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Abstract. Using new methods for the parallel solution of elliptic partial differential equations, the

teraflops computing power of massively parallel computers can be leveraged to perform electrostatic

calculations on large biological systems. This paper describes the adaptive multilevel finite element

solution of the Poisson-Boltzmann equation for a microtubule on the NPACI IBM Blue Horizon

supercomputer. The microtubule system is 40 nm in length and 24 nm in diameter, consists

of roughly 600,000 atoms, and has a net charge of -1800 e. Poisson-Boltzmann calculations are

performed for several processor configurations and the algorithm shows excellent parallel scaling.

1. Introduction

Electrostatics play a vital role in determining the specificity, rate, and strength of interactions in a

variety of biomolecular processes [1, 2]. The accurate modeling of the contributions of solvent, coun-

terions, and protein charges to the electrostatic field can often be very difficult and typically acts

as the rate-limiting step for a variety of numerical simulations. Rather than explicitly treating the

solvent and counterion effects in atomic detail, continuum methods such as the Poisson-Boltzmann

equation (PBE) are often used to represent the effects of solvation on the electrostatic properties

of the biomolecule. Despite this simplification, current methods for the calculation of electrostatic

properties from the PBE still require significant computational effort and typically do not scale

well with increasing problem size [3].

This paper describes the investigation of a large biomolecular system using the APBS (Adaptive

Poisson-Boltzmann Solver) software [4]. APBS is a new Poisson-Boltzmann solver which uses

adaptive multilevel finite element techniques [3, 5, 6] to efficiently treat the numerically difficult
1
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aspects of the PBE. APBS is built on the MC (Manifold Code) adaptive multilevel finite element

package [3, 5], which is used for most of the numerically intensive aspects of the solution of the

PBE.

Section 2 provides some of the background of the Poisson-Boltzmann equation and its relation

to biomolecules. A brief overview of adaptive multilevel finite element techniques and their paral-

lelization is presented in Section 3. Discussion of the implementation of these methods in APBS

and MC is presented in Section 4 and the results of the solution of the PBE for the electrostatic

potential around a microtubule structure are given in Section 5. Finally, conclusions and future

work are discussed in Section 6.

2. The Poisson-Boltzmann equation

The Poisson-Boltzmann equation is a second-order elliptic partial differential equation which

describes the electrostatic potential around a fixed charge distribution in an ionic solution. For more

thorough reviews of this equation and its role in biological electrostatics calculations, see Davis and

McCammon [1] and Sharp and Honig [7]. There are three components of the solvated biomolecular

system that we must consider to accurately model the electrostatic potential: the solute molecule,

the solvent, and the solvated ions. The solute molecule is modeled as a dielectric continuum of low

polarizability embedded in a dielectric medium of high polarizability which represents the solvent.

Reflecting this difference in polarizabilities, the interior of the molecule is typically assigned a

relative permittivity (or dielectric constant) between 2 and 20, while the solvent is given a much

larger dielectric constant, generally near 80. In most cases, the atomic charge distribution inside the

biomolecule is represented by a collection of delta functions. Finally, the solvated ions surrounding

the biomolecule are also modeled as a continuum, distributed according to a Boltzmann distribution.

Combining Poisson’s equation, used to describe the electrostatic behavior of the point charges in

the dielectric continuum, with the Boltzmann charge distribution for the solvated ions gives the
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nonlinear Poisson-Boltzmann equation (NPBE),

−∇ · (ε(x)∇u(x)) + κ2(x) sinh (u(x)) = f(x), u(∞) = 0,(2.1)

or, after linearization of the hyperbolic sine term, the linearized Poisson-Boltzmann equation

(LPBE)

−∇ · (ε(x)∇u(x)) + κ2(x)u(x) = f(x), u(∞) = 0,(2.2)

where the source term is a sum of delta functions,

f(x) =
4πe2

c

kT

Nm∑
i=1

ziδ(x− xi).(2.3)

In Eqs. 2.1 and 2.2, the variable u(x) = ecφ(x)/kT represents a dimensionless electrostatic potential,

ε(x) is the dielectric coefficient, κ2 is the Debye-Hückel screening parameter, which describes ion

concentration and accessibility, kT is the thermal energy, ec is the electron charge, Nm is the

number of protein charges, zi is the partial charge of each protein atom, and xi is the position of

each atom. Figure 1 shows a schematic of a solute (here taken to be a protein), ions, and solvent

system modeled by the Poisson-Boltzmann equation. The dielectric coefficient ε changes by nearly

two orders of magnitude across the “interior” protein-solvent boundary (solid line in Figure 1) and

the screening parameter jumps from zero to a positive value across the “exterior” boundary (dashed

line in Figure 1).

The accurate pointwise evaluation of the dielectric and screening parameter coefficients for a

typical biomolecule is a nontrivial task. APBS evaluates the dielectric coefficient ε by using the

Lee and Richards [8] definition of solvent accessibility. In short, the algorithm considers the volume

ΩSA defined by the union of the (infinite) set of spheres with centers at all y ∈ Ω such that

‖y − xi‖ > ri + σ for all atoms i. Given some point y, the coefficient ε(y) is assigned the solvent

dielectric constant if it is inside ΩSA, otherwise it is assigned the solute dielectric value. This

definition of ΩSA is shown in more detail in Figure 2 for a simplistic model of a protein molecule
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(white circles). The molecular surface (black line) is defined by the accessibility of the solvent

probe molecules (hashed circles); points outside this surface are assigned the solvent dielectric

value (typically around 80), while points inside are assigned the solute dielectric (generally 2–20).

The assignment of the screening parameter values κ2 is much simpler; points outside a distance

ri + σion from all atoms i are assigned the bulk screening parameter value, while points closer than

ri + σion to any atom i are assigned a value of 0.

As described here, the PBE equation contains three sources of discontinuities. Both the dielec-

tric coefficient ε and the screening parameter κ2 have jump discontinuities (analogous to Heaviside

step distribution functions) near the protein-solvent interface. Additionally, the source term f(x),

which models the point charges at the protein atoms, is represented by a sum of delta functions.

While these jump and delta function discontinuities of coefficients in the PBE can pose serious nu-

merical difficulties for traditional uniform or nonadaptive mesh partial differential equation solvers,

these features can be efficiently described using the adaptive finite element techniques described in

Section 3 [3–5].

3. Parallel multilevel adaptive finite element methods

This section briefly describes the theory behind the parallel multilevel adaptive finite element

scheme used to solve the PBE for the electrostatic potential around biomolecules. Section 3.1

describes basic finite element techniques and Section 3.2 discusses the incorporation of adaptivity

into these methods. A very short description of multilevel techniques is presented in Section 3.3

and the theory behind parallelization of these methods is described in Section 3.4.

3.1. Finite element discretization. In order to solve the PBE on a finite computational plat-

form, we need to truncate and discretize the infinitely large problem domain implicit in Eqs. 2.1

and 2.2. Specifically, we solve the PBE equation inside a polygonal domain Ω ⊂ R3 subject to some
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Dirichlet boundary condition

u(x) = g on ∂Ω,

where ∂Ω denotes the boundary of Ω. To discretize the problem, we subdivide Ω by tessellation with

tetrahedral simplices. The resulting tetrahedral mesh forms the structure over which we will define

Vh = span{vi}, as the space spanned by the piecewise-polynomial basis functions {vi}. APBS

currently uses the piecewise-linear finite element support provided by MC [5]. A representative

basis function is depicted (on a two-dimensional triangular mesh) in Figure 3. The solution to the

PBE is approximated by a function uh ∈ uh + Vh constructed by a linear combination of the basis

functions

uh(x) =
N∑
i

αivi(x).(3.1)

The trace function uh is not explicitly constructed, but is assumed to satisfy the Dirichlet boundary

conditions.

In order for the construction of uh from piecewise-linear functions to be successful, we must

restate the PBE equations in their “weak” form. Clearly, the second derivative (as required by

Eqs. 2.1 and 2.2) of a piecewise-linear function is not well defined. This difficulty can be overcome

by integrating the PBE with a test function ṽ

∫
Ω

(
−∇ · ε∇u+ κ2 sinh(u)

)
ṽdx =

∫
Ω
fṽdx,(3.2)

and applying integration by parts to the second-order differential term to give

∫
Ω

(
ε∇u · ∇ṽ + κ2 sinh(u)ṽ

)
dx =

∫
Ω
fṽdx.(3.3)

Equation 3.3 can also be written as

〈F (u), ṽ〉L2(Ω) =
∫

Ω

(
ε∇u · ∇ṽ + κ2 sinh(u)ṽ − fṽ

)
dx = 0,(3.4)
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where 〈·, ·〉L2(Ω) denotes the L2(Ω) inner product and F (u) is the weak form of the residual. This

allows us to restate the PBE in weak form:

Find uh ∈ u+ Vh such that 〈F (uh), vi〉 = 0 for all vi ∈ Vh.(3.5)

This form of the PBE requires only one order of differentiation under an integral (with integration

in the Lesbegue sense) and is therefore a “weaker” formulation of the PBE than the original second-

order differential equations (2.1 and 2.2). Although the above discussion used the NPBE, similar

manipulations can be performed for the LPBE to produce an expression for the residual F (u) which

is linear in u.

Given uh as a linear combination of the finite element basis functions and the above weak form

of the PBE (3.5), we have a discretization of the partial differential equation suitable for numerical

solution. In the case in which F (u) is linear (LPBE), Eq. 3.5 explicitly defines a sparse matrix

equation that can be solved using standard linear algebra methods or the multilevel methods

described in Section 3.3. However, when F (u) is nonlinear (NPBE), we employ a damped inexact

Newton iteration as implemented by MC [5] to find uh [3, 9–13]. In brief, this method iteratively

solves the linear matrix equations to determine improvements w to the solution. When these

improvements become sufficiently small, the Newton iteration stops and the resulting uh is used

as the solution. The linear systems used to find the solution improvements are defined by the

functional (Gateaux) derivatives of the nonlinear residual,

〈DF (u)w, v〉 =
∫

Ω

(
ε∇w · ∇v + κ2 cosh(u)wv − fv

)
dx,(3.6)

and the resulting linear equations for the improvements w are as follows:

Find w such that 〈DF (u)w, vi〉 = −〈F (u), vi〉+ r for all vi ∈ Vh,(3.7)

where r is a residual that allows for enhanced efficiency by accounting for the possibly inexact

solution of Eq. 3.7. The updated solution is then obtained by addition of the improvement times
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a damping factor λ that stabilizes the algorithm

u← u+ λw.(3.8)

For more detailed discussion of the finite element method applied to the PBE, see Holst, Baker,

and Wang [3] and Baker, Holst, and Wang [4]. The texts by Axelsson and Barker [14] and Braess

[15] are good sources for more general reviews of the finite element method.

3.2. Error estimation and mesh refinement. While the methods of the previous section can be

used to determine the solution on a given finite element mesh, they do not provide information about

the accuracy with which the numerical solution uh represents the true solution or indicate whether

it can be improved. The answers to these two questions lie within the domain of error estimation

and adaptive refinement techniques. Again, we present only a cursory overview of this topic, briefly

discussing the a posteriori error estimation and adaptive refinement techniques that are applied to

the PBE in the present work. For more detailed information about the implementation of these

methods in the solution of the PBE, see Holst, Baker, and Wang [3]. A posteriori error estimation

has been the subject of several publications [5, 16–20] which provide much more information about

the theory and implementation of these methods.

Adaptive refinement methods typically employ error-estimation techniques to approximate the

distance between the numerical and true solution ‖u− uh‖X (using some norm ‖·‖X) and determine

the regions of the problem domain where the error is above a certain tolerance. The mesh is then

refined in these regions of excess error and the PBE equation is re-solved to provide a more accurate

finite element representation of the solution. The error-based refinement of the mesh can also be

interpreted as the local enrichment of the finite element basis set in regions where the true solution

is not adequately represented. In general, an a posteriori error estimator is used to determine the

error in each simplex. Simpler a priori or geometry-based error estimators can also be used, but

the reduction of error in the solution with each level of refinement is typically less efficient.
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APBS employs the residual-based a posteriori error estimation framework provided by MC which

generates a per-simplex error estimate ηs in simplex s by using the residual defined by the strong

form (Eqs. 2.1 and 2.2) of the PBE [3, 19],

η2
s = h2

s

∥∥−∇ · ε∇uh + κ2 sinh(uh)− f
∥∥2

L2(s)
+

1
2

∑
f∈s

hf ‖bnf · ε∇uhcf‖2L2(f) ,(3.9)

where hs denotes the size of the simplex, f ∈ s denotes a face of simplex s, hf is the size of the

face f , bṽcf denotes the jump across the face f of some function ṽ, nf · ε∇uh is the component of

ε∇uh normal to simplex face f , and the L2 norm over a simplex or face is given by

‖v‖2L2(s or f) =
∫
s or f

|v|2 dx.(3.10)

Since each error estimate is defined over a simplex or simplex face, the solution is linear over the

entire domain of the norm (3.9) and the contribution from the second-order term −∇·ε∇uh is zero.

In general, the second (jump) term of the error estimator typically dominates ηs; therefore, the

first term is not implemented in APBS. An estimate of the global error over the problem domain

is obtained as the root mean square of the per-simplex estimates

ηglobal =
1
N

(∑
i

η2
s

)1/2

.(3.11)

Although this ηglobal provides only an upper bound (within a constant) of the true error in the

solution, it offers a practical measure for the reduction of error during solution of the PBE.

Given a per-simplex error estimate, those simplices with errors above a certain tolerance ηtol are

marked for subdivision. APBS employs the longest edge simplex subdivision algorithm in MC [5] for

adaptivity. This subdivision method, along with other examples, is shown in Figure 4. Subdivision

of only the marked simplices typically results in a nonconforming mesh, i.e., a mesh in which the

faces of some simplices intersect the vertices of other simplices. This situation is depicted in Figure 4

where, without the subdivision depicted by the dotted line in the left-hand figure, the triangular

mesh would be non-conforming. Since non-conforming finite element meshes pose a variety of
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numerical difficulties, adaptive mesh refinement is carried out in an iterative fashion, via a “queue

swapping” algorithm [3, 5]. This algorithm, as implemented by the MC libraries [5], creates two

empty queues (Q1, Q2) and fills one (Q1) with the list of simplices marked for refinement by the

error estimator. The simplices in Q1 are refined and the resulting non-conforming simplices (if

any) are placed in Q2. After all the simplices in Q1 have been refined, the roles of the queues are

swapped (Q1 = Q2, Q2 = ∅) and the algorithm is repeated. This loop continues until the entire

mesh is conforming, whereupon both queues are empty.

3.3. Multilevel solution. The time required to solve the linear algebra equations, either within

the Newton steps for NPBE or explicitly defined by the LPBE, generally dominates the solution of

the PBE. Therefore, it is important to make these steps as efficient as possible. Multilevel methods

are well-established techniques for efficiently solving such equations through algebraic hierarchies

[9, 21–26]. Such methods have been shown to give optimal (for uniformly refined meshes [27]) or

nearly optimal (for adaptively refined meshes [6]) time and memory complexity for the solution of

the linear matrix equations.

APBS employs the multilevel finite element solver technology in MC [5] to form an algebraic

hierarchy of problems based on the refinement of the mesh [3, 5, 28]. Specifically, a prolongation

operator Pk is constructed which relates basis functions on refinement levels k and k+1 of the finite

element mesh. Given operator Ak on level k of the mesh, the prolongation operator Pk can be used

to reconstruct the problems Ak+1 from coarser levels of the mesh by applying Pk to the current

problem Ak via Ak+1 = P Tk AkPk. Using this prolongation-based reconstruction, the problem can

then be solved in a multilevel fashion, employing a direct solver for the problem on the coarsest

level.

3.4. Parallel finite element methods. Using the parallel refinement techniques of Bank and

Holst [29], the methods described in the previous sections can be performed in a parallel fashion.

In the parallel implementation, each of the P = 2p processors is given the same initial mesh. Using
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the techniques described in Section 3.2, each processor solves the problem on this coarse mesh

and generates an a posteriori error estimate for every simplex in the mesh. This error estimate

is then used to weight a spectral bisection method which partitions the mesh into P pieces of

approximately equal error. Finally, each of these mesh partitions Mi is assigned to a different

processor i. After partitioning, the usual solution and adaptive refinement methods of the previous

sections are performed with only a small modification: When the per-simplex error estimates are

calculated on processor i, only simplices within the local partition Mi and a boundary region of

size σ surrounding Mi are given nonzero error estimates. The simplices with errors greater than

a specified tolerance are marked for refinement, and these marked simplices (which are located

only in Mi and the overlap) are subdivided. The queue-swapping algorithm then proceeds as usual

with simplices from any partition being refined to ensure fully conforming mesh. The initial error-

based partitioning step acts as the load-balancing mechanism for this algorithm; the number of

simplices in an error-based adaptive refinement is related to the total error in in the mesh region

it is refining. By partitioning the mesh such that all processors have roughly the same amount of

error, this algorithm provides a reasonable amount of a priori load balancing.

The overlap region surrounding each mesh partition is implemented by APBS in a simple fashion.

Let xi be the center of geometry of partitionMi, and letRi be the radius of the sphere circumscribing

Mi. The parameter σ ≥ 1 is the desired relative size of the overlap region with respect to Ri.

APBS then enforces parallel refinement with partition overlap by only allowing error-based simplex

marking (on processor i) of simplices within a distance σRi of the center xi of partition Mi. A

two-dimensional example of this method applied to a four processor system is shown in Figure 5.

In this example, all simplices within σ = 1.2 times the radius of the green partition were given the

same error (which was chosen to be greater than the error-based marking tolerance). The resulting

refinement over the green processor’s partition and the overlap region is evident, as is the additional

refinement outside the radius σRi required for conformity.
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As noted by Bank and Holst [29], this error-decoupling parallel algorithm essentially trades

computation for communication. While the algorithm requires little or no communication between

processors, it compensates by duplicating the computational effort spent in some portions of the

solution algorithm. Specifically, partitioning steps of the mesh and computations on the the solution

in overlap regions are duplicated across processors. Although the overlap region can be neglected

for some problems [29], a nonzero overlap region proportional to the size of Mi must generally be

implemented to satisfy the requirements underlying the decoupled error estimates [29, 30].

4. Implementation

The APBS program provides parallel and sequential implementations of the multilevel adaptive

finite element techniques described in Section 3 to solve the linear and nonlinear versions of the PBE

around biomolecules in ionic solutions. APBS makes extensive use of MC [5] for a variety of tasks,

including the implementation of finite element mesh structures, refinement algorithms and data

structures, assembly and solution of the linear and nonlinear equations, spectral bisection mesh

partitioning, and residual-based error estimation. Because of the underlying hardware abstraction

design of MC, the APBS code is designed for portability and can be used, with no modifications,

on both single-processor workstations and massively parallel supercomputers. Parallel communi-

cation is currently provided via vendor implementations of the MPI 1.1 standard, however, future

plans include support for OpenMP protocols to better leverage the capabilities of shared memory

platforms. APBS is currently in beta testing phase, but is scheduled for release in open-source form

pending the addition of OpenMP support and other features. Information about obtaining MC [5]

and related tools is available at http://www.scicomp.ucsd.edu/∼mholst.

The sequence of operations followed by APBS during a typical solution of the PBE is outlined

in Algorithm 4.1.

Algorithm 4.1. APBS program execution
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1. Initialize P processors; all subsequent steps are carried out by each processor.

2. Read in the very coarse initial mesh (pre-mesh) and molecule systems.

3. For each molecule (or molecular system):

(a) Assign atomic, dielectric, and ionic strength data.

(b) Map atomic charges to mesh simplices.

(c) Construct nonlinear and/or linear algebra structures for each molecular system.

End for.

4. Uniformly refine the mesh to contain no less than cP simplices (where c is usually 10-100).

5. Solve the PBE and estimate the error for a reference molecular system.

6. Partition the mesh into P pieces and assign each piece to a processor.

7. While the size of simplices on the molecule-solvent boundaries is too big:

(a) Mark those simplices in the local partition and overlap region (see Section 3.4) which

contain a point charge or lie on the boundary between the solvent and the interior of any

molecule.

(b) Refine marked simplices; refine the mesh to conformity.

End while.

8. While the global error estimate is too big:

(a) Solve the weak form of the PBE for each molecular system.

(b) Estimate the per-simplex error using the residual-based error estimator.

(c) Mark simplices on the local partition or overlap region with errors greater than some

tolerance.

(d) Refine marked simplices; refine the mesh to conformity.

End while.

The details of implementation for the particular steps of this algorithm have been mostly covered

in previous sections. In summary, after initialization of the problem, partitioning of the mesh and
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initial a priori refinement, APBS carries out the adaptive solve-estimate-refine procedure outlined

in Section 3.2 until a target accuracy has been reached.

Appropriate a priori refinement of the initial mesh can provide acceleration in convergence of

the expensive solve-estimate-refine steps (Step 8 in Algorithm 4.1). The first step in the procedure

is the reading of a very coarse “pre-mesh” (Step 2 in Algorithm 4.1) which completely encapsulates

the desired problem domain. In general, this coarse mesh can be of any polyhedral shape; in

practice it is typically a simple rectangular prism comprised of six tetrahedra. To allow for the

accurate representation of boundary conditions by an analytical Green’s function model, the outer

boundary of the pre-mesh should be at least twice the radius of the sphere which circumscribes the

molecular complex. After the pre-mesh is read, it must be uniformly refined to a desired number

(cP ) number of simplices for partitioning (Step 4, Algorithm 4.1). In general, a suitable number of

simplices for partitioning is roughly 10−100 times the target number of partitions. This number of

initial simplices not only provides a reasonable error estimate for error-weighted partitioning of the

mesh, but also provides adequate flexibility for the spectral bisection partitioning algorithm. While

uniform refinement is not a requirement, the errors on the very coarse pre-mesh are typically so

large that error-based refinement schemes lead to uniform marking and subdivision. Following error-

weighted partitioning of the mesh, geometry-based refinement near point charges and molecular

surfaces is carried out on the local partition and overlap region until the specified mesh resolution is

reached (Step 7 in Algorithm 4.1). This process is essentially an a priori estimate of the problematic

features of the system that will be refined by subsequent a posteriori estimate-refine steps. By

subdividing simplices (on the local partition and overlap region of each processor) which lie across

the dielectric or ionic strength boundaries or contain charges, the a priori refinement scheme is

attempting to resolve some of the overall structure of the discontinuous problem coefficients prior

to the more costly solve-estimate-refine loop.
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5. Application to biomolecular systems

One of the advantages of using adaptive methods to solve the PBE is the ability to study

large biomolecular systems that are untenable with uniform mesh techniques. One such system of

interest is the cytoskeleton, the complex array of filaments and proteins within every eukaryotic cell.

The largest cytoskeletal component, the microtubule, is a hollow cylindrical filament (see Figure6)

assembled from the long protofilaments composed of tubulin subunits [31, 32]. The microtubule

cylinders are 25 nm in diameter and, depending on function, can have lengths from nanometers

to several millimeters. While microtubules are the most rigid structures in the cell and play an

important structural role, they are also involved in variety of other functions, including cellular

transport, motility, and division. Many of these more dynamic functions involve interactions with

other proteins or filaments in the cell, often through electrostatic interactions. For this reason, the

ability to calculate the electrostatic properties of a microtubule can provide important insight into

many cellular processes. It is the large size of microtubules that poses tremendous computational

challenges; for example, the atomically detailed solution of the PBE for a 1-µm-long microtubule

requires more than 21 million delta functions in the source term of the PBE to model the charge

distribution to full atomic detail.

APBS was used to solve the LPBE for a 40-nm-long microtubule consisting of 605,205 atoms

with a net charge of -1800 e. The microtubule structure was assembled by D. Sept using micro-

tubule structures derived from the work of Nogales, Whittaker, Milligan, and Downing [33]. The

biomolecule was assigned an internal dielectric constant of 2 and surrounded by a solvent of dielec-

tric 78.54 and ionic strength of 150 mM. The molecular volume was defined with 0.14-nm-radius

solvent probes, and the ion accessibility was calculated using 0.20-nm probes. The pre-mesh was

a 6-tetrahedron cubic box with 90-nm sides. For each P -processor calculation, the pre-mesh was

uniformly refined to over 100P simplices and partitioned by error-weighted spectral bisection. In

order to ensure the best possible load balancing, no a priori adaptive refinement was performed.
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Instead, each partition in the mesh was subject to the solve-estimate-refine adaptive refinement loop

using the residual-based a posteriori error estimator until each processor had the target number

of vertices (40,000). These calculations were performed on 1, 2, 4, 8, 16, and 32 processors of the

NPACI Blue Horizon supercomputer. Blue Horizon is a massively parallel computational platform

with eight-way SMP IBM 222 MHz Power3 nodes and 4 GB RAM per node. Because of the low

communication costs, each job was submitted to the IP space queues. Jobs requiring less than 32

processors were run with all 8 processors per node, giving each processor roughly 400 MB of heap

memory. However, to provide adequate memory for the initial mesh refinement and partitioning

steps, the 32-processor job was run with 4 processors per node, allowing approximately 800 MB of

memory per processor.

The parallel scaling results for these calculations are shown in Figure 7. Although it was antici-

pated that each calculation would take roughly the same amount of execution time with the various

processor configurations, the actual runs showed a decrease in the execution time with increasing

number of processors. The execution times fit the polynomial t1P + t0 with a correlation coefficient

r2 = 0.91, a slope of t1 = (−140 ± 20) s/processor, and an intercept of t0 = (14800 ± 300) s. The

solid line in Figure 7 shows the global number of simplices in the mesh L(P ) (the sum of the number

of simplices from each partition) as a function of the number of processors. This function was fit to

a straight line L(P ) = l1P + l0 with correlation coefficient r2 = 0.999, slope l1 = (2.05±0.03)×105

simplices/processor, and intercept l0 = (1.7 ± 0.6) × 105 simplices. Finally, the parallel efficiency

was defined as

E(P ) =
L(P )
PL(1)

(5.1)

and plotted as the dashed line on Figure 7. The efficiency was also fit to a linear polynomial

E(P ) = e1P + e0 with correlation coefficient r2 = 0.61, slope e1 = (7 ± 3) × 10−3 per processor,

and intercept e0 = (1.08± 0.05). The mean efficiency of the six runs was E = 1.0± 0.1.
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As shown in Figure 7, APBS exhibits excellent scaling behavior for up to 32 processors. The

parallel efficiency is very high for all processor configurations and shows only a slight decrease for

larger (16 and 32) calculations. The “superlinear” scaling (E(2) = 1.9 and E(4) = 1.08) of the two

and four processor configurations can be considered an artifact of the parallel efficiency definition.

Since it is very difficult to refine mesh partitions to an exact number of simplices, the solve-estimate-

refine loop can only be constrained to refine the partition to contain more than a specified number

of simplices, therefore not providing an exact cutoff for each partition and processor configuration.

The resulting scatter in L(1) and L(P ) leads to parallel efficiencies that can deviate, both positively

and negatively, from their “ideal” values.

Due to the large size of the resulting electrostatic potential data sets, it was not possible to

visualize the results of the parallel calculations shown in Figure 7. However, a much lower reso-

lution calculation was performed on a slightly larger (60 nm long, 901,083 atoms, -3000 e charge)

microtubule to generate the electrostatic potential contours shown in Figure 8. As expected, the

highly charged microtubule shows mostly negative electrostatic potential near the molecular sur-

face (Figure 8, red contour). However, several regions of positive potential are visible, especially

near the ends of the microtubule. Such localized variations in electrostatic potential often play

important roles in molecular recognition and binding and suggest interesting modes of microtubule

assembly and stability.

6. Conclusions

Using new methods for the parallel solution of elliptic partial differential equations, it is possible

to leverage the teraflops computing power of massively parallel computers to perform electrostatic

calculations on biological systems at scales approaching the cellular level. Using the APBS and

MC software on the NPACI IBM Blue Horizon supercomputer, it was possible to solve the Poisson-

Boltzmann equation for the electrostatic potential around a microtubule containing more than
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600,000 atoms. The code showed excellent parallel scaling, providing incentive to attempt further

calculations to probe the structure and function of even larger macromolecules.

Future work is aimed at the inclusion of OpenMP extensions into APBS to take better advan-

tage of shared-memory machines and reduce the memory overhead associated with the duplicated

storage of biomolecular atomic information. Work is also in progress to utilize more of the Blue

Horizon’s parallel capabilities and investigate much larger biomolecular systems involving calcu-

lations on millions of atoms. By enabling such research through the use of parallel computing

technology, theoreticians should be able to move from computational chemistry at molecular scales

to computational biology at the cellular level.
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[17] I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Nu-

mer. Anal., 15:736–754, 1978.



PARALLEL ADAPTIVE MULTILEVEL SOLUTION OF THE POISSON-BOLTZMANN EQUATION 19
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Figure 1. Schematic of a model protein-solvent system. Charges within the pro-

tein are depicted as plus and minus symbols. The first protein-solvent boundary

(solid line) represents discontinuities in the dielectric coefficient ε, while the second

boundary (dashed line) represents discontinuities in the screening parameter κ2. Fi-

nally, the solvated ions surrounding the protein are depicted by the circled plus and

minus symbols.
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Figure 2. Representation of dielectric assignment based on solvent accessibility.

The molecular surface (heavy black curve) is defined by the solvent probes (hashed

circles) and the protein atoms (white circles). The gray areas represent regions

outside the atomic radii that are not accessible to the solvent molecules and therefore

inside the molecular surface.



22 NATHAN A. BAKER, DAVID SEPT, MICHAEL J. HOLST, AND J. ANDREW MCCAMMON

Figure 3. Piecewise-linear finite element basis function on a two-dimensional (tri-

angular) mesh.
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Figure 4. Simplex subdivision schemes. The figures on the left show simplex sub-

division of a mesh in two dimensions (upper) via quadrasection (lower left) and

longest-edge bisection (lower right). The dotted lines on the lower figures show the

additional subdivisions that must be performed to ensure a conforming mesh. The

figures on the right show subdivision of a single simplex in three dimensions (upper)

via octasection (lower left) and longest-edge bisection (lower right).
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Figure 5. Overlapping refinement on a partitioned mesh. All simplices within

σ = 1.2 times the radius of the green partition were given the same error (greater

than the simplex marking tolerance). Longest-edge bisection was performed via

the queue-swapping algorithm (see Section 3.2) until the mesh was conformal. The

checkerboard pattern within the refined region is an artifact of the image, a Moiré

pattern due to the high density of simplex edges.
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Figure 6. The amino acid backbone atoms of a microtubule. This structure is 25

nm in diameter, 40 nm in length and has 901,083 atoms and a -3000 e charge.
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Figure 7. Parallel scaling of electrostatics calculations for a microtubule using

APBS on the NPACI Blue Horizon supercomputer. The solid line shows the number

of simplices in the global mesh and the dotted line depicts the parallel efficiency.
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Figure 8. Electrostatic potential of a 605,205-atom microtubule fragment at 150

mM ionic strength. Potential contours are shown at +0.5 kT/e (blue) and -0.5 kT/e

(red). Each image represents a different view of the macromolecule. The upper

images show the electrostatic complementarity at ends of the microtubule, while

the lower images show the varying positive and negative regions of the potential on

the exterior and interior of the protein.


