

o Continuity of differentiation between certain spaces of locally Sobolev functions

Our main goal here is to provide a self-contained manuscript in which the known re-
sults are collected and stated in the general setting of Sobolev-Slobodeckij spaces and
then develop certain other results that are useful in the study of differential operators on
manifolds. In particular, we will discuss

e General embedding results
e Pointwise multiplication
e Invariance under composition

Results of this type and other related results have been used in the literature -particularly
in the study of Einstein constraint equations on manifolds equipped with rough metric-
without complete proof. This paper should be viewed as a part of our efforts to fill
some of the gaps. Interested readers can find other results in this direction in [5, 7, 4].
Our hope is that the detailed presentation of this manuscript, along with these other
four manuscripts, will help in better understanding the structure of the proofs and the
properties of Sobolev-Slobodeckij spaces and locally Sobolev functions.

2. NOTATION AND CONVENTIONS

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and N, denotes the set of nonnegative integers. For any nonnegative real num-
ber s, the integer part of s is denoted by |s|. The letter n is a positive integer and stands
for the dimension of the space. For all k£ € N, GL(k,R) is the set of all £ x k invertible
matrices with real entries.

(2 is a nonempty open set in R". The collection of all compact subsets of €2 will be
denoted by K(€2). If F(Q2) is any function space on €2 and K € C(€2), then Fx(£2)
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denotes the collection of elements in F(§2) whose support is inside K. Also,

Feormp(@) = | Fx().
)

KeKk(Q

IfQ C Qand f: Q — R, we denote the extension by zero of f to the entire 2 by
extyy of : Q@ — R, that is,

flz) ifzxedY
0 otherwise

extey of () = {

Lipschitz domain in R" refers to a nonempty bounded open set in R" with Lipschitz
continuous boundary. We say that a nonempty open set {2 C R" has the interior Lip-
schitz property provided that for each compact set K € K(£2) there exists a bounded
open set £’ C €2 with Lipschitz continuous boundary such that K C 0.

Each element of Nj, is called a multi-index. For a multi-index o = (o, - -+ , o) € Ni,
we let |o| := ag + - -+ + «,. Also for sufficiently smooth functions u : 2 — R (or for
any distribution u) we define the ath order partial derivative of u as follows:

ol
0% = ¢

- ax(lll .. ax%n ’

We use the notation A < B to mean A < ¢B, where c is a positive constant that
does not depend on the non-fixed parameters appearing in A and B. We write A ~ B if
A< Band B < A.

If X and Y are two topological spaces, we use the notation X — Y tomean X C Y
and the inclusion map is continuous.

3. BACKGROUND MATERIAL

In this section we collect some useful tools and facts we will need from topology
and analysis. Statements without proof in this section are mainly taken from Rudin’s
functional analysis [27], Grubb’s distributions and operators [16], excellent presentation
of Reus [26], Treves’ topological vector spaces [29], and [7] or are direct consequences
of statements in the aforementioned references.

3.1. Topological Vector Spaces.

Definition 3.1. A topological vector space is a vector space X together with a topology
T with the following properties:
i) Forall x € X, the singleton {z} is a closed set.
ii) The maps
(x,y) —~z+y (from X x X into X)),
(A, z) = Ax (from R x X into X),

are continuous where X x X and R x X are equipped with the product topology.
Definition 3.2. Suppose (X, T) is a topological vector space and Y C X.

e Y is said to be convex if for all y,,y2 € Y andt € (0, 1) it is true that ty, + (1 —t)y, €
Y.
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o We say Y is bounded if for any neighborhood U of the origin (i.e. any open set contain-
ing the origin), there exits t > 0 such that Y C tU.

Definition 3.3. Let (X, 7) be a topological vector space. X is said to be metrizable if
there exists a metric d : X x X — [0, 00) whose induced topology is T. In this case we
say that the metric d is compatible with the topology T.

Theorem 3.4. [16, 27] Let (X, T) be a topological vector space. The following are
equivalent:

o X is metrizable.
o There exists a translation invariant metric d on X whose collection of open sets
is the same as 7. Translation invariant means

Va,y,a € X dlx + a,y+a) =d(z,y) .
e X has a countable local base at the origin.

(Recall that a subcollection B of 7 is said to be a local base at the origin if for any open
set U containing the origin there is B € B suchthat)0 € B C U.)

Remark 3.5. It can be shown that if d, and ds are two translation invariant metrics that
induce the same topology on X, then the Cauchy sequences of (X, dy) will be exactly the
same as the Cauchy sequences of (X, ds).

Definition 3.6. Ler (X, 7) be a topological vector space. We say (X, ) is locally convex
if it has a convex local base at the origin.

Definition 3.7. Let (X, 7) be a metrizable locally convex topological vector space. Let
d be any translation invariant metric on X that is compatible with 7. We say that X is
complete if and only if the metric space (X, d) is a complete metric space. A complete
metrizable locally convex topological vector space is called a Frechet space.

Definition 3.8. A seminorm on a vector space X is a real-valued function p : X — R
such that

i Vrye X plety) <plz)+py),
i. Vre XVaeR  plax) = |a|p(x).

If P is a family of seminorms on X, then we say ‘P is separating provided that for all
x # 0 there exists at least one p € P such that p(x) # 0 (that is if p(z) = 0 for
all p € P, then x = 0). It easily follows from the definition that any seminorm is a
nonnegative function.

Theorem 3.9. Suppose that (X, ||.||x) is a normed space. Let p : X — R be a seminorm
on X. If p is continuous, then there exists a constant C' > 0 such that

VeeX o plr) < Ofzflx.

Proof. p is continuous at 0 so there exists § > 0 such that if ||z||x < J then |p(x)| < 1.

If z # 0, then 5m has norm equal to ¢ and so for all x # 0, p(6W) < 1. Hence for
Tl x

all x # 0 we have
1
p(e) < 5llellx

Since p(0) = 0, clearly the above inequality also holds for z = 0. O
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Definition 3.10. Suppose P is a separating family of seminorms on a vector space X.
The natural topology induced by P is the smallest topology on X that is translation
invariant and with respect to which every p € ‘P is continuous function from X to R.
(Recall that translation invariant means if U C X is open, then U + x is open for every
r € X.)

Remark 3.11. Suppose that P and P’ are two separating family of seminorms on a
vector space X. Let T and 7' be the corresponding natural topologies on X. It follows
immediately from the definition that if 1)p : (X,7') — R is continuous for each p € P
and 2) p' : (X, 1) — R is continuous for each p' € P’, then T = 7.

The following theorem can be viewed as an extension of Theorem 3.9.

Theorem 3.12 ([26], Page 157). Let X be a vector space and suppose P is a separating
SJamily of seminorms on X. Equip X with the corresponding natural topology. Then a
seminorm q : X — R is continuous if and only if there exist C > 0 and p1,--- ,pym € P
such that for all v € X

g(z) < C(ps(2) + -+ pm(@)) -

Theorem 3.13. [16, 27] Suppose P is a separating family of seminorms on a vector space
X and T is the corresponding natural topology on X. Then (X, T) is a locally convex
topological vector space. Moreover, if P = {py. } ken is countable, then the locally convex
topological vector space (X, 1) is metrizable and the following translation invariant
metric on X is compatible with T:

o0

i)=Y gy =)

~ 2" 1+ pr(z —y) '

Corollary 3.14. Suppose P is a countable separating family of seminorms on a vector
space X and T is the corresponding natural topology on X. Then (X, T) is a Frechet
space if and only if it is complete.

Theorem 3.15 ([19], Sections 6.4 and 6.5). Let (X, 7) be a locally convex topological
vector space. Then there exists a separating family of seminorms on X whose corre-
sponding natural topology is T.

Theorem 3.16 ([27], Page 28). Suppose P is a separating family of seminorms on a
vector space X and T is the corresponding natural topology on X. Then a set EE C X is
bounded if and only if p(E) is a bounded set in R for all p € P.

Corollary 3.17. Suppose P is a separating family of seminorms on a vector space X
and T is the corresponding natural topology on X. It follows from Theorem 3.12 and
Theorem 3.16 that if E C X is bounded, then for any continuous seminorm q : (X, 1) —
R, q(F) is a bounded set in R.

Theorem 3.18 ([16], Page 436, [19], Section 6.6). Let (X, T) be a topological vector
space. Suppose Q is a separating family of seminorms on a vector space Y and 7' is
the corresponding natural topology on Y. Then a linear map T : (X, 7) — (Y,7') is
continuous if and only if for each q € Q, q o T' is continuous on X.

Theorem 3.19. [16] Let X be a Frechet space and let Y be a topological vector space.
When T is a linear map of X into 'Y, the following two properties are equivalent

(1) T is continuous.
(2) v, >0in X = Tx, - 0inY.
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Theorem 3.20. [16, 27] Let X and Y be two vector spaces and suppose P and Q are
two separating families of seminorms on X and Y, respectively. Equip X and Y with
the corresponding natural topologies. Then

(1) A sequence x,, converges to x in X if and only if for all p € P, p(x,, — x) — 0.
(2) A linear operator T : X — Y is continuous if and only if

VgeQ dc>0,keN,p1,---,pp €P suchthat VxeX |qu(x)|§clrga<xkpi(x).

(3) A linear operator T' : X — R is continuous if and only if
Je>0,keN, p1,--- ,pr €P suchthat Yr e X |T(x)| <cmaxp;(z).

1<i<k
Definition 3.21. Let (X, 7) be a locally convex topological vector space.

e The weak topology on X is the natural topology induced by the separating family of
seminorms {pr } pex+ where

VFe X" pr: X =R, pp(z):=|F(z)|.

It can be shown that this topology is the smallest (weakest) topology with respect to
which all the linear maps in [(X, T)|* are continuous. A sequence {x,,} converges to
x in X with respect to the weak topology if and only if F(x,,) — F(z) in R for all
F e X*. In this case we may write x,, — x. We denote the weak topology on X by
o(X, X*). It can be shown that [( X, T)|* is the same set as [(X,o(X, X*))|*.

e The weak™ topology on X* is the natural topology induced by the separating family of
seminorms {p, } e x where

VeeX  p: X' =R, p(f)=f(2)].

It can be shown that this topology is the weakest topology with respect to which all
the linear maps {f — f(x)}iex (from X* to R) are continuous. A sequence {f,,}
converges to f in X* with respect to the weak* topology if and only if f,,(x) — f(z) in
R for all x € X. We denote the weak* topology on X* by o(X*, X).

e The strong topology on X* is the natural topology induced by the separating family of
seminorms {pp } Bc Xboundea Where for any bounded subset B of X

pp: X" =R pa(f) :==sup{|f(z)| : v € B}.
(It can be shown that for any bounded subset B of X and [ € X*, f(B) is a bounded
subset of R; see Theorem 3.16 and Theorem 3.28)

Remark 3.22.
(1) If X is a normed space, then the topology induced by the norm
vieX®  fllop = Sup |f ()]
x||x=1

on X* is the same as the strong topology on X* ([29], Page 198).

(2) In this manuscript, unless otherwise stated, we consider the topological dual of
a locally convex topological vector space with the strong topology. Of course, it
is worth mentioning that for many of the spaces that we will consider (including
X = &(Q) or X = D(Q) where 2 is an open subset of R") a sequence in X*
converges with respect to the weak* topology if and only if it converges with respect
to the strong topology (for more details on this see the definition and properties of
Montel spaces in section 34.4, page 356 of [29]).
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Theorem 3.23. Let (X, ) be a locally convex topological vector space. Then the evalu-
ation map

J (X, 1) = X = [(X7, strong topology)|”, J(z)(F) = F(z)
is a well-defined injective linear map. X** is called the bidual of X .

Definition 3.24. Let (X, 7) be a locally convex topological vector space. Let 7' denote
the strong topology on X** as the dual of (X*, strong topology).

o [fthe evaluation map J : (X, T) — (X**,7’) is bijective, then we say that (X, T) is
a semireflexive space.

o [f the evaluation map J : (X, 1) — (X**,7’) is a linear topological isomorphism,
then we say that (X, T) is a reflexive space.

Theorem 3.25 ([24], Pages 16 and 17).

e Strong dual of a reflexive topological vector space is reflexive.

e Every semireflexive space whose topology is defined by the inductive limit of a
sequence of Banach spaces is reflexive.

o Every semireflexive Frechet space is reflexive.

Theorem 3.26. Let (X, 7x) and (Z, Tz) be two locally convex topological vector spaces.
Forallz € X, letl, : X* — R be the linear map defined by l,.(f) = f(x). Then
(1) A linear map T : (Z,77) — (X,0(X, X™)) is continuous if and only if for all
F € [(X,7x)]*, the linear map F o T : (Z,77) — R is continuous.
(2) A linear map T : (Z,77) — (X*,0(X*, X)) is continuous if and only if for all
x € X, the linear map l, oT : (Z,77) — R is continuous.

Theorem 3.27 ([26], Page 163, [16], Page 46). Let X and Y be locally convex topolog-
ical vector spaces and suppose T' : X — Y is a continuous linear map. Either equip
both X* and Y™ with the strong topology or equip both with the weak* topology. Then

(1) the map
TV — X~ (T y, ) xexx = (Y, TT)y xy
is well-defined, linear, and continuous. (T is called the adjoint of T'.)
(2) If T(X) isdense inY, then T* : Y* — X* is injective.

Theorem 3.28 ([27], Page 70). Let (X, 7) be a locally convex topological vector space.
Then a set E C X is bounded with respect to T if and only if it is bounded with respect
to o(X, X*).

Corollary 3.29. If (X, 7) is a locally convex topological vector space and x,, — x (i.e.
x,, converges to x with respect to o(X, X*)), then {x,} is bounded with respect to both
T and o(X, X*).

Theorem 3.30. Let (X, 7x) and (Y, Ty) be two locally convex topological vector spaces.
IfT (X, 7x) — (Y*,0(Y*,Y)) is continuous, then T : (X,0(X, X*)) — (Y*,0(Y*,Y))
is continuous. In particular, if u,, — u (i.e. u, converges to u with respect to o(X, X*)),
then T'(u,) — T(u) in (Y*,0(Y*,Y)).

Proof. Forally € Y, letl, : Y* — R be the map [,(F) = F(y). By Theorem 3.26
T:(X,0(X,X*) = (Y, 0(Y*Y))is continuous if [, o T : (X,0(X,X")) — Ris
continuous forally € Y. Lety € Y.
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(1) By definition of the weak™ topology on Y*, we know that the linear map /,, : Y* —
IR is continuous.

(2) By assumption 7" : (X, 7x) — (Y*,0(Y*,Y)) is a continuous linear map.

Therefore, [, o T belongs to [(X,7x)]*. Since o(X, X"*) is the weakest topology on
X that makes all elements of [(X,7x)]* continuous, we can conclude that [, o T" :
(X,0(X, X*)) — Ris continuous. O

Theorem 3.31 ([33], Page 13). Let (X, 7) be a Frechet space. Then X is reflexive if and
only if every bounded set I/ in X is relatively weakly compact (i.e. the closure of E w.r.t
o(X, X*) is compact w.rt o(X, X*) ).

Theorem 3.32 ([10], Page 167). Let (X, 7) be a separable Frechet space. If E C X
is relatively weakly compact, then every infinite sequence in E has a subsequence that
converges in (X, o(X, X")).

The next theorem is an immediate consequence of the previous theorems.

Theorem 3.33. Suppose that (X, T) is a separable reflexive Frechet space. Then every
bounded sequence in (X, T) has a weakly convergent subsequence, that is, a subsequence
that converges w.r.t (X, X*).

Theorem 3.34 ([11], Page 61). Let X and Y be two Banach spaces. Let'T' : X — Y be
a linear map. Then T is continuous if and only if it is weak-weak continuous, that is, T :
(X, [|-lx) = (Y, ||lly) is continuous if and only if T : (X, 0(X, X*)) = (Y,o(Y,Y™))

Is continuous.

Theorem 3.35. Let X be a Banach space and Y be a closed subspace of X with the

induced norm. Suppose that vy, is a sequence in Y and y € Y. If y, — vy in
(X, 0(X, X™)), then y,, — yin (Y,o(Y,Y™)).

Proof. This is a direct consequence of the fact that the following two topologies on the
space Y are the same (see [11], Page 70):

(1) the topology induced by o (X, X*),
(2) the topology o (Y, Y™).

g

Definition 3.36. Ler X be a vector space and let { X, } nc1 be a family of vector subspaces
of X with the property that

e for each o € I, X, is equipped with a topology that makes it a locally convex
topological vector space, and
o Uper Xo = X.

The inductive limit topology on X with respect to the family { X, }ac; is defined to be
the largest topology with respect to which

(1) X is a locally convex topological vector space, and
(2) all the inclusions X, C X are continuous.

Theorem 3.37. [26] Let X be a vector space equipped with the inductive limit topology
with respect to {X,} as described above. If Y is a locally convex vector space, then a
linearmap T : X — Y is continuous if and only if T'|x,, : X, — Y is continuous for all
a el
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Definition 3.38. Let X be a vector space and let {X};en, be an increasing chain of
subspaces of X:

XoCXi € XoC--n
Suppose that

e cach X is equipped with a locally convex topology T;;
e for each j, the inclusion (X;,7;) — (X1, Tj41) is a linear topological embed-
ding with closed image.
Then the inductive limit topology on X with respect to the family {X;};en, is called a
strict inductive limit topology.

Theorem 3.39. [26] Suppose that X is equipped with the strict inductive limit topology
with respect to the chain { X} jen,. Then a subset E of X is bounded if and only if there
exists m € Ny such that B is bounded in X,,.

3.2. Function Spaces and Distributions.

Definition 3.40. Let € be a nonempty open set in R"™ and m € N,.
C(Q)={f:Q—R: fiscontinuous}
C"(Q)={f:Q=R:V|ja|<m 0°feC(Q)} (C°Q) = C(Q))
BC(Q) ={f:Q — R fis continuous and bounded on )}
BC™(Q)={feC™Q):V]a| <m 0%f is bounded on 2}
Cx(Q) = () C™(Q), BC®(Q)= () BC™(Q)

meNp meNp

C2(Q) ={f € C*(Q) : support of | is an element of K(£2)}

Let 0 < A < 1. A function F : Q C R® — R* is called \-Holder continuous if there
exists a constant L such that
|F(z) = F(y)| < Llz —y|* Vz,yeQ.

Clearly a A\-Holder continuous function on {2 is uniformly continuous on €2. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BC™Q) ={f:Q —=R:V|a| <m 0“f is \-Holder continuous and bounded}
={f e BC™(Q):V|a| <m 0“fis \-Holder continuous} ,
and
BC™*Q) := (] BC™(Q).

meENy

Theorem 3.41. [16] Let 2 be a nonempty open set in R™ and let K € K(2). There
is a function ¢ € C(Q) taking values in [0, 1] such that 1) = 1 on a neighborhood
containing K.

Theorem 3.42 (Exhaustion by compact sets). [16] Let €2 be a nonempty open subset of
R". There exists a sequence of compact subsets (K;);en such that UjenK; = Q and

Ky CKyCKy € CKCR;Caee

Moreover, as a direct consequence, if K is any compact subset of the open set (), then
there exists an open set V such that K C'V CV C .



10 A. BEHZADAN AND M. HOLST

Theorem 3.43. [16] Let 2 be a nonempty open subset of R™. Let { K} jen be an exhaus-
tion of ) by compact sets. Define

Vp = Ky, VjeN V}':f(jH\Kj-
Then
(1) Each 'V} is an open bounded set and §) = U;V/.

(2) The cover {V;}en, is locally finite in ), that is, each compact subset of ) has
nonempty intersection with only a finite number of the V;’s.

(3) There is a family of functions 1; € C°(Q2) taking values in [0.1] such that supp 1; C
V; and
ij(x)zl forallz € Q.

Jj€No

Let €2 be a nonempty open set in R™. For all ¢ € C*(Q)), j € Nand K € K(2) we
define
lelljx = sup{|0*p(z)| : o] < j,z € K}.
Forall j € Nand K € K(Q), ||.||; x is a seminorm on C'*°(£2). We define £(£2) to be
C>(92) equipped with the natural topology induced by the separating family of semi-
norms {||.||; x }jen kex(o)- It can be shown that £(€2) is a Frechet space.

For all K € KC(Q2) we define £k (2) to be C(£2) equipped with the subspace topology.
Since C'%(€2) is a closed subset of the Frechet space £(12), £k (12) is also a Frechet space.

We define D(€2) = i) i (€2) equipped with the inductive limit topology with re-
spect to the family of vector subspaces {E€x () } kex (o). It can be shown that if { K} e,
is an exhaustion by compacts sets of 2, then the inductive limit topology on D(£2) with
respect to the family {Ek; }jen, is exactly the same as the inductive limit topology with
respect to {Ex () } ke ()-

Remark 3.44. Suppose Y is a topological space and the mapping T : Y — D() is such
that T(Y) C Ex(Q) for some K € (). Since Ex (L) — D(Q), if T : Y — Ex(Q) is
continuous, then T Y — D(Q) will be continuous.

Theorem 3.45 (Convergence and Continuity for £(€2)). Let 2 be a nonempty open set
in R". Let'Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {p,,} converges to ¢ in E(XY) if and only if ||y, — ¢l k — 0 forall j € N
and K € K(Q).

(2) Suppose T : £(Q) — Y is a linear map. Then the followings are equivalent
e T is continuous.
e Forevery q € Q, there exist j € Nand K € K(2), and C > 0 such that

Ve cl(Q)  a(Tlp) < Clieljx -
o If o, — 0in&E(Q), then T () — 0inY.

(3) In particular, a linear map T : £(S)) — R is continuous if and only if there exist j € N
and K € K(Q2), and C > 0 such that

Voe &)  [T(p)l <Cliellx -



SPACE OF LOCALLY SOBOLEV FUNCTIONS 11

(4) A linear map T : Y — E(X2) is continuous if and only if

VieN, VK € K(Q) AC>0,keN,q, - ,qt € Q suchthatVy |T()|;x < Clrgaéik%(y)-

Theorem 3.46 (Convergence and Continuity for Ex (2)). Let 2 be a nonempty open set
inR" and K € K(Q). Let Y be a topological vector space whose topology is induced by
a separating family of seminorms Q.

(1) A sequence {p,,} converges to ¢ in Ex () if and only if || — ¢|;,x — 0 for all
jeN.
(2) Suppose T : Ex(2) — Y is a linear map. Then the followings are equivalent

e T is continuous.
e Forevery q € Q, there exists j € N and C' > 0 such that

Voelr(Q)  q(T(p) < Cllellx -
o If o, = 0inEx(Q), then T () — 0inY.

Theorem 3.47 (Convergence and Continuity for D(2)). Let 2 be a nonempty open set
in R". Let'Y be a topological vector space whose topology is induced by a separating
Sfamily of seminorms Q.

(1) A sequence {p,} converges to @ in D(SY) if and only if there is a K € K(QQ) such that
supppym C K and o, — ¢ in Ex(Q).
(2) Suppose T : D(QY) — Y is a linear map. Then the followings are equivalent
e T is continuous.

e Forall K € K(Q), T : Ex(2) — Y is continuous.
e Foreveryq € Qand K € K(X), there exists j € N and C' > 0 such that
)

Voe&r(Q)  q(T(p) < Cllellx -
o If o, > 0in D(R2), then T(¢,,) = 0in Y.

(3) In particular, a linear map T' : D(Q2) — R is continuous if and only if for every
K € K(R2), there exists j € N and C > 0 such that

Voelr()  [T(e)l < Cllelix -

Remark 3.48. Letr Q2 be a nonempty open set in R". Here are two immediate conse-
quences of the previous theorems and remark:

(1) The identity map
ipe: DY) — E(Q)
is continuous (that is, D(§2) — E£(Q2) ).

(2) If T : £(Q) — E(Q) is a continuous linear map such that supp(Tp) C suppy for all
p € E(Q) (i.e. T is alocal continuous linear map), then T restricts to a continuous
linear map from D(Q)) to D(XY). Indeed, the assumption supp(T ) C suppy implies
that T(D(Q2)) € D(Q2). Moreover T : D(2) — D() is continuous if and only if
for K € K(Q) T : Ex(Q) — D(Q) is continuous. Since T'(Ex(2)) C Ex (), this
map is continuous if and only if T : Ex () — Ex () is continuous (see Remark
3.44). However, since the topology of Ex () is the induced topology from E(X), the
continuity of the preceding map follows from the continuity of T : £(Q2) — E(Q).

Theorem 3.49. Let Q) be a nonempty open set in R". Then D(X2) is separable.
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Definition 3.50. Let ) be a nonempty open set in R™. The topological dual of D(X),
denoted D'(Q)) (D'(2) = [D(Q)]*), is called the space of distributions on ). Each
element of D'(R2) is called a distribution on ). The action of a distribution u € D'(12)
on a function p € D(Q) is sometimes denoted by (u, p) pr(q)xp(a) or simply (u, ).

Remark 3.51. Every function f € L}, () defines a distribution u; € D'(Q2) as follows

Vo e D(Q) us(p) = /chpdx. 3.1)

In particular, every function ¢ € £(S)) defines a distribution .. It can be shown that the
map i : £(Q) — D'(Q) which sends ¢ to u, is an injective linear continuous map ([26],
Page 11). Therefore we can identify £(S)) with a subspace of D'(£2); we sometimes refer
to the map 1 as the “identity map”.

Theorem 3.52 ([16], Page 47). Let ) be a nonempty open set in R". Equip D'(
the weak* topology. Then under the above identification, C2°() is dense in D' (2

Theorem 3.53 ([29], Page 302). Let 2 be a nonempty open set in R™. Equip D'(
the strong topology. Then under the identification described in Remark 3.51, CZ°
sequentially dense in D'(€2).

Remark 3.54.

with

~—

~—

with
Q) is

N —

o Clearly sequential density is a stronger notion than density. So C°(S2) is dense in
(D'(Q2), strong topology).

e Recall that, according to Remark 3.22, a sequence converges in (D'(Q2), weak™) if
and only if it converges in (D'(S2), strong topology). This together with the fact that
weak* topology is weaker than the strong topology implies that convergent sequences
in both topologies converge to the same limit. Therefore it follows from Theorem 3.53
that C°(Q) is sequentially dense in (D'(S2), weak*). Hence Theorem 3.52 can be
viewed as a corollary of Theorem 3.53.

Theorem 3.55 ([26], Page 9). D(X) is reflexive. So [(D'(2), strong topology)|* can be
identified with the topological vector space D(2).

Definition 3.56 (Restriction of a Distribution). Let €2 be an open subset of R" and V' be
an open susbset of Q). We define the restriction map resqy : D'(Q) — D'(V') as follows

(resqvu, ) prvyxpvy = (U, ex¢?/,9¢>D’(ﬂ)xD(ﬂ) :

This is well-defined; indeed, resqy : D'(Q2) — D'(V) is a continuous linear map as
it is the adjoint of the continuous map exty,o, - D(V)) — D(Q). Given u € D'(S2), we
sometimes write u|y instead of resq v u.

Definition 3.57 (Support of a Distribution). Let 2 be a nonempty open set in R". Let
u e D'(Q).
e We say u is equal to zero on some open subset V of Q) if u|y = 0.

o Let {V;}icr be the collection of all open subsets of ) such that u is equal to zero on V.
Let V = J,c; Vi. The support of u is defined as follows

suppu = Q\ V.
Note that supp u is closed in ) but it is not necessarily closed in R".

Theorem 3.58. [26] Let §2 be a nonempty open set in R™ and letw € D'(Q2). If p € D(Q)
vanishes on a neighborhood containing supp u, then u(y) = 0.
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Theorem 3.59. [26] Let {u;} be a sequence in D'(Q2), u € D(Q2), and K € K(Q) such
that u; — win D'(Q) and supp u; C K for all i. Then also suppu C K.

Theorem 3.60 ([9], Page 38). Let 2 be a nonempty open set in R"™. Suppose that {T;} is
a sequence in D'(Q2) with the property that for all ¢ € D(Q), lim; (T}, ©) () x D)
exists. Then there exists T' € D'(S2) such that

Ve eDQ)  (T,¢)pi@xpw = im (Ti, @) po)xn@ -

Definition 3.61 (Sobolev-Slobodeckij spaces). Let §2 be a nonempty open set in R™. Let
se€Randp e (1,00).
[ ] IfS =ke No,
WFP(Q) = {u € L7(Q) : [lullwrei) = D 10"ullio@) < o0} .
lv|<k

o [fs=0¢€(0,1),

p 1
WO (Q) = {u € LP(Q) : [ulworq) : // +9)‘ dzdy)? < oo} .
OxQ |$ — y[rror
e Ifs=k+0,keNy 0e(0,1),
WoP(Q) = {u € WH(Q) : ullwen) = llullwrs@ + D 10" ulwori) < o0}

lv|=k
o Wi(R) is defined as the closure of C°(Q2) in W5P(Q).
o Jfs <,

—s,p * 1 1
W=P(Q) = (W, ™" () (]; +—=1).
e For all compact sets K C () we define
WP (Q) = {u e W*P(Q) : suppu C K}

with |lullwsr ) == |lullwss). Note that for s < 0, W*P(Q) can be viewed
as a subspace of D'(Q)) (see Theorem 3.68) and the support of u € W*P(Q) is
interpreted as the support of a distribution.

o Wb () i= Ugeria) Wr"(€0). Wik, () is equipped with the inductive limit
topology with respect to the family of vector subspaces {W;' ()} kex). It
can be shown that if { K} en, is an exhaustion by compacts sets of (2, then the
inductive limit topology on Wb (Q) with respect to the family {W;{Jp (Q2)}jen, is

exactly the same as the inductive limit topology with respect to {W ;" (Q) } kexc()-

Theorem 3.62. Let ) be a nonempty open set in R", s > 1 and 1 < p < oco. Then

0
u e W*P(Q) if and only if u € LP() and for all 1 <1i < n, a_u € W 1P(Q).
x’l
Proof. We consider two cases:
e Casel: s=keN

u€ WFP(Q) <= u e LP(Q)and 0%u € LP(Q) V1< |af <k

— u € LP(Q )andaﬁ[g ] eP(Q) VOL|B|<k—-1,1<i<n
ot
@UELP(Q)and%GWk_Lp(Q) V1<i<n.
I"L
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e Case2: s=k+0,keN,0<O<1

we W (Q) = u e WHr() and T =00 ¢ g 0y i =k

o =yl
e ue LP(Q) and 2L e W) VlgignandLm(y)eLp(QxQ) V| =k
da o —yl?
9P 2% (z) — 07 2.
<=>ueLP(Q)and%eW’“*lvp(Q)and f%](w) |n+§z‘(y)eLP(QxQ) VIBl=k—1V1<i<n
r—y|r
@uELP(Q)and%EW“LP(Q) V1i<i<n.

g

Remark 3.63. Let 2 be a nonempty open set in R", s € Rand 1 < p < oo. Clearly
for s >0, CX(Q) C WsP(Q). For s < 0, it is easy to see that for all ¢ € C>(Q),
the map 1, : W, *7(Q) — R which sends u € Wy " (Q) 1o Jo up dz belongs to
[Wo_s’p/(Q)]* = W*P(Q). The map ¢ > l, is one-to-one and we can use it to identify
C2°(82) with a subspace of W*P(Q); we sometimes refer to the map that sends ¢ to l,, as
the “identity map”. So we can talk about the identity map from C°(2) to W*P(2) for
all s € R.

Theorem 3.64. [7] Let Q) be a nonempty open set in R", s > 0, and 1 < p < co. Then
W#P(Q) is a reflexive Banach space.

Corollary 3.65. Let ) be a nonempty open set in R", s > 0, and 1 < p < 00. A closed
subspace of a reflexive space is reflexive, so Wy (Q) is reflexive. Dual of a reflexive
Banach space is a reflexive Banach space, so Ws (Q) is a reflexive Banach space.

Remark 3.66. Let €2 be a nonempty open set in R™, s > 0, and 1 < p < oo. Since
WP (Q) is reflexive, it can be identified with WP (Q)]** and we may write [W 5 (Q)]* =
WP (Q) and talk about the duality pairing (u, f)WS,p(Q)XW_S,p/(Q). To be more precise,
we notice that, the identification of W' (Q)]** and Wi (Q2) is done by the evaluation

map
JWeP(Q) = W)™ J(w)[f] = flu).

Therefore, for all u € WP (2) and f € W=57(Q),

(u, f>W§‘p(Q)><W*51P'(Q) = (J(u), f>[W§’p(Q)]**><W*SvP'(Q) = f(u) = (f, U>Wfs,p’(9)xwg*’(m-

Theorem 3.67. Let €) be a nonempty open set in R", s > 0, and 1 < p < oo. Then

C(R) is dense in W= (Q). We may write this as W, *" (Q) = W (Q).

Proof. Our proof will be based on a similar argument given in page 65 of [1]. Let ¢ > [,
be the mapping introduced in Remark 3.63. Our goal is to show that the set

V= {l,:p e CQ)}

is dense in W ~**'(Q). To this end it is enough to show that if F' € [IW~*'(Q)]* is such
that F'(I,) = 0 for all ¢ € C°(Q2), then F' = 0. Indeed, let F' be such an element. By
reflexivity of Wi* () there exists f € Wi (£2) such that

Yoe WP (Q)  F(v) =u(f).
Thus for all ¢ € C2°(2) we have

o:medAﬂ:[j@m@wm
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So, by the fundamental lemma of the calculus of variations (see [11], Page 110), we have
f = 0 (as an element of W*?(Q) C L} (Q)) and therefore F' = 0. O

loc

Theorem 3.68. Let () be a nonempty open set in R", s € R, and 1 < p < oo. Equip
D’'(Q) with weak* topology or strong topology. Then

D(Q) < W*P(Q) < D'(Q).

Proof. Recall that the convergent sequences in D’(2) equipped with strong topology are
exactly the same as the convergent sequence of D’(2) equipped with the weak* topology
(see Remark 3.22). This together with the Theorem 3.19 imply that in the study of the
continuity of the inclusion map from W*?(Q2) to D'(2), it does not matter whether we
equip D’'(€)) with the strong topology or weak* topology. In the proof, as usual, we
assume D’(2) is equipped with the strong topology. We consider two cases:

e Case 1: s > 0 The continuity of the embedding D(£2) — W*P(2) has been studied
in [7]. Also clearly W*P(Q2) — LP(2) — D’(Q2). The former continuous em-
bedding holds by the definition of W*P()) and the latter embedding is continuous
because if u,, — 0in LP(Q2), then for all ¢ € D(Q2)

[{tm, ) ()< pi) = 0 = I/Qumsodﬁ\ < umllpll@lloc =0

So, uy, — 0in D'(§2). This implies the continuity of the inclusion map from LP(€2)
to D'(Q2) by Theorem 3.19.

e Case 2: s < 0 Since W, " (Q) — W7 (Q), it follows from previous case
that W, 7 (Q) — D'(Q). Also since D(Q) € W, ¥ (Q) is dense in D'(Q) (see
Theorem 3.52, Theorem 3.53, and Remark 3.54), it follows that the inclusion map

from W, *¥ (Q) to D'(Q) is continuous with dense image. Thus, by Theorem 3.27,
D(Q) — W=*P(2). Here we used the facts that 1) the strong dual of the normed space
Wy 7' () is W*P(Q) and that 2) the dual of (D'(€2), strong topology) is D(£2) (see
Theorem 3.55). It remains to show that W*P(Q) — D’(Q). It follows from Case
1 that D(Q) — W, **(Q) and by definition D(€2) is dense in W, *” (). So, by
Theorem 3.27, W*P(§2) — D'(Q).

g

Remark 3.69. Note that for s < 0, WP (Q) is the same as W*?(Q)). For s > 0, W5*(2)
is a subspace of W*P(Q)) which contains C2°(2). So it follows from the previous theorem
that

D(Q2) <= W;P(Q) < D'(Q).
To be more precise, we should note that for s < 0, we identify ¢ € D(Q)) with the
corresponding distribution in D'(SY). Under this identification, for all s € R the “identity
map” i @ D(Q)) — WGP(Q) is continuous with dense image and so its adjoint i* :
(WP ()] — D'(Q) will be an injective continuous map (Theorem 3.27) and we have
(i*u, 0) pryxn@) = (U L Q) wgr(@)pxwgr(@) = (W L) @) xwer @) -
We usually identify [WP (Q)]* with its image under i* and view [W;* (Q2)]* as a subspace

of D'(Q2). So, under this identification, we can rewrite the above equality as follows:

Vue [Wé’pm)]* Ve D(Q) <U7 <P>D'(Q)xD(Q) = (U, 90>[W§’p((2)]*><W§’p(Q) .
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Finally, noting that for all s € Rand 1 < p < oo, [WSP(Q)]* = W, P () (see
Definition 3.61, Theorem 3.67, and Corollary 3.65), we can write

Vue W[;S,p (Q> vgp S D<Q) <U, Q0>D’(Q)><D(Q) = <u7 90>W0—37p’(9)><wg,p(9) .

Theorem 3.70. Let €2 be a nonempty open set in R", s > 0, and 1 < p < oo. Then
(1) The mapping F +— F|co(q) is an isometric isomorphism between W=7 (Q) and
[C22(Q), [Nl p]™
(2) Suppose u € D'(Q). If u : (C(Q),||.l|-spr) — R is continuous, then u €
WyP(Q) (more precisely, there is a unique element in Wi () whose corre-
sponding distribution is u). Moreover,

(U, ) prQ)x D)

[ullwsry = sup
DT ppece@) el

Proof. The first item has been studied in [7]. Here we will prove the second item. Since
u: (C2(Q), |I-||-sr) — R is continuous, it can be extended to a continuous linear map
@ WP (Q) = R. Soa € [W=*7(Q)]*. However, W"(Q) is reflexive, therefore
there exists a unique v € W;P(Q) such that @ = J(v) where J(v) : W~ (Q) — Ris
the evaluation map defined by J(v)(F) = (F,v)y -« () xws (o). To finish the proof, it
is enough to show that v = w as elements of D’(£2). For all ¢ € C'>°(Q)) we have

Remark 3.63
(v, 9) pr(@)xp(@) = /Q vpdr =T {0, Vet (@) ()

= J(v)(p) = u(p) = u(p) = {u, ) p/@)xD©) -
Also,

[ullwgr@) = lvllwgre) = 1) -

s _ (@, ¢)pr@)xD©)
= l[allpy—sw (- =  sup
ozpec () llw—sr ()

<U, @)D'(Q)xD(Q)

= sup
0ZpcC(Q) HSOHW*S’P'(Q)

U

Corollary 3.71. Let ) be a nonempty open set in R", s > 0, and 1 < p < oo. Suppose
that u € D'(Q2). As a direct consequence of Theorem 3.70 we have

u, /
o If sup < 90>D(Q)><D(Q)

< oo, then u € W=7 (Q) and
ozpec=(@)  ellwer)

<U> 90>D/(Q)xD(Q)

lullyy—swr () =  sup
O N

(U, ©) D) x D)

e If sup < 00, then u € WP () and

0ZpeC(Q) ||80Hw—sm/(n)

<U, §0>D’(Q)><D(Q)

[ullwer@) = sup
0ZpeC2 () ||(p||W*SvP'(Q)
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That is, for any e € R and 1 < q < oo, in order to show that u € D'(QQ) belongs to
W§9(Q), it is enough to prove that

<Ua 90>D/(Q)xD(Q)

sup

< 00,
0ZpeCoe () H(PHW*WI’(Q)

<U, W)D'(Q)xD(Q)

and in fact ||u||wea) =  sup
0ZpeC(Q) ||<P||ervq’(9)

Theorem 3.72. Let ) be a nonempty open set in R", s € R, and 1 < p < oco. Suppose
that K € K(Q2). Then W' (Q) is a closed subspace of W*P ().

Proof. Tt is enough to show that if {u;} is a sequence of elements in W;”(Q2) such that
u; — win W*P(Q), then u € WP(Q), i.e., suppu C K. By Theorem 3.68, we have
u; — win D'(€2). Now it follows from Theorem 3.59 that suppu C K. Note that for any
s > 0, we have W*?(Q) C LP(Q) C L} (€); in this proof we implicitly used the fact

loc
that for functions in Lj,.(€2), the usual definition of support agrees with the distributional

definition of support. U
Next we list several embedding theorems for Sobolev-Slobodeckij spaces.

Theorem 3.73 ([30], Section 2.8.1). Suppose 1 < p < g < oocand —oco <t < s < 00
satisfy s — % > t — o Then W*P(R") — WH(R™). In particular, WP (R") —
WP (R™).

Theorem 3.74. [8, 4] Let €2 be a nonempty bounded open subset of R" with Lipschitz

continuous boundary. Suppose 1 < p,q < oo (p does NOT need to be less than or equal
to q)and 0 <t < s satisfy 5—% >1— %. If s & Ny, additionally assume that s # t. Then

WsP(Q) < Wh4(Q). Furthermore, if s > t, then the embedding W*P(Q) — W*hP(Q)
is compact.

Theorem 3.75. [7] Let Q2 C R"™ be an arbitrary nonempty open set.
(1) Suppose 1 < p < q <ooand0 <1t < ssatisfys — 3 21— 7. Then W;*(Q2) —
WH(Q) for all K € K(S).
(2) Forall ki, ky € Ngwith ky < ko and 1 < p < oo, Wk2P(Q) — Whkir(Q),
(3) If0<t<s<landl <p < oo, then W*P(Q) — WhHP(Q).
(4) If0 <t < s < coaresuchthat |s| = |t] and 1 < p < oo, then W*P(Q2) — WhP(Q).
(5) If0<t<s<ooteNyandl <p< oo, then WP(Q) — WHP(Q).

Theorem 3.76. [15] Let Q2 be a nonempty bounded open subset of R" with Lipschitz
continuous boundary or Q@ = R™. If sp > n, then W5P(Q) — L>(Q) N C°(Q) and
W*P(Q) is a Banach algebra.

In the next several theorems we will list certain multiplication properties of Sobolev
spaces. Suppose ¢ € C(Q2) and v € W*P(Q). If s > 0, then the product @u has a
clear meaning. What if s < 0? In this case, u|p(q) is a distribution and by the prod-
uct ou we mean the distribution (¢)(u|p(q)); then pu is in W*P(Q) if (¢)(u|p@)) :
(C2(), ||.]l-s7) — R is continuous. Because then it possesses a unique extension to

a continuous linear map from W, *” /(Q) to R and so it can be viewed as an element of
(W5 7 ()] = W*(Q). See Theorem 3.70 and Corollary 3.71. Also see Remark 3.89.



18 A. BEHZADAN AND M. HOLST

Theorem 3.77 (Multiplication by smooth functions I, [32], Page 203). Let s € R, 1 <
p < 00, and ¢ € BC®(R"). Then the linear map

my : WHP(R"™) — WHP(R"), U pu
is well-defined and bounded.

Theorem 3.78 (Multiplication by smooth functions I, [ 7]). Let €2 be a nonempty bounded
open set in R" with Lipschitz continuous boundary.

(I) Let k € Nyand 1 < p < oo. If ¢ € BC*(Q), then the linear map W"?(Q2) —
WP (Q) defined by u — @u is well-defined and bounded.

(2) Let s € Rand 1 < p < oo. If ¢ € BC™(?), then the linear map W*?(Q)) —
WeP(Q) defined by u — pu is well-defined and bounded.

Theorem 3.79 (Multiplication by smooth functions III, [7]). Let ) be any nonempty
open set in R™. Let p € (1, 00).

(1) If0 < s < land ¢ € BC%(Q) (that is, ¢ € L>=(Q) and ¢ is Lipschitz), then
my, : WHP(Q) — WP(Q), U ou
is a well-defined bounded linear map.
(2) If k € Ny and p € BC*(Q), then
m, : WHP(Q) — WhP(Q), U U
is a well-defined bounded linear map.
(3) If -1 <s<0andp € BC™'(Q)ors € Z~ and o € BC*(N), then
my, : WHP(Q) — W*P(Q), U U
is a well-defined bounded linear map.

Theorem 3.80 (Multiplication by smooth functions 1V, [7]). Let ) be a nonempty open
setin R", K € K(), p € (1,00), and =1 < s < 0ors € Z~ ors € [0,00). If
@ € C*®(), then the linear map
Wg"(Q) = Wg'(Q),  ur pu

is well-defined and bounded.

Theorem 3.81 (Multiplication by smooth functions V, [7]). Let €2 be a nonempty bounded
open set in R™ with Lipschitz continuous boundary. Let K € K(S)). Suppose s € R and
p € (1,00). If p € C>(Q), then the linear map WP (Q) — WP (Q) defined by u — @u
is well-defined and bounded.

In the next definition we introduce the notion of smooth multiplication triple which
will play a key role in several theorems that will follow.

Definition 3.82 (Smooth multiplication triple). Let ) be a nonempty open set in R",
seRand1 < p < oo
e We say that the triple (s,p,<) is a smooth multiplication triple if for all ¢ €
C°(R2), the map
my : WHP(Q) — WP(Q) U Qu

is well-defined and bounded.
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o We say that the triple (s, p, () is an interior smooth multiplication triple if for
all p € CX(Q) and K € K(R2), the map
my : WRP(Q) — WP(Q) U Qu
is well-defined and bounded.
Remark 3.83.

e Every smooth multiplication triple is also an interior smooth multiplication triple.

e [t is a direct consequence of theorems 3.77, 3.78, and 3.79 that
(1) if Q@ = R"™ or Q) is bounded with Lipschitz continuous boundary, then for all
seRand1 < p < oo, (s,p, ) is a smooth multiplication triple.
(2) if QY is any open set in R", 1 < p < oo, and s € R is not a noninteger with
magnitude greater than 1, then (s, p, <)) is a smooth multiplication triple.

e [t is a direct consequence of Theorem 3.80 and Theorem 3.81 that
(1) if Q@ = R"™ or Q) is bounded with Lipschitz continuous boundary, then for all
s€Rand1 <p < o0, (s,p, ) is an interior smooth multiplication triple.
(2) if Qis any open set in R", 1 < p < oo, and s € R is not a noninteger less than
—1, then (s, p, Q) is an interior smooth multiplication triple.

o If(s,p, ) is a smooth multiplication triple and K € KC(Q2), then WP (Q) C W5*(Q)
(see the proof of Theorem 7.31 in [T]). Of course, if s < 0, then W5?(Q)) = W' (Q)
and so WP (Q) C WyP(Q) holds for all s < 0, 1 < p < oo and open sets Q) C R™

Theorem 3.84. Let ) be a nonempty open set in R", s > 0and 1 < p < oo. If (s,p, Q)
is a smooth multiplication triple so is (—s,p', Q).

Proof. Let o € C>(€2). Forall u € W= (Q) = W, *¥ () and ¢ € D(Q) we have

Remark 3.69
[{eu, V) pryxp@)| = [(w e)pyxp@) = Kt 90)w-sw (@)xwer )]

< [ellw—sw @ o9 llwsr e

= Nullyy—eor @ [P llwor ey -
The last inequality holds because (s, p, (1) is a smooth multiplication triple. It follows
from Corollary 3.71 that pu € Wy ™" (Q) and [[pully—cs @) = Ul (o), that is,
my, : WP (Q) — W= (Q) is well-defined and continuous. O

Theorem 3.85. Let ) be a nonempty open set in R", s € Rand 1 < p < oo. If s < 0,
further assume that (—s,p’, Q) is a smooth multiplication triple. Suppose that Q' C )

and K € (). Then
(1) forallu € W' (Q),
(2) forall uw € WP (Y),

ullwsr(o) = |lularlwsr@n,
extdy qullwsr) = [[ullwer @)

Proof. The claim follows from the argument presented in the proofs of Corollary 7.39
and Theorem 7.46 in [7]. O

Theorem 3.86 (([8], Pages 598-605), ([15], Section 1.4)). Let s € R, 1 < p < 00, and
a € Nj. Suppose ) is a nonempty open set in R™. Then

(1) the linear operator 0% : W*P(R"™) — W*~12l»(R") is well-defined and bounded;

(2) for s < 0, the linear operator 0% : W*P(Q) — W=~leb»(Q) is well-defined and
bounded;
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(3) for s > 0 and |a| < s, the linear operator 0% : W*P(Q)) — Welalr(Q) is
well-defined and bounded;

(4) if Q is bounded with Lipschitz continuous boundary, and if s > 0, s — 110 # integer
(i.e. the fractional part of s is not equal to % ), then the linear operator 0% :
WeP(Q) — Wslebp(Q) for |a| > s is well-defined and bounded.

Theorem 3.87.
Assumptions:
o () = R" or Q) is a bounded domain with Lipschitz continuous boundary
e 5, scR s, >s>0fori=1,2
e l<p, <p<oofori=1,2
s, —s>n(——-—
pi p)
1 1 1
® 5 +sy—s>n(——+——-)
pr P2 P

Claim: If u € W*P(Q) and v € W?5P2(Q), then wv € W*P(Q) and moreover the
pointwise multiplication of functions is a continuous bilinear map

WEPH(Q) x W22 (Q) = WEP(Q) |

Remark 3.88. A number of other results concerning the sufficient conditions on the ex-
ponents s;, p;, S, p that guarantee the multiplication W*1P1 () x W#2P2(Q) — W*P ()
is well-defined and continuous are discussed in detail in [4].

Remark 3.89. Suppose that (s,p,<)) is a smooth multiplication triple with s > 0.
W=7 (Q) = W, (Q) is the dual of WSP() and (u, Hw is the ac-

o TP (Q)x WP (Q
tion of the functional u on the function f. As it was dlscussed befi)re,oif( @/3 is a func-
tion in CF(Q), (V)(u|p)) is defined as a product of a smooth function and a dis-
tribution. Since (s,p, ) is a smooth multiplication triple, (—s,p’,)) will also be a
smooth multiplication triple, and that means (V)(u|p)) : (CZ(Q), ||.]lsp) — Ris
continuous (see the Note right after Theorem 3.76). We interpret 1Yu as an element of
W=7 (Q) = [WP(Q)]* to be the unique continuous linear extension of 1(u|p(q)) to

the entire WP (). It is easy to see that, this unique linear extension is given by

<¢u f> =P (Q)xW5P(Q) <U ’Qbf) =P (Q)x WP (Q) 1

that is, the above map is linear continuous and its restriction to D(S) is the same as
Y (u|p(y). (Note that since (s,p, ) is a smooth multiplication triple, 1) f is indeed an
element of W' (Q2).)

Theorem 3.90. [12] Let s € [1,00), 1 < p < oo, and let

s, if sis an integer
m = .
|s] + 1, otherwise

If F € C™(R) is such that F(0) = 0 and F,F',--- | F™ ¢ L*(R) (in particular,
note that every F' € C°(R) with F(0) = 0 satisfies these conditions), then the map
u — F(u) is well-defined and continuous from W*P(R"™) N WLP(R") into W*P(R™).

Corollary 3.91. Let s, p, and F’ be as in the previous theorem. Moreover suppose sp > n.
Then the map u — F(u) is well-defined and continuous from W*P(R") into W*P?(R").
The reason is that when sp > n, we have W*P(R"™) — W1sP(R™).
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In the remaining of this section we will state certain useful properties of the topological
vector space W5l . The properties we will discuss here echo the ones stated in [24] for
spaces H?

comp*

Theorem 3.92. Let ) be a nonempty open set in R", s € R, and 1 < p < oo. Then
D(Q) is continuously embedded in W2P ().

comp
Proof. For all K € K(£2) we have
Ek(Q) = D(Q) = WP(Q).

This together with the fact that the image of £ (£2) under the identity map is inside
WP (€2), implies that

Ex(Q) = WIP(Q). (3.2)
Also, by the definition of the inductive limit topology on Wb (€2), we have
WP () = Wi, () . (3.3)

It follows from ( 3.2) and ( 3.3) that for all K € ()
Ex(Q) = Wik, (),

comp

which, by Theorem 3.37, implies that D(§2) < W2P (). O

comp

Theorem 3.93. Let (s, p, <) be a smooth multiplication triple. Then C2°(Q) is dense in
Wse ().

comp

Proof. We will follow the proof given in [24] for spaces H] Letu € WP (). Itis

enough to show that there exists a sequence in C:°(£2) that copnverges to u in II;VCS(;ﬁw(Q)
(this proves sequential density which implies density). By Meyers-Serrin theorem there
exists a sequence p,, € C*(Q2) N W*P(Q) such that ¢, — uin W*P(Q). Let y €
C2°(Q2) be such that x = 1 on a neighborhood containing supp u (see Theorem 3.41).
Let K = supp x. Since (s, p,(2) is a smooth multiplication triple, multiplication by x
is a linear continuous map on W*P(2) and so y¢,, — xu in W*?({2). Now we note
that yu = wu and for all m, xp,, are in C°(2) with support inside K. Consequently,
XPm — win WP (Q). Now since WP (2) < Wk (€2) we may conclude that x ¢, is

a sequence in C'2°(€2) that converges to u in W2P (Q). O

comp

Remark 3.94. As a consequence, if (s,p,Q) is a smooth multiplication triple, then
(Wep (Q)]* (equipped with the strong topology) is continuously embedded in D' (€2).

comp

More precisely, the identity map i : D(Q2) — WP (Q) is continuous with dense image,

comp

and therefore, by Theorem 3.27, the adjoint i* : [W3b (Q)]* — D'(S2) is a continuous
injective map. We have

("U, ) D1 () xD(Q) = (U T P) Wik () x Wik () = (Us P WD ()] X WP () -
We usually identify [WEP ()]* with its image under i* and view [WS5P (Q)]* as a sub-

comp comp
space of D'(Q). So, under this identification, we can rewrite the above equality as fol-

lows:
Vue [Wir ()" (u,0)prayxp@) = (U ©)wesk,, () x Wk () -

Next we will prove that if (s, p, €2) is a smooth multiplication triple, then W35l (€2) is
separable. To this end, we need the following lemma.

Lemma 3.95. Let (X, 7) and (Y, T') be two topological spaces. Suppose that
(1) Aisdensein (X,T),
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(2) T:(X,7)— (Y,7') is continuous,
(3) T(X) is dense in (Y, T').
Then T'(A) is dense in (Y, T').

Proof. Tt is enough to show that T'( A) intersects every nonempty open set in (Y, 7'). So
let O € 7’ be nonempty. Since 7'(X) is dense in (Y, 7’), we have O N T'(X) # 0 and so
T~1(O) is nonempty. Also, since T is continuous, 71 (O) € 7. A is dense in (X, 7), so
ANTYO) # (. Therefore,

T(A)NODTANTH0)) #0.
0

Theorem 3.96. Let (s, p,(2) be a smooth multiplication triple. Then Wb (S2) is sepa-
rable.

Proof. According to theorems 3.92 and 3.93, D(£2) is continuously embedded in W2F (Q)

comp
and it is dense in WP (€2). Since D((2) is separable, it follows from Lemma 3.95 that
Wk »(€) is separable. -

Theorem 3.97. Let (s, p,2) be an interior smooth multiplication triple. Let {1);}cn, be
the partition of unity introduced in Theorem 3.43. Let S be the collection of all sequences

whose terms are nonnegative integers. For all sequences a = (ag,ay,---) € S define
Ga,sp - Weshp(§2) — R by

oo
Gasp(1) = D ajllvjulliweso) -
j=0

Then {qa s.p tacs is a separating family of seminorms on W2 (Q) and the natural topol-

comp
ogy induced by this family on Wé;ﬁlp(ﬂ) is the same as the inductive limit topology on
Wsep (Q).

comp

Proof. Note that support of every u € Wgh  is compact, so for each u only finitely
many of 1;u’s are nonzero. Thus the sum in the definition of g, s, is a finite sum. Now
it is not hard to show that each ¢, s, is a seminorm and {q, s }.cs i separating. Here
we will show that the topologies are the same. Let’s denote the inductive limit topology
on Wb (€2) by 7 and the natural topology induced by the given family of seminorms 7.

In what follows we implicitly use the fact that both topologies are locally convex and
translation invariant.

e Step 1: (7' C 7) We will prove that for each K € K(€2), Wg"(Q2) — (Wzk (), 7).
This together with the definition of 7 (the biggest topology with this property) implies
that 7/ C 7. Let K € K(Q2). By Theorem 3.18 it is enough to show that for all
a €S, quspold: WP(Q2) — Ris continuous. Since K is compact, there are only
finitely may 1);’s such that K N supp; # 0; let’s call them ¢);,, - - - ,1);,. So, for all

u e WP (Q),

Ga,s.p(0) = aj, |5 ullwsr) + - - + aj ||V ullwsr ) -

By assumption (s, p, () is an interior smooth multiplication triple, so for each j €
{71, 71} the mapping v — ||¢;ullwsr) from WP(Q) — R is continuous.
Hence ¢, 5, © Id : W2P(Q) — R must be continuous.
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e Step 2: (7 C 7') Since (Wb (€2),7) is a locally convex topological vector space,
there exists a separating family of seminorms P whose corresponding natural topol-
ogy is 7 (see Theorem 3.15). We will prove that forall p € P, p : (WP (Q),7) —
R is continuous. This together with the fact that 7 is the smallest topology with this
property, shows that 7 C 7’. Let p € P. By Theorem 3.12, it is enough to prove that

there exists @ € S such that
Yue Wik () P(u) < Gosp(u).

comp

comp

For all u € WP, () we have p(u) = p( Z ;u). Since u has compact support,
J

only finitely many terms in the sum are nonzero, and so by the finite subadditivity of
a seminorm we get

plu) =P(D_¥iw) < 3 p(¥5u).

Now note that ¢;u belongs to the normed space W7, v, (§). Since p :+ (W5, (), 7) —

Ris continuous and Wi, () = (W5h,(2),7), we can conclude that p : Wt () —

R is continuous. Thus, by Theorem 3.9, there exists a positive integer a; such that

Vue Wan Q) Bldju) < ajllvjullwsr) -
It follows that for all u € WP (Q))

comp

plu) < Zﬁ(%’ u) < Z%H%UHWW(Q) = Qa,sp(1)

where a = (ag, a,- ).

4. SPACES OF LOCALLY SOBOLEV FUNCTIONS

Lets € R, 1 < p < oco. Let 2 be a nonempty open set in R”. We define
WrP(Q) :={ue D'(Q) : Vo € CX(Q) puec WP(Q)}.

loc

We equip W, P(€2) with the natural topology induced by the separating family of semi-
norms {|.| s p foccs (@)} (see Definition 3.10) where

VueWp () ¢eCX(Q)  |ulpsy = leullwsr) -

loc

When s and p are clear from the context, we may just write |u|, or p,(u) instead of
|u|g,s.p- It is easy to show that for all ¢ € C°(Q), |.|, s, is @ seminorm on W27 (Q2).

The fact that the family of seminorms {|.|, s, } e ()} is separating will be proved in
Theorem 5.3.

Remark 4.1. Note that, by item 1. of Theorem 3.20, u; — win W,*(Q) if and only if
ou; — @u in WP(Q) for all ¢ € C°(9).

Remark 4.2. Clearly if (s,p,$2) is a smooth multiplication triple, then W*P(Q)) C
WP (Q).

loc

An equivalent description of locally Sobolev functions is described in the following
theorem.

Theorem 4.3. Suppose that (s,p, ) is a smooth multiplication triple. Then u € D'(Q)
is in W.P(Q) if and only if for every precompact open set V- with V. C Q there is

loc

w € W*P(Q) such that w|y = uly.
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Proof. (=) Suppose u € W,P(Q2) and let V be a precompact open set such that V' C ().
Let ¢ € C(Q) be such that ¢ = 1 on a neighborhood containing V. Let w = pu. u is
a locally Sobolev function, so w € W*P(); also clearly w|y = uly.

(<) Suppose u € D'(2) has the property that for every precompact open set V' with
V C Q there is w € W*P(Q) such that w|y = uly. Let ¢ € C=(Q2). We need to show
that pu € W*P(Q)). Note that supp ¢ is compact, so there exists a bounded open set V'
such that

suppe CV CV CQ.
By assumption there exists w € W*®P()) such that w|, = wuly. It follows from the

hypothesis of the theorem that pw € W*P?(Q). Clearly pw = @u on 2. Therefore
ou € WP(Q). O

5. OVERVIEW OF THE BASIC PROPERTIES

Material of this section is mainly an adaptation of the material presented in the excel-
lent work of Antonic and Burazin [2], which is restricted to integer order Sobolev spaces,
and Peterson [24], which is restricted to Hilbert spaces H°. We have added certain details
to the statements of the theorems and their proofs to ensure all the arguments are valid
for both integer and noninteger order Sobolev-Slobodeckij spaces.

Definition 5.1. If A is a subset of C°(S2) with the following property:
VeeQ Jpe€A suchthat >0 and ¢(x)#0,
then we say A is an admissible family of functions.

Remark 5.2. Note that if A is an admissible family of functions, then for all m € N, the
set {o™ : p € A} is also an admissible family of functions.

Theorem 5.3. Let (s, p, <)) be an interior smooth multiplication triple. If A is an admis-
sible family of functions then

(1) WP(Q)={ue D(Q):Vpe A ouecW(Q)}.

loc

(2) The collection {|.|, : ¢ € A} is a separating family of seminorms on W,)?(Q).

loc

(3) The natural topology induced by the separating family of seminorms {|.|, : ¢ €
A} is the same as the topology of WP ().

Proof.

(1) Let u € D'(2) be such that pu € W*P(Q) for all ¢ € A. We need to show that if
€ CX(Q), then Yu € W*P(Q2). By the definition of A, for all x € supp ¢ there
exists ¢, € A such that p,(z) > 0. Define

Uy :={y € Q:p.(y) > 0}.

Clearly, x € U,, and since ¢, is continuous, U, is an open set. {U, }scsuppy 18 an
open cover of the compact set suppt). So there exist points xy, - - - , x; such that
suppy C U :=U,, U---UU,,. If y € U, then there exists 1 < ¢ < k such that
y € U,, and 50 @,,(y) > 0. So the smooth function 3% ¢, is nonzero on U.
Thus on U we have

Yu = L(i(,pxu)

k
Zi:l Pz; =1
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Indeed, if we define

P(2) :
€)= ST ) ifzeU |
0 otherwise

then £ is smooth with compact support in U and

k
Yu=£Y pnu
=1

on the entire 2. Now note that for each i, ¢,,u is in W*?(Q) (because by assump-
tion pu € W*P(Q) forall ¢ € A). So S5 | w,.u € WP(Q). Since £ € C(Q)
and Ele ., u has compact support and (s, p, 2) is an interior smooth multiplica-
tion triple, it follows that £ S>F | @, u € WP(Q).

(2) Now we prove that {|.|, : ¢ € A} is a separating family of seminorms. We
need to show that if u € W ”(2) has the property that for all ¢ € A |u|, =
| ul|wsr@) = 0, then u = 0. By definition of locally Sobolev functions,  is an
element of D’(2). So, in order to show that v = 0, it is enough to prove that for
alln € C(Q), (w,n) pr)xp©) = 0. We consider two cases:

e Case1: A =CX(0Q).
Let ¢ € A be such that ¢ = 1 on a neighborhood containing supp 7. By
assumption p u = 0 in W*P(2) and so it is zero in D’(Q2). Now we have

<ua77>D’(Q)><D(Q) = <u>9077>D’(Q)><D(Q) = <¢U> 77>D’(Q)><D(Q) =0

which is exactly what we wanted to prove.

e Case2: A C C(Q).
We claim that if [[oullwsnr) = 0 for all ¢ € A, then for any ¢ € C°(2),
|Yu||lwer@ = 0 and so this case reduces to the previous case. Indeed, if ¢ is
an arbitrary element of C'>°(€2), then by what was proved in item (1),

k
bu=£Y g,
=1

where, by assumption, for each i, ¢,,u is zero as an element of W*P(Q).
Hence ¢u = 0 in W*P(Q).

(3) Finally we show that the natural topology 7p induced by P = {|.|, : ¢ € A}
is the same as the natural topology 7o induced by Q = {|.|, : ¢ € C>(Q)}.
Obviously P is a subset of Q, so it follows from the definition of natural topology
induced by a family of seminorms (see Definition 3.10) that 7p C 7o. In order
to show that 7o C 7p, it is enough to prove that for all ©» € C°(12), the map
|.ly + (WP(Q), 7p) — R is continuous. By what was shown in item (1), we can

write

k
Vue WiP(Q)  fuly = [Yullwer@ = 1€ entllwerq)
=1

k k
2 s ullwer@ = luly,, .
=1 =1
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where the implicit constant does not depend on u. In the last inequality we used
the assumption that (s, p,{2) is an interior smooth multiplication triple. Now it
follows from Theorem 3.20 that |.|,, : (W?(2), 7p) — R is continuous.

loc

g

Lemma 5.4. There exists an admissible family A C C(Q)) that has only countably
many elements.

Proof. Let {K,} ey be an exhaustion by compact sets for €. For each j € N, let ¢; €
C2°(€2) be a nonnegative function such that ¢; = 1 on K and ¢; = 0 outside K.
Clearly A = {(,}en is a countable admissible family of functions. O

Corollary 5.5. Let (s,p,(2) be an interior smooth multiplication triple. Considering
Theorem 3.13, it follows from the previous lemma and Theorem 5.3 that W})*(Q) is
metrizable. Indeed, if A = {p, };"’:1 is a countable admissible family, then

o0

1 |u—uly,
duv) =y e 1

is a compatible translation invariant metric on W,>* (Q).

Theorem 5.6. Let (s, p,$2) be an interior smooth multiplication triple. Then W;”(§2) is
a Frechet space.

Proof. By Corollary 3.14 it is enough to show that W;”(2) equipped with the metric
in (5.1) is complete. Note that all admissible families result in equivalent topologies in
W2P(€2). So we can choose the functions ¢,’s in the definition of d to be the partition of
unity introduced in Theorem 3.43. Now suppose {u,, } is a Cauchy sequence with respect
to d. In what follows we will prove that {u,,} converges to a distribution u in D’(£2).
For now let’s assume this is true. We need to show that u is an element of W,”((2), that
is we need to show that for all j, ¢; u € W*P(Q).

It follows from the definition of d that for each j € N, {¢;u;, }men is a Cauchy sequence
in W*P(Q). Since W*P(Q) is a Banach space, there exists f; in W*P(Q2) such that
Oy, — f; in WHP(Q). Note that W*P(Q) — D'(2), so @ju,, — f; in D’(£2) and thus
for all b € D(2) we have

(fi» V) @yxpe) = nlgnm<¢j U, V) Dr(Q)x D) = w{l_rgowm, ©iV) D) x D)

= (U, 9¥) D)< D) = (95U ) D)< D)
Hence p;u = f; in D'(€2). Since f; € W*P(2) we can conclude that p,u € W*P(Q).
It remains to show that {u,,} converges in D’(Q2). To this end it is enough to show
that for all ¢» € D(£2), the sequence {(u,,, 1)} converges in R (see Theorem 3.60). Let
Y € D(S). Since supp 1 is compact, there are only finitely many of ¢;’s that are nonzero
on the support of 1) (see Theorem 3.43) which we denote by ¢;,,--- , ;. So for each
x € supp e, @;, (x) + -+ + ¢, (x) = 1. We have

<um7 ¢> = <um’ (90]&"_' : “|‘4le)¢)> = <(¢j1+' : '_Hpjl)u??"w 2/)> = <90j1uma ¢>+ : '+<90jlum7 ¢> .

1l 00 (Pgy U, ¥),s - -+ LMy o0 (95, Uim, ¥) all exist (since ¢, u,y, is Cauchy in W*P (),
it is convergent in W*?(2), and so it is convergent in D’(€2)). Therefore lim,;, o0 (U, 1)
exists. U

Theorem 5.7. Let (s, p, 2) be a smooth multiplication triple (so we know that W*P(Q) C
WoP(Q2) and WP (Q) is metrizable). Then W*P(Q2) — W2P(Q).

loc loc
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Proof. Since both spaces are metrizable, it suffices to show that if u; — u in W*P(Q),
then w; — win W P(€2). To this end, let ¢ be an arbitrary element of C2°(§2). We need
to show that if u; — win W*P(Q), then pu; — @u in W*P(2). But this is a consequence
of the fact that (s, p, 2) is a smooth multiplication triple. O

Theorem 5.8. Let §) be a nonempty open set in R", s € Rand 1 < p < co. Then £()
is continuously embedded in W;*(2), i.e., the “identity map” from E(2) to W2 (Q) is
continuous.

Proof. By Theorem 3.45 it is enough to show that if ¢,,, — 0 in £(Q2), then ¢,,, — 0 in
WoP(Q2), that is, for all ¢ € C°(Q), Y., — 0in WHP(Q).

Let v € C°(f2) and let m,, denote multiplication by ). Multiplication by smooth
functions is a continuous linear operator on £(2) ([26]). So m, : £(Q) — £(Q) is
continuous. The range of this map is in the subspace Euppy(€2). So my : £(2) —
Esupp (£2) is continuous. However, Egppy(€2) — D(2). Hence my, : (1) — D(Q) is
continuous. As a consequence, since ¢, — 0 in £(2), ¢ ¢, — 0in D(£2). Finally,
since D(Q2) — W*P(2), we can conclude that ¢, — 0in WP(Q). O

Corollary 5.9. Since D(Q2) — E(Q), it follows that under the hypotheses of Theo-
rem 5.8, D(Q) is continuously embedded in W;* ().

loc

Theorem 5.10. Let (s, p,<2) be a smooth multiplication triple. Then C2°(Q) is dense in
WrP(Q).

loc

Proof. Let w € W;2P(Q). It is enough to show that there exists a sequence {¢;} in

loc

C°(€) such that ¢; — win WP (Q), i.e.,
VEe O () EY; — &u in WHP(Q) .
First note that, since (s, p, {2) is a smooth multiplication triple, for all £ € C2°((2), there
exists a constant C , ;, o such that
Voe W2(Q)  [[€ollwsro) < Cespallvllwere) .

Let {¢;},en be the admissible family introduced in the proof of Lemma 5.4. For each
¢ € C(Q), there exists a number J; such that for all j > J¢, ¢; = 1 on supp&. So,

VizJe =€
Clearly, by definition of W}?(Q), for each j, p;u € W*P(Q), also ¢;u has compact

loc

support, so p;u € W;P(2) (see Remark 3.83). Hence for each j, there exists ¢); €
C°(2) such that ||¢; — p;ul| < % We claim that £&¢; — {u in W*P(Q). Indeed, given

e>0and § € CX(Q), let J > J¢ be such that % < = Then for j > J we have

Ces,p,0

1§05 — Eullwsw) = [|E¢; — Epjullwsr) = [|E(W; — wiu)|lwsr@)

1
< C@s,p,QH@Z)j - QDjUHWs,p(Q) < C&S,p@j < €.

g

Remark 5.11. As a consequence, if (s,p,Q) is a smooth multiplication triple, then
[W2P(Q)]* (equipped with the strong topology) is continuously embedded in D'(S).

loc

More precisely, the identity map i : D(Q2) — W;P(Q) is continuous with dense image,

loc

and therefore, by Theorem 3.27, the adjoint i* : [WP(Q)|* — D'(Q) is a continuous
injective map. We have

(i"u, ©) pr@yxp() = (U L) wer @) xwer@) = (U, @) wer @) xwer(@) -

loc
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We usually identify [W,)? (Q)|* with its image under i* and view [W,*(Q2)]* as a subspace

loc
of D'(Q2). So, under this identification, we can rewrite the above equality as follows:

Vue Wl (u, @) pr@yxp@) = (U @) wer @) xwsr (@) -

Theorem 5.12. Let (s, p, ) be a smooth multiplication triple. Then W;” () is separa-
ble.

Proof. D() is continuously embedded in W;)”(Q2) and it is dense in W;’”(§2). Since
D(£) is separable, it follows from Lemma 3.95 that W;”(2) is separable. O

As a direct consequence of the definitions, locally Sobolev functions and Sobolev
functions with compact support are both subsets of the space of distributions. The next
two theorems establish a duality connection between the two spaces. But first we need
to state a simple lemma.

Lemma 5.13. Let X and Y be two topological spaces. Suppose that Y is Hausdorff. Let
f: X —=>Yandg: X — Y betwo continuous functions that agree on a dense subset A
of X. Then f = g everywhere. (So, in particular, in order to show that two continuous
mappings from X to 'Y are equal, we just need to show that they agree on some dense
subset.)

Proof. Suppose that there exists zy € X such that f(x¢) # g(x¢). Since Y is Hausdorff,
there exist open neighborhoods U and V' of f(z() and g(z(), respectively, such that
Unv =0. f~4U)Nng (V) is anonempty (z, is in it) open set in X so its intersection
with A is nonempty. Let z be a point in the intersection of f~1(U) N ¢g~1(V) and A.
Clearly f(z) € U and g(z) € V;butsince z € A, we have f(z) = g(z). This contradicts
the assumption that U NV = (). O

Theorem 5.14. Suppose that (s, p, Q) and (—s, p', Q) are smooth multiplication triples.
Define the mapping T : W’l;f’p/(ﬂ) — [WEP (Q)]* by

comp
Yue Wi (@) Ve Wah, () [T = (ru, yew gy sooy

where 1) ¢ is any function in C°(S)) that is equal to 1 on a neighborhood containing the
support of f. Then

(1) [T(uw)](f) does not depend on the choice of 1.
(2) Forallu € W’l;f’p,(Q), T'(u) is indeed an element of Wi (2)]*.
(3) T : W, S% (Q) — [WER,(Q)]* is bijective.

comp

(4) Suppose [W;épmp(ﬁ)]* i/s equipped with the strong topology. Then the bijective
linear map T+ W, 27 () — [Wih ()] is a topological isomorphism, i.e.
it is continuous with continuous inverse. So (Wb (S2)|* can be identified with

W2 (2) as topological vector spaces.

Proof. (1) For the first item, it is enough to show that if v € C'>°(2) is equal to zero on
a neighborhood U containing the supp f, then (Wu, f)Wgs,pr(Q)XWOS,p () = U- Note
that f is not necessarily in C2°(£2), so we cannot directly apply the duality pairing
identity stated in Remark 3.69. Let { f,,, } be sequence in C2°(€2) such that f,, — f
in Wi(Q2). Let & € C°(Q) be such that £ = 1 on supp f and £ = 0 outside U.
By assumption (s, p, §2) is a smooth multiplication triple and so £ f,,, — £f = f in
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WP (€2). Since elements of dual are continuous, we have

<’l/}u f) —917 XWS’p(Q) = W{lm <¢U é-fm> —919 )XWS’p(Q)
Rem§<3.69

lim (Y, € fin) ()< D(0)
= lim (u, ¢ fm)pi@)xp@) = lim u(0) =0.

m— 00

Note that £ f,, is zero outside U and 1) = 0 in U, so ¢ f,,, = 0 everywhere.
(2) In order to show that T'(u) is an element of [W25P (€2)]*, we need to prove that

comp

T(u) : Wih,(€2) — Ris linear and continuous. Linearity is obvious. In order to
prove continuity, we need to show that for all K' € K(), T'(u)|ws» () is continu-
ous (see Theorem 3.37). Let K € K(2) and fix a function ¢ € C2°(€2) which is

equal to 1 on a neighborhood containing K. For all f € WP (Q2) we have
@I = 180w oot gy mwsnoy| < 1ullw—ew @) X ([ llwer

which proves the continuity of the linear map 7'(u).

(3) In order to prove that 7' is bijective we give an explicit formula for the inverse.
Recall that by definition W,_’* () is a subspace of D’(£2) and by Remark 3.94,
(W (2)]* can also be viewed as a subspace of D’ (Q) More precisely, if we let

comp

i: D(Q) — WP (Q) be the “identity map” and i* : [W2E (Q)]* — D'(Q2) be

comp comp
the adjoint of ¢, then ¢* is a continuous injective linear map and

Vue Wer (" Vo e DQ) (i, ) pra)xp@) = (W ) Wik, () x Wk () -
(5.2)

Moreover, if K € K(Q), then W(Q) — Wgb (Q) and therefore if u €
[Weomp ()], then ulyyer(q) € [Wx"(€2)]" and

Vge Wi (Q) (U @) wesmo @1 x Wit = (Ulwsr@), Dwer @) xwir (@) -

Now we claim that the image of ¢* is in W,_>" / (€2) and in fact ¢* is the inverse of 7".
Let us first prove that the image of i* is in W7 (Q). Let u € [W:r, (Q)]*. We

comp

need to show that for all p € C>°(Q), (¢)(i*u) € W=*#(Q). To this end we make
use of Corollary 3.71. Let ¢ € C2°(£2) and let K = supp . For all ¢ € D(Q2) we
have

‘(wi*u,w/:)/(ﬂ)xp(g)} = | iU, V) pr(Q) < DY Q){ = ‘ OV Wk XWCSO’%’W(Q)‘
= | (ulwsr @), 90?/1> WP Q) x WP o
< Julwsr@ llwsr(

Wi (@)

= ||U|WIS<”’(Q)H[WK’

= ulwer @ lwsr -

which, by Corollary 3.71, proves that @i*u € W=7 (Q).
Now we prove i* is the inverse of 7. Note that for all u € W,_** (Q) C D'(Q)

loc
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and ¢ € D(Q2),

% Equation 5.2
(o T)(w), @) pxpwy = (T(W), ) wem, @ x Wk, ()
Definition of T'

= <77D@’LL, QD>W075””(Q)><W05"’(Q)

Remark 3.69

ETT (Yuu, ©) prayxp@)
= (u, Vo) D) xD(@)
= (1, @) p(@)xD(©) -

Therefore, i* o T' is identity. Next we show that for all v € [W2P ()], (T o

comp

i*)(v) = v. Note that (T o 7*)(v) and v both are in [W:P ()" and so they are
continuous functions from WgP (€2) to R. Since D() is dense in W3k (€2),

according to Lemma 5.13 it is enough to show that for all f € D(2) we have

(T o d*)(v)](f) = v(f)-
% Definition of T’ %
(T 0 )W), Niwestp@nswesnpe = WrE0) Dyt ) wsrey
Remark 3.69 %
=" (W), [ p@xp©)
= ("0, V¢ f) D)< D)
= ("v, f) )= D)

Equation 5.2
= U, D)W @ x Wk (@) -

(4) Let’s denote the topology of W, '(€2) by 7 and the strong topology on [W:2, (€2)]*

comp

by 7’. Our goal is to show that T : (T/Vl;cs’p/(Q), 7) = ([Wk,, ()], 7') and also
Tt =i (Wek, Q) 7) — (I/Vl;f’p/(ﬂ),r) are both continuous maps. To

this end we make use of Theorem 3.20. Recall that 7 is induced by the family of
seminorms {p,, : W, 2" (€2) — R} ecom (@) where p,(u) = [[pully - ) Also 7’

loc

is induced by the family of seminorms {p’; : [W5P, (Q)]* — R} where B varies

comp

over all bounded sets in WP () and ps(u) = sup;cp |u(f)]-

comp

e Step 1: Let B be a bounded subset of W35 (€2). Since B is bounded, there
exists K € K(£2) such that B is bounded in W;*(§2) (See Theorem 3.39;
note that the topology of W (€2) can be constructed as the inductive limit
of W7 (€2) where {Kj} is an increasing chain of compact subsets of (2). So
there exists a constant C' such that for all f € B, || f|lwsr@) < C. Let be a
function in C2°(£2) which is equal to 1 on a neighborhood containing K. For

all u € VVIZCS’Z’I(Q) we have

/ . Definition of T' ,
(W 0 T)(w) = sup [T (O sup Ko Py gy i

< sup [[Pullyy o0 o) Lf lwer (@)
feB
< Cpy(u).

It follows from Theorem 3.20 that T : (W, *" (Q),7) — ((Wep ()], 7') is
continuous.

e Step 2: Let ¢ € C°(R2). Let K be a compact set whose interior contains
supp . Since (s, p, ) is a smooth multiplication triple, there exists a constant
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C, > 0 such that for all f € W*P(Q2) we have | f||wsr) < Coll fllwsr).-

We have
(Pg 0 1")(u) = i ullwyr ) = 0™l o (g

= sup ’<90i*u7 é) 5P(0) -7’ (Q |
£€C(Q),lIEllwsp oy <1 Wo ()XW =7 ()

= sup (@i u, &) prayxpo)|
£€C () lEllws.p () <1

= sup (7" u, &) pr()xD(©)|
£eC(Q),lIEllws.p )<L

< sup |(7"w, ) pr)x ()]
NECKp o (V) lInllws.p ) <Ce

Equation 5.2
= sup (s My we @1 xwp @]

NE€CTHy » (V) Inllws.p0)<Cyp

So, if we let B be the ball of radius 2C, centered at 0 in W*(2) (clearly B is

a bounded set in W2P (1)), we get

comp

(pp 0 1")(u) < sup [, frwes, @ xwi, )]
S

= plp(u).
O

Corollary 5.15. Suppose that (s,p,<)) and (—s,p',)) are both smooth multiplication
triples. By the previous Theorem [W,5E (Q)]* can be identified with W.P(Q). Also,

comp

by Remark 3.94, [W 52 (Q)]* is continuously embedded in D'(SY). Therefore WP ()

comp

is continuously embedded in D'(QY). Since W *(Q) is a Frechet space, it follows from
Theorem 3.19 and Remark 3.22 that the preceding statement remains true even if we

consider D'(Q2) equipped with the weak* topology. So,
WrP(Q) — (D'(Q), strong topology) and  W_P(Q) — (D'(Q), weak* topology) .

loc loc

Theorem 5.16. Suppose that (s,p,<2) and (—s,p’, Q) are smooth multiplication triples.
Define the mapping R : W52 () — [WP(Q)]* by

Vi€ Wit (¥ € Wel(Q) (RN = (0 6ul) o ooy

where 1), is any function in C°()) that is equal to 1 on a neighborhood containing the
support of u. Then

(1) [R(u)](f) does not depend on the choice of 1,,.
(2) Forallu € WP (Q), R(u) is indeed an element of [W;>F (Q)]".

comp loc

(3) R:W_sP(Q) — [WP(Q))* is bijective.

comp loc

(4) Suppose WP (Q)]* is equipped with the strong topology. Then the linear map R
is bijective and continuous. In particular, WP (Q)]* and WP (Q) are isomor-

loc comp
phic vector spaces.

Proof. (1) Note that since (s, p, 2) is a smooth multiplication triple, ¥, f is in W, ().
Also by assumption (—s,p’, ) is a smooth multiplication triple. Therefore for

each K € K(Q), W7 (Q) — W, ¥ (Q) and hence Wc;f;g(Q) — Wy (Q).

So the pairing in the definition of [R(u)](f) makes sense. The fact that the output
is independent of the choice of v, follows directly from Theorem 3.58.
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(2) Clearly R(u) is linear. Also R(u) is continuous (so it is an element of [WW/;>7(€2)]%).
The reason is as follows: for all f € W;?(Q2) we have

’[R(u)](f” = |<U, wuf>Wois’p/(Q)><Wg’p(Q)‘ S ||u||Wofs,p’(Q)||'¢uf||WOSvP(Q) .

That is, for all f € W;2P(Q) we have |[R(w)](f)] = |[|[¥uf]|wer ). It follows from

loc

Theorem 3.20 that R(u) : W;2?(©2) — R is continuous.

loc

(3) In order to prove that R is bijective we give an explicit formula for the inverse.
Recall that by Remark 5.11, [IW;7?(€2)]* can also be viewed as a subspace of D’((2).

loc
More precisely, if we let i : D(2) — WP(Q2) be the “identity map” and * :
(WoP(Q)]* — D'(Q) be the adjoint of 4, then i* is a continuous injective linear

map and
Vue [VV;’?(Q)]* VSO S D(Q) <Z*u7 90>D’(Q)><D(Q) = <’LL, §0> [WEP( Q) x WP () - (53)

Now we claim that the image of i* is in W% (Q) and in fact i* is the inverse

comp

of R. Let us first prove that the image of i* is in W52 (€2). £(f) is contin-

comp

uously and densely embedded in W,>?(Q2) (continuity is proved in Theorem 5.8
and density is a direct consequence of the density of C'°(Q2) in W;2”(€2)). There-

loc

fore i* ([W,;7(€2)]*) is indeed a subspace of £'(2) C D'((2) and so elements of

loc

(WP ()]*) can be identified with distributions in D’(€2) that have compact

loc

support. It remains to show that if u € [IW,.?(Q)]*, then i*u € W~ (). To this

loc

end we make use of Corollary 3.71. For all ¢ € D(£2) we have

% Equation 5.3
[(#*u, 90>D’(9)XD(Q)| = |(u, (p>[WS’p(Q)]*xW5’P(Q)|

loc loc

= [{ulwsr), @) [ngp(ﬂ)]*xwg’p(ﬂﬂ

S HMWS”’&)H[WS’P(Q)]* QDHWS’P(Q)-

So, by Corollary 3.71, we can conclude that u € Wy (). In the above we used
the fact that Wi (Q) — W*P(Q2) — W P(Q2) and so for u € [W;7(Q)]* we have
U|W§4’(Q) e [WyP(Q)]*.

Now we prove that i* : [IW7(Q)]* — Wc;f;g(Q) is the inverse of R. For all
u € W52 () and ¢ € D(Q) we have

comp

<% Equation 5.3
((i* o R) (), Q)pyxnie) = (Ru, O wir@pxwiz@)

loc

Definition ofR< ¢ >
= U PuP )y’ (@) x WP ()

Remark 3.69
E (u, Yu) D)< Do)

= (Yuu, 90>D’(Q)><D(Q)
= (U, @) D @)xD(@) -

Therefore, (i* o R)(u) = u for all u € W5 (Q).

comp

Now we prove that R o¢* is also the identity map. Considering Lemma 5.13, since
D() is dense in W2 (Q)]*, it is enough to show that for all v € [IW?(€2)]* and
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f e D), [Roi*(0)(f) =v(f). We have

% Defi 1t1 f R
(Roi )U=f>[Wl‘:f(Q)] XWEP(Q) e (i"v, )y vf) )X WEP(Q)

loc

R k’%(’)
TETT i, e vf>D’(Q )x D(Q)

= (@Dml v, f>D’ Q)xD(Q)
= (i"v, f) pr(@)xD(©)
Equation 5.3

= W Hwgr@rwre)

loc

which shows R o i*(v) = v.
(4) Let’s denote the topology of WP () by 7 and the strong topology on [W,(£2)]*

comp

by 7. Our goal is to show that R : (W_ib'(Q),7) — ([W.F(Q)]*,7') is con-
tinuous. To this end we make use of Theorem 3.20. Recall that 7 is induced
by the family of seminorms {q, s, : Wc;fﬁg(ﬁ) — R}aes where g, sy (u) =
>0 ijuHW_s,p/ () (here we are using the notations introduced in Theorem 3.97).
Also 7' is induced by the family of seminorms {pp : [W.”(2)]* — R} where B
varies over all bounded sets in W) (€2) and pp(u) = sup;cp |u(f)|.

Let B be a bounded subset of W,>”(€2). Since B is bounded, for all ¢ € C°(Q),
the set {||of|lwsr@) : f € B} is bounded in R (see Theorem 3.16). Thus
for all ¢ € C°(12) there exists a positive integer a,, such that for all f € B,
| fllwsr@) < a,. Recall that {1);} in the definition of ¢, _,, denotes a fixed
partition of unity. For each j let ¢, be a function in C2°(€2) which is equal to 1 on

a neighborhood containing the support of ;. For allu € W_> () we have

comp

(ps © R)(u) = (pp © R)( ij < (ppo R)(vju) = sup | (R(w) ()
c
J
Defini 10nofR
t ZSUP| Vi, ¢Jf> 6P(Q)stp(g)|
<> sup ||¢ju||W*SvP'(Q)”(pijWS*p(Q)
J

< Za%ijuHW*s,P’(Q)
J

= Ga,—s,p' (U) )

where a = (ag,, ay,, - - - ). Note that the inequality (ppo R)(3_; ¥ u) <> ;(ppo
R)(1ju) holds because u has compact support and so only finitely many terms in

the sum are nonzero, so we can use the subadditivity of the seminorm and linearity
of R.
It follows from Theorem 3.20 that R : (W52 (Q), 7) — [W,2P(2)]* is continuous.

comp loc
U

Remark 5.17. According to the previous two theorems, we have the following

o Whenu € Wl;j’P'(Q) is viewed as an element of [W2E (Q)|* we have

vf € Wcsoglp(Q) (f) <wfu f> _gp Q)XW ()

where 1)s is any function in C°(2) that is equal to 1 on a neighborhood containing
supp f.
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o When u € W_5P (Q) is viewed as an element of [W;>?(Q)]* we have

comp loc
5P —
Vf E I/‘[/vloc (Q) u(f) - <u7 ¢f>WO*SvT—’I(Q)XWOS»P(Q) )
where 1 is any function in C2°(Q) that is equal to 1 on a neighborhood containing
SUpp u.

Corollary 5.18. Suppose that (s,p,)) and (—s,p’,2) are both smooth multiplication
triples. As a direct consequence of the previous theorems, the bidual of W2P (Q) is

comp
itself. So Wi () is semireflexive. It follows from Theorem 3.25 that W3b (Q) is

reflexive and subsequently its dual W, 7" / (Q) is reflexive.

Now we put everything together to build general embedding theorems for spaces of
locally Sobolev-Slobodeckij functions.

Theorem 5.19 (Embedding Theorem I). Let Q) be a nonempty open set in R". If s, s €
Rand 1 < pi,ps < oo are such that W' (Q) — W*2P2(Q), then W' () —
Wpe2P2(Q).

loc

Proof. We have
u € WpPH(Q) <= Ve CX(Q) ou € WHPL(Q)
= Vel  pueW»P(Q)
< ue W2 (Q).

loc

So, WLPH(Q) C W22P2(Q). Now note that for all p € C°(Q)

loc loc
|Ulg,52.00 = lPullwo2r2(0) = loullwarr @) = |l p -
So, it follows from Theorem 3.20 that the inclusion map from W, "' (2) to W;27*(Q) is

loc
continuous. O

Theorem 5.20 (Embedding Theorem II). Let (2 be a nonempty open set in R™ that has
the interior Lipschitz property. Suppose that s;,$o € Rand 1 < py,py < oo are
such that WP (U) — W=*>P2(U) for all bounded open sets U with Lipschitz con-
tinuous boundary. If s1 < 0, further assume that (—sy, p, Q) is a smooth multiplication
triple. If sy < 0, further assume that (—ss, p, 1) is a smooth multiplication triple. Then
WPLPH(Q) — W22 (Q).

loc loc

Proof. Suppose u € WP () and p € C°(Q2). Let Q' be an open set in €2 that contains

loc

supp ¢ and has Lipschitz continuous boundary. We have

u € WP (Q) = pu € W (Q) TEBY (bu)]g € WHPH(Q)
— (pu)lor € W=P(QY)

Theorem 3.85 ou e W527p2 (Q) .

Since ¢ can be any element of C'2°(f2), we can conclude that if u € WL (Q), then

u € W;2P*(€). In order to prove the continuity of the inclusion map we can proceed as

follows: let ¢ € C'2°(2) and choose 2’ as before.

Theorem 3.85
Ul g,50p0 = lQUllws2wa) = [Joullwsams @)

Theorem 3.85
= oullwsie @y = [loullwsie o)

= |U|%817p1 .
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So, it follows from Theorem 3.20 that the inclusion map from W, 1" (Q) to W, 2*(€2) is

loc
continuous. O

A version of compact embedding for spaces H]. with integer smoothness degree has
been studied in [2]. In what follows we will state the corresponding theorem and its proof

for spaces of locally Sobolev-Slobodeckij functions.

Lemma 5.21. Suppose that (s, p,2) and (—s, p’, Q) are smooth multiplication triples. If
Uy, converges weakly to w in WP (Q) then

Vo e CX(Q) Uy, — pu in WHP(Q).

Proof. The proof is based on the following well-known fact:

Fact 1: Let X be a topological space and suppose that z is a point in X. Let {z,,} be a
sequence in X. If every subsequence of {x,,} contains a subsequence that converges to
x, then z,, — .

Let o € C°(€2). By Fact 1, it is enough to show that every subsequence of yu,, has
a subsequence that converges weakly to pu in W*P(Q). Let ¢u,, be a subsequence of
VU,,. We have

Corollary 3.29
: S,P
Uy — uw  in WP(Q)

{wy} is bounded in W;P(2)

loc

Corollary 3.17 {¢t,} is bounded in W*P(Q)) .

Since W#P(Q)) is reflexive, there exists a subsequence u,,~ that converges weakly to
some F' € W*P(Q). To finish the proof it is enough to show that /' = ¢u. We have
Upr = u I WSP(Q) = upr — u  in (D'(Q), weak™)

loc

= QU — pu  in (D'(Q), weak™) .

In the first line we used Theorem 3.30 and the fact that W’ (Q2) — (D’'(f2), weak™)
(see Corollary 5.15). In the second line we used the fact that multiplication by smooth
functions is a continuous operator on (D’(£2), weak™).

Similarly, since W*P(§2) — (D'(£2), weak™), it follows from Theorem 3.30 that

QU — F in W*P(Q) = pu,r — F in (D'(Q), weak™) .

Consequently, pu = F as elements of D'(Q2) and subsequently as elements of W " ().
U

Theorem 5.22 (Compact Embedding). Let €2 be a nonempty open set in R™ that has the
interior Lipschitz property. Suppose that (s1,p1,2) and (—s1,p}, Q) are smooth multi-
plication triples. If sy < 0, further assume that (—ss, ph, ) is a smooth multiplication
triple. Moreover, suppose that sy, s, p1, and p, are such that W*vP1 (U) is compactly em-
bedded in W*2P2(U) for all bounded open sets U with Lipschitz continuous boundary.

Then every bounded sequence in W, "' (2) has a convergent subsequence in W, 2 "* ().

Proof. The proof makes use of the following well-known fact:

Fact 2: Let X and Y be Banach spaces. Suppose that 7" : X — Y is a linear compact
operator. If the sequence z,,, converges weakly (i.e. with respect to the weak topology)
to x in X, then T'(x,,) converges to T'(x) (with respect to the norm of Y) in Y.

Let w,, be a bounded sequence in W, " (€2). By Theorem 3.33, since W "' (Q) is a

loc

separable reflexive Frechet space, there exists u € W 1P (Q) and a subsequence {u,, }

loc

such that w,,, — win W ** (). We claim that {u,, } converges to u in W;2"*(2), that
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is, for all ¢ € CX(Q), pupy — @uin W 2P (€2). Suppose that ¢ € C°(Q2) and let
K := supp p. By Lemma 5.21 we have

OUpy — QU in W#rPH(Q) .

So, by Theorem 3.35,
OUpy — ou In WHPH(Q) .

Let 2’ be an open bounded set in €2 with Lipschitz continuous boundary such that
K C €. By Theorem 3.85, the restriction map from W' (Q) to Werr1(€Y) is well-
defined and continuous. It follows from Theorem 3.34 that this restriction map is weak-
weak continuous. So Y., — u in W' (Q) implies that pu,,, — @u in WP (Q).
By assumption the identity map from W*:P1(Q)') to W*2P2(€)') is compact, so it follows
from Fact 2 that pu,, — @u in W*>P2(Q') which subsequently implies pu,, — @u in
We2P2(Q)) by Theorem 3.85. O

6. OTHER PROPERTIES

The main results of this section do not appear to be in the literature in the generality
appearing here and they play a fundamental role in the study of the properties of dif-
ferential operators between Sobolev spaces of sections of vector bundles on manifolds
equipped with nonsmooth metric (see [5, 7]).

Theorem 6.1. Let ) be a nonempty open set in R", s > 1 and 1 < p < oo. Then
0
uw e W2P(Q) ifand only if u € L7 () and for all 1 < i < n, a_u e W hP(Q).
x’L

loc loc loc

Proof.

uweWP(Q) <= Ve Cr(Q) pue WP (Q)

Thegemio? v o € Cr(Q) pue () andforall 1 <i<n, 8(?:) c W tr(Q).
Note that 8?;1:) = g;iu + @%. Since %u € W*2(Q) — W*1P(Q), we have

O(pu) -1 Ou 1
— c W P(Q) - WHP(Q).
W e Wt () = o0 € ()

Therefore,

ueWrP(Q) <= VpelCX() ¢ue lP(Q)andforalll <i<n, go% € WP (Q)

() and forall 1 < i <mn, u e W Q).

p
< uclkl prs loc

loc

0

Theorem 6.2. Let €) be a nonempty open set in R", k € Nand 1 < p < oo. Then
u € WEP(Q) ifand only if 0*u € L, (Q) for all o < k.

loc loc

Proof. We prove the claim by induction on k. For k£ = 1 we have

h .
= WLP(Q) Theorem 6.1 = Lp

loc loc

ou
Q 1<i<n—celL? (Q
(@, V1<i<n o € L}, (Q)

loc
Vol <1 0uell (Q).

loc
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Now suppose the claim holds for £ = m. For k = m + 1 we have

h .
we Wrmhe(q) ey, e P

loc loc

ou
V). Vi<i<n-—eW"Q
(), ¥Y1<i<n o= € Wir(Q)

loc

induction hypothesis
<~

uwe L?

loc

= ucll (), Vo< |f|<m+10%ue Ll ()

loc loc

=V <m+10ucll (Q).

loc

(Q),V1<i<nV0<|ao|<m 8“[%} € Lioe()

g

Theorem 6.3. Let s € R, 1 < p < 0o, and o € Nj. Suppose () is a nonempty bounded
open set in R™ with Lipschitz continuous boundary. Then

(1) the linear operator 0 : W:P(R™) — W, 1*"P(R") is well-defined and continu-
ous;

(2) for s < 0, the linear operator 9* : W:P(Q) — W;_1*"P(Q) is well-defined and
continuous,

(3) for s > 0 and |a| < s, the linear operator 0* : W)P(Q2) — I/Vlizla"p(Q) is
well-defined and continuous;

(4) if s > 0, s — ]lj =+ integer (i.e. the fractional part of s is not equal to Ilj ), then

the linear operator 9* : W:P(Q) — W 1*(Q) for |a| > s is well-defined and
continuous.

Proof. This is the counterpart of Theorem 3.86 for locally Sobolev functions. Here we
will prove the first item. The remaining items can be proved using a similar technique.

e Step 1: First we prove by induction on |«/| that if u € WP(R"), then 0%u €

loc

Wil (R7). Let ¢ € C(R™); we need to show that ¢du € Welel?(R). If

loc

|a| = 0, there is nothing to prove. If |a| = 1, there exists 1 < ¢ < n such that
0% = 8‘;. We have

ou  O(pu) Oy

P = 908:61' T ot 8xiu

By assumption, pu € W#P(R"), and so it follows from Theorem 3.86 that the
first term on the right hand side is in W* 'P(R™). Also, since u € W_.P(R"),

loc
the second term on the right hand side is in W*P(R") — W* LP(R™). Hence
©0°u € W LP(R™). Now suppose the claim holds for all || < k. Suppose «
is a multi-index such that || = k + 1. Clearly there exists 1 < i < n such that

9* = 52:(9°) where 3 is a multi-index with |3| = k. By the induction hypothesis,

Py € WPk (R™) and so by the argument that was presented for the base case we

loc

have -2.9%y € W, 1PI7bP (R = pye—lel? gy,

ozt loc loc
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e Step 2: In this step we prove the continuity. Again we use induction on |a|. Let
|a| = 1. Choose i as in the previous step. For every ¢ € C2°(R") we have

lo-2ully, = 1200 _ 22,
Pogi et = 1 gy dri TP
d(pu 0p

> WHsfl,p HaxiuHsfl,p

Sp -

dp
= leullsp + ||@u

On the right hand side we have sum of two of the seminorms that define the topology
of W>P(R™). It follows from item 2. of Theorem 3.20 that 0* : W) ”(R") —

W~ P(R™) is continuous. Now suppose the claim holds for all |a| < k. Suppose
« is a multi-index such that |« = k + 1. Clearly there exists 1 < i < n such that

0~ = 2.(9%) where 3 is a multi-index with |3| = k. We have

Ozt
0
H‘pﬁauns—hﬂ,p = ngaxi (8ﬁu)”s—|a\,p
argument of the base case a(p
= ||g085u||5,‘a|+17p + H Ozt aBuHS*WHLP

dp
= 1edPulls— 5, + H@aﬂwls—\m,p

induction hypothesis; Theorem 3.20 (990
< max((lprullop, s lowllon) + 15507l 51
induction hypothesis; Theorem 3.20
= max([[erullsp, - s llorullsp) + max(llgrullsp, - [ewls,p)
2 max((|erullsp, - lerullsp, [Yrullsp, - 1Prullsp)
for some @1, -+, o and ¥, - -+ 1y in C°(R™). It follows from item 2. of Theorem

3.20 that 8 : W2P(R™) — W, */"(R") is continuous.

loc loc

U

Next we want to establish a counterpart of Theorem 3.76 for locally Sobolev-Slobodeckij
spaces. To this end, first we state and prove a simple lemma.

Lemma 6.4. Let € be a nonempty open subset of R". Suppose u : Q) — R and u : () —
R are such that uw = u a.e. If u is continuous then suppu C suppu.

Proof by Contradiction. Suppose x € suppi \suppu. Since = belongs to the complement
of supp u, which is an open set, there exists ¢ > 0 such that B.(z) C 2 and B.(z) N
suppu = (). Since x € suppu, there exists y € Be(x) such that a(y) # 0. @ is
continuous, therefore there exists 0 < 0 < § such that @(z) # 0 for all z € Bs(y) C
Be(z). Butu = 0 a.e. on B.(z). This contradicts the fact that u = @ a.e. O

Theorem 6.5. Let ) be a nonempty bounded open set in R™ with Lipschitz continuous
boundary or Q2 = R™. Suppose uw € W,J?(Q) where sp > n. Then u has a continuous
version.

Proof. Let {Vj}jen, and {1);};en, be as in Theorem 3.43. Note that u = }_; ¢;u. For
all j, Y;u € W#P(Q) so by Theorem 3.76 there exists @; € C(§2) such that Y,u =
on Q\ A; where A; is a set of measure zero. Also by Lemma 6.4 suppii; C suppi);.
Therefore for any = € 2 only finitely many of @;(x)’s are nonzero. So we may define
i:Q— Rbya =) Clearly @ = uon {2\ A where A = UA; (so Ais a set of
measure zero). Consequently & = u a.e. It remains to show that @ : 2 — R is indeed
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continuous. To this end suppose a,, — a in €). We need to prove that @(a,,) — u(a).

Let € > 0 be such that B.(a) C 2. So B.(a) intersects only finitely many of supp;’s;
let’s denote them by ,,,--- ,u,,. Also since a,, — a there exists M such that for all

m > M, a,, € B:(a). Hence
u(a) = Zﬂj(a) =y, (a) + -+ Uy (a),

Vm>M  d(ay) = G (am) + -+ Uy (am) -

Recall that %, + - - - + 1, 1s a finite sum of continuous functions and so it is continuous.
Thus

T iay,) = 1 (@, + -+ ) () = i, (0) + -+ i () = )

g

Remark 6.6. In the above proof the only place we used the assumption of ) being Lip-
schitz was in applying Theorem 3.76. We can replace this assumption by the weaker as-
sumption that ) has the interior Lipschitz property. Then, since supp (1ju) is compact,
there exists Q) with Lipschitz boundary that contains supp (;u). Then by Theorem 3.85,
Yju € WP(QY) and so it has a continuous version u; € C(Q). Since 1ju = 0, almost
everywhere on Q' and 1 ;u = 0 outside of the compact set supp 1;, we can conclude that
extdy ot is in C(Q) and it is almost everywhere equal to {ju. We set Ti; = extoy oii;.
The rest of the proof will be exactly the same as before.

Theorem 6.7. Let 2 = R"™ or €2 be a bounded open set in R™ with Lipschitz continuous
boundary. Suppose s1, S2,5 € Rand 1 < py,ps, p < oo are such that

WEPH(Q) x W92 (Q) < WP(Q) .

Then
(1) Wik () x Wiz (©) = WiZ(9),

(2) Forall K € IC(?CZ), SUPL(Q) x W2P(Q) < WSP(Q). In particular, if f €

lo

WoPH(QY), then the mapping u — fu is a well-defined continuous linear map

from W32P%(Q) to W*P(Q).

Remark 6.8. In the above theorem, since the locally Sobolev spaces on ) are metrizable,
the continuity of the mapping
WPLPH(Q) x W22 (Q) — W2IP(Q),  (u,v) — uw

loc loc loc

can be interpreted as follows: if u; — w in W\P' () and v; — v in W,2P*(QQ), then
uv; — uv in WP(Q). Also since W2 () is considered as a normed subspace of

W#2P2(Q)), we have a similar interpretation of the continuity of the mapping in item 2.

Proof.
(1) Suppose u € WP (Q) and v € W 2P*(2). First we show that uv is in W7 (Q).

loc loc loc
Clearly the set A = {p? : p € C°(Q)} is an admissible family of test functions. So
in order to show that uv € W (), it is enough to show that for all ¢ € C°(Q),

©*uv = (pu)(pv) is in W*P(Q). This is clearly true because pu € WP (Q), pv €
We2:P2(Q)), and by assumption

WEPH(Q) x W2 (Q) < WP(Q)
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In order to prove the continuity of the map (u, v) — uv, suppose u; — u in W'l 1 ()

loc

and v; — v in W2P*(2). We need to show that w;v; — wv in W P(€2). That is, we

loc

need to prove that for all p € C2°(2)
©*uv; — Q*uv  in WHP(Q).
We have
w; — uin WhPH(Q) = pu; — puin WoHPLH(Q)

loc

v; = vin W22 (Q) = @v; — v in WP (Q) .

loc

By assumption, W*1P1 () x W*P2(Q) — W*P(2), so
(pus)(pvi) = (pu)(pv)  in W(Q).

(2) Suppose u € WL () and v € W;2P*(Q2). First we show that uo is in W*P(§2). To
this end, let ¢ € C2°(€2) be such that ¢ = 1 on a neighborhood containing K. We
have

= = $p Q .
uwo =u(pv) = (pu) v, €WPQ)
EWs1:,1(Q) eWs2:r2(Q)
Now we prove the continuity. Suppose u; — win W7 (Q2) and v; — v in W;27*(Q).
Let ¢ be as before. We have

w —u inWPH(Q) = pu; — pu in WHPLH(Q)

loc

v; — v in WP2(Q) .

This together with the assumption that W*1P1(Q) x W*2P2(Q) — W*P(Q) implies
pu;v; — puv in W*P(Q). Since pv = v and pv; = v;, we conclude that u;v; — uv
in W*P(Q).

4

Remark 6.9. In the above theorem the assumption that € is Lipschitz or R" was used
only to ensure that we can apply Theorem 5.3 and to make sure that the locally Sobolev
spaces involved are metrizable. For item (1) we can use the weaker assumption that
(s1,p1,92), (s2,p2,9), and (s,p, Q) are interior smooth multiplication triples. For item
(2) we just need to assume that (s1,p1, §2) is an interior smooth multiplication triple.

Corollary 6.10. Ler Q2 be the same as the previous theorem. If sp > n, then W;? () is
closed under multiplication. Moreover, if

(fl)m - fl in M/li’f(Q)a e >(fl>m — fl in I/Vlif(Q)a
then

(fl)m(fl)m — fl"'fl in T/VZSO’S(Q>

The next theorem plays a key role in the study of differential operators on manifolds
equipped with nonsmooth metrics (see [5]).

Theorem 6.11. Let (2 = R"™ or let () be a nonempty bounded open set in R™ with Lip-

schitz continuous boundary. Let s € R and p € (1,00) be such that sp > n. Let

B : Q — GL(k,R). Suppose forall x € Qand 1 < i,j <k, B;;(x) € W (2). Then
(1) det B € WP ().

(2) Moreover if for each m € N B,, : Q — GL(k,R) and for all 1 < i,j < k
(Bum)ij = Bij in Wi (Q), then det By, — det B in W2 (9).

loc
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Proof.

(1) By Leibniz formula we have

det B(r) = Z Sgn(U)Ba(l),l “+ Bo(r).k -

ogESy

By assumption, for all 1 < i < k, By, is in W2?(€2). Since sp > n, it follows from
Corollary 6.10 that det B € W, *(Q).

loc

(2) Since (B,);; — Bij in W;2?(Q), it again follows from Corollary 6.10 that for all
ocesS,,

(Bm)o1 - (Bm)otwyk = Bo -+ Bomx  in Wi ()
Thus det B,,, — det B in W;*(Q).

loc

i

Theorem 6.12. Let 2 = R"™ or let Q) be a nonempty bounded open set in R™ with Lips-
chitz continuous boundary. Let s > 1 and p € (1,00) be such that sp > n.

(1) Suppose that v € W P(Q)) and that u(x) € I for all x € Q where I is some

loc

interval in R. If F : I — R is a smooth function, then F'(u) € W2(Q).

loc
(2) Suppose that u,,, — win W,>?(Q) and that for allm > 1and x € , u,(x), u(z) €
I where I is some open interval in R. If ' : I — R is a smooth function, then
F(uy,) — F(u) in W2P(Q).
(3) If F : R — R is a smooth function, then the map taking u to F'(u) is continuous
from WP(Q2) to WP ().

loc

Proof. The proof of part (1) generalizes the argument given in [18]. Let k = |s]. First
we show that F'(u) € W,2P(2). To this end we fix a multi-index || = m < k and we
show that 9°(F'(u)) € L} (Q) (see Theorem 6.2).

It follows from the chain rule (and induction) that 0*(F'(u)) is a sum of the terms of the

form
where | € Nand )_!_, |5;] = m. Itis a consequence of Theorem 6.7 that if 51,5, >
s3 > 0and s;+s2 —s3 > 2, then Wi, P(Q) x WP (Q) — WP (Q). As a consequence

loc loc loc

W8—|/31|7P<Q) ” WS_|52|’p(Q) SN WS—\51\—|52|7P<Q)

loc loc loc

WS*|51|*|52|7P(Q) x WS*|53|7P(Q) SN M/ZS*|51|*|52|*|53|7P(Q)

loc loc oc

W8*|ﬁ1|*"'*|ﬁr71|7P(Q) 5 W37|5T|7P(Q) SN W37|61|7"'7|6r|:p(9) _ stmm(Q).

loc loc loc loc

Considering this and the fact that 9% u € V[/ls—lﬁ il (), we have

oc

Oy 9Pru € WHP(Q)

loc

forall 0 < ¢t < s — m. In particular, 9% u - - - 9%u € T/Vlgf(Q) =LY
is smooth and u is continuous, F)(u) € L5< (). Therefore,

FO)oPru---0%u e LP (Q).

loc

(). Also, since F

So, F(u) € W}P(Q) where k = |s]. Now, for noninteger s, we use a bootstrapping

loc

argument to show that F'(u) in fact belongs to W, 7(Q).
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F" is smooth, therefore F'(u) € WP(Q). Also 2u ¢ W ~P(Q) (note that s — 1 > 0).
By Theorem 6.7 we have

WEP(Q) x WEP(Q) — WEP(Q)

loc loc

provided that
k>t—1>0, s—1>t-1>0, k+(s—1)—(t—1)>—.
p
Therefore, 2 (F(u)) = F'(u)2% € W, 'P(Q) forall 1 <t < ssuch thatt < k +

(s — ). Consequently F'(u) € WEP(Q) forall 1 <t < ssuchthatt < k + (s — )
(see Theorem 6.1). Now we can repeat this argument by starting with “F” is smooth,

therefore F’(u) € W,2P(Q) forall 1 <t < ssuchthatt < k + (s — +)”. This results in

loc

F(u) € WiP(Q) forall 1 <t < ssuchthatt < k + 2(s — %) Repeating this a finite

number of times shows that F'(u) € W>7(Q).

loc

Our next goal is to prove items 2 and 3. First we note that if 0 € / then WLOG we may
assume that F'(0) = 0. Indeed, the constant function F'(0) is an element of W,;>?(2). So,

Flup) = F(u) in WP(Q) <= F(un) = F(u) in WSP(Q),

loc loc

where F(t) = F(t) — F(0). Thus WLOG we may assume that F'(0) = 0.

Let {K;}jeny {Vj}jeny» and {9} }jen, be as in Theorem 3.43. Clearly {¢;} is an admis-
sible family of functions. Therefore in order to show that F'(u,,) — F(u) in W P(Q) it
is enough to prove that

VreN Up(F(tup) — F(u)) = 0 in W*P(Q2) asm — 0.

Let ., -+ ,%,, be those admissible test functions whose support intersects the support
of v,.. So,

Vx € supp ¥, Z%‘“:@bnu""'"i“%ku-
j€Ng
Consequently,
Since u,,, — win WP(Q), forall 1 < i < k we have
Yy, Uy, — Yy, in WP(Q)),

and so,

Y U+ F+ Y Uy = YU+ -+ 1 in W*P(Q).
Since W*P(Q) — L>(Q2), we have

Y U+ UV Uy = YU+ -+ u in L>(Q) . (6.1)

Consequently, for the continuous representatives of ¢, ty, +- - -+, Uy, and ¥, u+- - -+
1, v we have uniform convergence. From this point, we work with these continuous
versions. The continuous function v, u + --- + 9, u attains its max and min on the
compact set suppy, which we denote by A,,., and A,,;,, respectively. Note that

Vo € suppt,  (Yru oo+ nu)(@) = ulw) € 1.

S0, Apaz and A, are in I (that is [Ain, Amez] € I). Let € > 0 be such that [A,,;, —
2¢, Apnax + 2€] C 1. By (6.1) there exists M such that

VYm > M, Vx € suppi), (Ve U+ -+ Y U) (T) € [Amin — €, Apaz + €] C 1.
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Let £ € C°(R) be such that £ = 1 on [A,;, — €, A + €] and & = 0 outside of
[Apmin — 2€, Appar + 2€] C 1. Define F': R — R by

o JewF@) ifter
Fw_{ 0 iftgl

A

Clearly, F : R — R is a smooth function and F'(0) = 0. Moreover, F = F on
[Apin — €, Apaz + €. Also, for all z € Q and m > M we have

wr(F(um) - F(u)) = 1/17«F(1/1r1um + -+ wrkum) - ?/JTF(Q/JHU + -+ wrku)

= Y F(ryttm + -+ ) — Or (Y u+ - + P u)
Indeed, if = & supp?),, then both sides are equal to zero. If x € supp),., then

(¢T1u +- 4+ %ku) (37) € [Amzna Amaz] )
<¢r1um +-+ ¢rkum)(x) S [Amm — €, Amaz + 6] )

and so,

F((wﬁu +t wrk“’)('r)) = F((wﬁu +t wrk“’)('r)) )
F((Yrtm + -+ O up) (7)) = F<<¢v1um e ) (7))

Fis a smooth function and its value at 0 is 0. Also, by assumption sp > n. Therefore,
the mapping v — ¢, F'(v) from W*?(§2) to W*P(2) is continuous. Hence

A A

wrF<wr1um +e wrkum) — %F(%U + o+ %ku) in W&p(Q) .

That is,
Vr(F(um) — F(u)) =0 in W5(Q).

So, we proved item 2. Finally we note that W,”(€2) is metrizable. So continuity of

the mapping u — F'(u) is equivalent to sequential continuity which was proved in item
2. 0

7. CONCLUSION

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential opera-
tors in nonsmooth setting. The study of certain differential operators between Sobolev
spaces of sections of vector bundles on compact manifolds equipped with rough metric
is closely related to the study of locally Sobolev functions on domains in the Euclidean
space. In the present paper, we provided a self-contained rigorous study of certain fun-
damental properties of locally Sobolev-Slobodeckij spaces. In particular, by introduc-
ing notions such as “smooth multiplication triple” and “interior smooth multiplication
triple”, we rigorously studied completeness, separability, nature of the dual space, gen-
eral embedding results, continuity of differentiation, and invariance under composition
by smooth functions for locally Sobolev-Slobodeckij spaces.
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